
The SimpleFPS Planning Domain: A PDDL Benchmark for Proactive NPCs

Stavros Vassos and Michail Papakonstantinou
Department of Informatics and Telecommunications

National and Kapodistrian University of Athens
Athens 15784, Greece

{stavrosv,sdi0600151}di.uoa.gr

Abstract

In this paper we focus on proactive behavior for non-
player characters (NPCs) in the first-person shooter
(FPS) genre of video games based on goal-oriented
planning. Some recent approaches for applying real-
time planning in commercial video games show that the
existing hardware is starting to follow up on the com-
puting resources needed for such techniques to work
well. Nonetheless, it is not clear under which conditions
real-time efficiency can be guaranteed. In this paper we
give a precise specification of SimpleFPS, a STRIPS
planning domain expressed in PDDL that captures some
basic planning tasks that may be useful in a first-person
shooter video game. This is intended to work as a first
step towards quantifying the performance of different
planning techniques that may be used in real-time to
guide the behavior of NPCs. We present a simple tool
we developed for generating random planning problem
instances in PDDL with user defined properties, and
show some preliminary results based on SimpleFPS in-
stances that vary in the size of the domain and two well-
known planners from the planning community.

Introduction

In the field of artificial intelligence (AI), proactive behavior
for an agent means “thinking before acting.” Typically this
amounts to the agent deliberating about the potential out-
comes of her actions in order to choose the best available
action or a sequence of actions that may achieve a desired
goal. This is better understood in contrast to reactive behav-
ior where no deliberation about the potential future state of
affairs takes place.

The video game industry has been advertising the strong
artificial intelligence skills of the non-player characters
(NPCs) in the games. The characters are presented as being
able to out-smart the player by sneaking, hiding, and follow-
ing his moves. Typically though, the characters feature no
deliberation capabilities and their behavior is not proactive
in the previous sense. In fact, the characters are mostly reac-
tive as in the vast majority of video games the high-level be-
havior of the characters is limited to following well-prepared
predefined recipes that game designers specify in production

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time. Essentially, game developers create an illusion of in-
telligence using a few programming tricks for specifying the
behavior of NPCs without the need to rely on deliberation or
other sophisticated techniques from academic AI (Schaeffer,
Bulitko, and Buro 2008; Millington and Funge 2009).

Nonetheless, it seems that in the last few years the game
industry has reached a point where more sophisticated tech-
niques for NPC behavior are necessary. This has been ac-
knowledged both by gamers who thirst for smarter oppo-
nents that give the perception of truly autonomous human-
like entities with their own agendas and realistic acting
and sensing capabilities (Funge 2004; Nareyek 2004), as
well as game developers who seek a scalable, maintainable,
and reusable decision-making framework for implementing
NPCs as the complexity of the game-world increases (Orkin
2005). To that end, some techniques from the AI literature
have been used for achieving a proactive behavior based on
planning, such as the noted case of the commercial game
“F.E.A.R.” (Orkin 2006).

A prerequisite for achieving proactive behavior is the abil-
ity to specify the goals of the agent and her capabilities in
terms of affecting her surroundings, as well as a mecha-
nism for combining this information to produce a concrete
course of action at any given time. In this paper we focus
on proactive behavior for NPCs in the first-person shooter
(FPS) genre of video games based on goal-oriented plan-
ning (Orkin 2002), and attempt a first step towards quantify-
ing the performance of planners that may be used real-time
in a video game to guide the behavior of NPCs.

Some recent approaches for applying planning in video
games (such as the case of “F.E.A.R.” that was mentioned
earlier) show that the existing hardware is starting to fol-
low up on the computing resources needed for such AI tech-
niques to work well. Nonetheless, it is not clear under which
conditions certain guarantees can be imposed for memory
usage and real-time efficiency for the planners in a game. In
particular, it is very hard to evaluate what resources may be
needed for a planner in a game unless the planner is actually
implemented in the game, which makes it difficult for game
developers to invest on adopting such a technique.

In this paper we focus on the simple language of STRIPS
(Fikes and Nilsson 1971) for specifying a planning do-
main and problem instances for the domain. We introduce
SimpleFPS, a specification for a game world domain that

92

AAAI Technical Report WS-11-18

represents some basic facts and properties that NPCs in a
FPS typically consider in order to decide upon a high-level
course of action. Based on this game world specification we
proceed to present a tool for randomly generating problem
instances (essentially game levels) that vary in size accord-
ing to user input. We use this tool to generate two collections
of instances that vary in the size of the domain, and report on
the performance of two well-known planners from the plan-
ning community, BlackBox (Kautz and Selman 1999) and
FastForward (Hoffmann and Nebel 2001), on these prob-
lems. We conclude with the evaluation the results and a dis-
cussion on future work.

STRIPS planning and the language of PDDL

In the area of classical planning one is faced with the follow-
ing task. Given i) a complete specification of the initial state
of the world, ii) a set of actions schemas that describe how
the world may change, and iii) a goal condition, one has to
find a sequence of actions such that when applied one after
the other in the initial state, they transform the state into one
that satisfies the goal condition. In this paper we focus on
a specific formalism for representing planning tasks that is
called STRIPS (Fikes and Nilsson 1971).

In propositional STRIPS planning the representation of
the initial state, the action schemas, and the goal condition
is based on the notion of literals from propositional logic.
For example, the positive literal

NPC-Holding(medkit23)

may be used to represent that the NPC is holding a particular
med-kit, and the negative literal

¬NPC-Holding(gun12)

to represent that the NPC is not holding a particular gun.
The initial state is specified as a set of positive literals of

the previous form. This set is assumed to give a complete
specification of the world based on a closed-world assump-
tion. This means that all the positive literals in the set are
assumed to be true, and for all other literals that no infor-
mation is included in the set it is assumed that the negative
version of the literal is true.

For example, if the set describing the initial state includes
only one literal of the form NPC-Holding(x), in particu-
lar the literal NPC-Holding(medkit23), then it is assumed
that for all other objects in the world the negative literal
¬NPC-Holding(x) is also true. In other words, a set that
includes only the positive literal NPC-Holding(medkit23)
specifies that in the initial state the NPC is holding exactly
one object, i.e., the med-kit medkit23.

The action schemas specify what are the available actions
in the world as well as when can each action be executed in
a state and how is the state affected after the performance
of the action. For example an action schema may specify
the the preconditions and effects of the pick-up actions that
an NPC may perform. One way to formalize this may be the
action schema place-in-inventory(x) with preconditions that
require that the NPC be located near the item x and effects
that add the corresponding literal NPC-Holding(x) in the set
that describes the state.

The preconditions and effects of actions are also treated
as sets of literals. In the case of preconditions a set of posi-
tive literals specify what conditions need to be true in order
for the action to be executable. Note that this can be tested
by simply checking if all literals in the set of preconditions
for an action are included in the set that describes the state.
Similarly for the effects of an action, a set of positive and
negative literals specify how the state should be transformed
when the action is performed: all the positive literals in the
set of effects are added in the set describing the state and all
negative literals are removed. We will see particular exam-
ples of this in the next section.

Finally, a goal condition is also a set of positive literals
and the intuition is that the goal is satisfied in a state if all
the literals listed in the goal condition are included in the
set that describes the state. A solution then to a planning
task is a sequence of actions such that if they are executed
sequentially starting from the initial state, checking for cor-
responding preconditions, and applying the effects of each
action one after the other, they lead to a state description
that satisfies the goal condition.

In this paper we focus on a specific syntax for describ-
ing propositional STRIPS planning tasks following the Plan-
ning Domain Definition Language (PDDL) (Mcdermott et
al. 1998). PDDL is a standard language for specifying plan-
ning tasks that is widely used in the planning community.
In PDDL, the specification of the predicates and the action
schemas is separated from the specification of the initial
state and the goal condition. The first part is typically re-
ferred to as the planning domain and the second part as the
planning problem. In this way one can define a number of
planning problems for the same planning domain.

The syntax of PDDL follows the logical representation
of propositional literals as described above but a prefix nota-
tion is used. In this way, the positive literal NPC-Holding(x)
may be represented as (npc-holding ?x), and the
negative literal ¬NPC-Holding(x) may be represented as
(not(npc-holding ?x)). Note that variables are de-
noted using a preceding question mark. Special predicates
are used for the specification of the planning domain with
the intuitive meaning, including: (:predicates ...)
and (:action ...). Similarly, (:objects ...),
(:init ...), and (:goal ...) are used to specify
planning problems.

The SimpleFPS domain
In this section we present the SimpleFPS planning domain
that is intended to capture some basic planning tasks that
may be useful in a first-person shooter video game. We de-
cided to represent only some more high-level actions that an
NPC may perform, thus leaving actions such as path-finding
and motion control to be treated in a lower-level.

That being said, a level of the game is divided into ar-
eas (in a real video-game these could be rooms) which are
connected through way-points (e.g. doors). Each area has a
number of points of interest (POIs) of various sorts including
items, way-points, as well as the human player as a special
point of interest. We consider each of these points of inter-
est to have a specific location in the area which is stored at

93

a lower level. In order for the NPC to interact with them he
should get close and then perform the desired action based
on the type of point of interest he is close to (e.g. move from
area to area if the point of interest is a way-point or attack
using a melee weapon if the point of interest is the player).

The SimpleFPS domain uses a number of predicates to
represent the available functionality in the game, as ex-
plained next.

The predicates of the domain

The predicates of SimpleFPS essentially represent the
changing properties of the domain. We will present them in
groups based on their usage.

The following predicates represent facts related to the
state of NPC:
• (npc-at ?a): the NPC is currently at area ?a,
• (npc-close-to ?p): the NPC is close to the point of

interest ?p.
• (npc-not-close-to-point): the NPC is not close

to any point in the area.
• (npc-covered): the NPC is covered.
• (npc-uncovered): the NPC is not covered.
• (npc-holding ?o): the NPC is holding (e.g. as in an

inventory) the object ?o.
• (npc-injured): the NPC is injured.
• (npc-full-health) the NPC has full health.
• (npc-aware): the NPC has made contact with the

player and knows his/her location.
• (npc-unaware): NPC has not encountered the player.

The following predicates represent facts related to the
state of the human player:
• (player-wounded): the NPC has inflicted damage to

the player.
• (player ?p): the point of interest ?p is identified as

the human player.
The following predicates represent facts related to areas

in the game world and their characteristics:
• (connected ?area1 ?area2 ?waypoint):
?area1 is connected to ?area2 through ?waypoint.

• (waypoint ?w): ?w is a way-point.
• (lighted ?area): ?area is lighted (so the NPC can

see the points of interest inside).
• (dark ?area): ?area is dark.

The following predicates represent facts related to points
of interest in the game world and their characteristics:
• (point-of-interest ?p ?area): ?p is a point

of interest in ?area.
• (control-box ?p): ?p is a control box (for turning

on and off the lights).
• (cover-point ?p): ?p is a point where the NPC can

take cover.
• (item ?point): ?point is an item.

Properties related to the items of the world are further de-
scribed using the following predicates:
• (keycard ?item ?waypoint): ?item is a key-

card that opens ?waypoint.

• (medikit ?m): ?m is a med-kit that restores health.
• (knife ?k): ?k is a knife.
• (gun ?g): ?g is a gun.
• (loaded ?gun): ?gun is loaded
• (unloaded ?gun): ?gun is empty.
• (ammo ?item ?gun): ?item is ammo for gun
?gun.

• (has-nightvision ?gun): ?gun has night-vision,
therefore can be used to attack the human the player in
dark areas.

The intuition is that the initial state of the game world (as
well as any state that results from it) is represented as a set of
positive ground literals of the kinds we have just described.
We now proceed to present the action schemas in SimpleFPS
that characterize the available actions for the NPC.

The available actions in the domain

Action schemas in PDDL (as in STRIPS) are defined in
terms of their preconditions and effects using the available
predicates of the domain. For example, the following PDDL
statement is an action schema as it appears in the SimpleFPS
domain that represents the actions of the NPC picking up an
item of the game world.

(:action place-in-inventory
:parameters (?area ?item)
:precondition (and

(npc-at ?area)
(point-of-interest ?item ?area)
(npc-close-to ?item)
(item ?item)
(npc-uncovered)
(lighted ?area)
)

:effect (and
(not (point-of-interest ?item ?area))
(npc-holding ?item)
(not (npc-close-to ?item))
(npc-not-close-to-point)
)

)

The intuition with the action schema for (place-in
-inventory ?area ?item) is that the action can only
be performed when the NPC is close to a point of interest
located in a area with light and the NPC is not in a cover
state. The result of performing the action then is that the
item is no longer located in the game world, therefore the
corresponding literals are removed from the description of
the current state, and a new positive literal is added in the
state: (npc-holding ?item).

The action schemas of SimpleFPS that represent the ac-
tions of taking cover and performing two different type of
attacks follow.

(:action take-cover
:parameters (?area ?point)
:precondition (and

(npc-at ?area)
(point-of-interest ?point ?area)
(cover-point ?point)
(npc-close-to ?point)

94

(npc-uncovered)
)

:effect (and
(npc-covered)
(not (npc-uncovered))
)

)

(:action attack-melee
:parameters (?area ?weapon ?point)
:precondition (and

(npc-aware)
(npc-at ?area)
(point-of-interest ?point ?area)
(player ?point)
(lighted ?area)
(npc-close-to ?point)
(npc-uncovered)
(npc-holding ?weapon)
(knife ?weapon)
)

:effect (player-wounded)
)

(:action attack-ranged
:parameters (?area ?weapon ?point)
:precondition (and

(npc-aware)
(npc-at ?area)
(point-of-interest ?point ?area)
(player ?point)
(lighted ?area)
(gun ?weapon)
(npc-holding ?weapon)
(loaded ?weapon)
)

:effect (and
(player-wounded)
(unloaded ?weapon)
)

)

Note that the preconditions for melee and ranged attack
are different. In the first case the NPC needs to be close to
the player, while in the second case the NPC need not be
close to the player but a different kind of weapon is needed.
The representation is very simplistic as for instance a knife
could also be used in a ranged attack by throwing it towards
the player, etc. Nonetheless, for SimpleFPS the point was
to illustrate that different types of attack can be expressed
using weapons with different capabilities.

We now give a complete list of the action schemas that we
have specified in SimpleFPS along with a very brief descrip-
tion of their effects in the game world.

• moving-to-patrol: the NPC moves from the area it
is located to another through the connecting way-point
provided that it has not spotted the player.

• moving-to-take-position: the same but assum-
ing that the NPC has spotted the player.

• move-to-point: the NPC moves close to a point of
interest.

• move-away-from-point: the NPC moves away
from a point of interest.

• move-to-point-from-point: the NPC moves
from one point of interest to another within the same area.

• make-accessible: the NPC makes a way-point ac-
cessible by using the appropriate keycard.

• make-contact: the NPC spots the player.
• take-cover: the NPC takes cover at a respective point

of interest.
• uncover: the NPC moves away from a cover point.
• place-in-inventory: the NPC places an item in his

inventory.
• reload: reloads a gun using the correct kind of ammo.
• attack-melee: the NPC attacks the player using a

melee weapon.
• attack-ranged: the NPC attacks the player using a

ranged weapon.
• sneak-kill: the NPC attacks the player using a

weapon with night vision in a dark area.
• use-medikit: NPC restores his health using a med-kit.
• turn-on-lights: NPC turns on the lights at the area

it is located.
• turn-off-lights: NPC turns off the lights at the area

it is located.

The parameters for each action schema as well as the pre-
conditions and effects can be found in the full specification
of SimpleFPS that can be found at http://stavros.lostre.org/
sFPS/.

Problem instances in the SimpleFPS domain

In this section we present a simple tool we developed that
can be used to generate random instances of planning tasks
in PDDL based on the SimpleFPS domain we described in
the previous section. Given a number parameters the tool
creates a PDDL problem for the SimpleFPS that specifies
the initial state of the game world and a goal condition
that should be satisfied. The parameters are specified as
command-line arguments as follows:

• -a <int>: the number of areas of the generated level.
• -c <float>: the probability that two areas are con-

nected through a way-point.
• -n <int>: the total number of points of interest in the

level. Each one can either be a gun, a knife, a first-aid kit
or a cover point.

• -g <goal condition>: this specifies the goal con-
dition that will be specified in the planning problem;
<goal condition> can be one of the following:
– g1: the goal is that the NPC inflicts damage to the

player.
– g2: the goal is that the NPC takes cover.
– g3: the goal is that the NPC restores its health to full.
– g4: the goal is the conjunction of the three goals above.

• -l <int>: the number of different levels to be gener-
ated.

Each time a level is generated some statistics are printed
such as the starting area of the NPC and the player, the type
of each item placed in the level, the number of way-points
and key-cards. Also, the file name of the generated level in-
cludes the value for each parameter for easier inspection.

95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 r
un

tim
e

of
 p

la
nn

er
 in

 s
ec

Total number of points of interest

bb, player-wounded, levels with 5 areas
bb, npc-covered, levels with 5 areas

bb, npc-full-health, levels with 5 areas

Figure 1: Performance of BlackBox on SimpleFPS problems
from the collection sFPS-a5-c0.7

The rest of the details for each generated level are speci-
fied randomly using some fixed probabilities in order to de-
cide, e.g., whether a particular way-point is open or not, and
a gun is loaded or not. A few hard-coded rules ensure that
the generated levels are intuitive, e.g., every time a closed
way-point is inserted, a key-card is also placed at a random
area. Similarly, for every empty gun that is generated, some
ammo for that gun is also placed at a random area.

Finally, we note that the source code of this tool can be
found at the link provided earlier.

Three collections of SimpleFPS planning tasks and
some preliminary results

As the main motivation for SimpleFPS is the evaluation of
planning techniques in video game worlds, we now present
some preliminary results based on two well-known plan-
ners from the planning community that rely on different
techniques for finding a solution, namely BlackBox (Kautz
and Selman 1999) and FastForward (Hoffmann and Nebel
2001). The intention was to get a first idea about how dif-
ficult this problem is for existing planners and maybe some
intuition as for which techniques are more suited for this
kind of domains. At the same time we wanted to provide a
set of problems that could act as a benchmark for other peo-
ple interested to apply planning techniques in video games
with similar characteristics.

Using the tool we developed for SimpleFPS, we gener-
ated three collections of planning problems with a different
number of total areas: sFPS-a5-c0.7, sFPS-a7-c0.7,
and sFPS-a10-c0.7. The first collection includes prob-
lems with 5 areas such that the probability that two ar-
eas are connected is 0.7, and a number of points of inter-
est that range from 10 to 100. In particular, for each n in
{10, 20, . . . , 100}, we generated 10 problem instances with
n points of interest and four different versions of each in-
stance that correspond to the four goal conditions g1, g2,
g3, and the combined goal g4. Similarly for the other two
collections problems with 7 and 10 areas where generated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 20 30 40 50 60 70

A
ve

ra
ge

 r
un

tim
e

of
 p

la
nn

er
 in

 s
ec

Total number of points of interest

ff, combined goal, levels with 5 areas
ff, combined goal, levels with 7 areas

ff, combined goal, levels with 10 areas

Figure 2: Performance of FastForward on SimpleFPS
problems from all three collections sFPS-a5-c0.7,
sFPS-a7-c0.7, and sFPS-a10-c0.7

The collections can be found at the link provided earlier.
Figure 1 shows the performance of BlackBox for prob-

lems in collection sFPS-a5-c0.7. Unfortunately, the
planner had trouble solving problems with more than 50
points of interest, often taking more than a minute to respond
(which is clearly not desirable for an FPS game). In fact, the
combined goal of achieving g1, g2, and g3 at the same time
needs more than two minutes even for instances with 5 areas
and 20-40 total points of interest. Therefore we only show
the running-time of the planner for small instances with up
to 50 items, and only for each of the simple goal conditions
(player-wounded) (g1), (npc-covered) (g2), and
(npc-full-health) (g3) separately, for which the
planner responds in less than 1.5 seconds.

Figure 2 shows the performance of FastForward
for problems in all three collections sFPS-a5-c0.7,
sFPS-a7-c0.7, and sFPS-a10-c0.7. FastForward
was able to perform better in the sense that it can han-
dle much larger problems for similar running time. Un-
like BlackBox, FastForward was able to respond within
3 seconds for all problem instances. Figure 2 shows the
running-time of the planner for instances with up to 70
items for the combined goal (and player-wounded
npc-covered npc-full-health), for which the
planner responds in less than 1.5 seconds. Note also that we
only report the running-time of the planner for the most dif-
ficult of the goal conditions, that is, the combined goal, for
which BlackBox was unable to respond at all within 3 sec-
onds for any instance. Observe also that for problems small
in size, e.g., up to 50 points of interest and up to 10 areas,
FastForward achieves a sub-second performance.

Discussion and future work

In this section we briefly discuss the preliminary results pre-
sented in the previous section and some directions for future
work that we intend to investigate.

As far as the running time of BlackBox and FastForward

96

is concerned, clearly, in order for real-time planning to be
practical in commercial video games the reported numbers
need to improve by one or two orders of magnitude, so that
such planning problems can be solved up to many times per
frame in the game. Nonetheless, it should be noted that the
reported results are only a shallow evaluation using some of
the existing techniques. There are a few reasons to believe
that much better performance can be achieved.

For one, the planners developed in the planning com-
munity aim for completeness (and often optimal solutions)
which is a very demanding task. For a video game setting it
may make more sense to search for sub-optimal or approxi-
mate solutions that can be computed very fast. This requires
a close collaboration between AI academics and game de-
velopers so that the specific needs of game developers can
be specified and quantified.

Moreover, even the simple planning problems we con-
sider in SimpleFPS may require the planner to look into so-
lutions with length up to more than ten actions. Apart from
the fact that this is computationally demanding, in most FPS
video games a plan that consists of more than a few actions
is of little use as the state of the game world changes very
fast and large plans become obsolete very quickly. Instead of
actually obtaining a plan of fifteen actions, an NPC may bet-
ter off searching for a plan of at most five actions and if such
a plan cannot be found, revert back to using some predefined
plan or strategy. Searching for plans of bounded length can
dramatically decrease the time needed to either find a so-
lution or return with failure. In this sense, the preliminary
results reported in the previous section can be thought as ac-
tually having a positive flavor.

Similarly, we would also like to investigate better ways
that planning could be used to specify the behavior of NPCs,
not necessarily bound to searching for a solution as a se-
quence of actions and strictly following the solution found.
In fact, we used the term “proactive behavior” in order to
stress that there is a wider class of behaviors that can be
achieved based on the same principles. To that end we in-
tend to investigate languages that combine planning as well
as a way to control or fine tune the outcome of the planning
mechanism in the spirit of the agent programming language
Golog (Levesque et al. 1997) and IndiGolog (De Giacomo et
al. 2009). In these languages one can define high-level agent
programs that can be seen as abstract plans that show how
the intended behavior for the agent should look like. In the
execution of such a program planning is used implicitly to
achieve some of the requirements specified at certain parts of
the program, but only at the time that it is needed. A few ap-
proaches toward this direction include (Jacobs, Ferrein, and
Lakemeyer 2005) and (Ferrein 2010).

Finally, we note that to the best of our knowledge Sim-
pleFPS is the first approach for building a benchmark for
evaluating different planning techniques in the genre of FPS
video games. The PDDL language has been used before for
performing real-time planning in video game worlds, e.g.,
(Bartheye and Jacopin 2009), but not with the intention of
providing a benchmark. It should also be noted that Sim-
pleFPS is based on the approach of the game F.E.A.R. as it
was described in (Orkin 2006).

References

Bartheye, O., and Jacopin, E. 2009. A Real-Time PDDL-
based planning component for video games. In Proceedings
of the Fifth Artificial Intelligence and Interactive Digital En-
tertainment Conference (AIIDE). The AAAI Press.
De Giacomo, G.; Lespérance, Y.; Levesque, H. J.; and Sar-
dina, S. 2009. IndiGolog: A High-Level programming lan-
guage for embedded reasoning agents. 31–72.
Ferrein, A. 2010. golog.lua: Towards a Non-Prolog Imple-
mentation of Golog for Embedded Systems. In Hoffmann,
G., ed., Proc. of AAAI Spring Symposium 2010 on Embed-
ded Reasoning, (SS-10-04).
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Funge, J. D. 2004. Artificial Intelligence For Computer
Games: An Introduction. MA, USA: A. K. Peters, Ltd.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Jacobs, S.; Ferrein, A.; and Lakemeyer, G. 2005. Control-
ling unreal tournament 2004 bots with the logic-based ac-
tion language GOLOG. In Proceedings of the Artificial In-
telligence and Interactive Digital Entertainment Conference
(AIIDE05). CA, USA: Morgan Kaufmann publishers Inc.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proceedings of the 16th interna-
tional joint conference on Artificial intelligence, 318–325.
CA, USA: Morgan Kaufmann Publishers Inc.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Programming
31(1-3):59–83.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
the planning domain definition language. Technical report,
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Millington, I., and Funge, J. 2009. Artificial Intelligence for
Games, Second Edition. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2nd edition.
Nareyek, A. 2004. Artificial intelligence in computer
games - State of the art and future directions. ACM Queue
10(1):58–65.
Orkin, J. 2002. Applying goal oriented action planning in
games. In AI Game Programming Wisdom 2. Charles River
Media. 217–229.
Orkin, J. 2005. Agent architecture considerations for Real-
Time planning in games. In Artificial Intelligence & Inter-
active Digital Entertainment (AIIDE).
Orkin, J. 2006. Three states and a plan: The AI of F.E.A.R.
In Proceedings of the Game Developer’s Conference (GDC).
Schaeffer, J.; Bulitko, V.; and Buro, M. 2008. Bots get smart.
IEEE Spectrum 45(12):44–49.

97

