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Abstract
Game metrics are an approach to understanding games
and gameplay by analyzing and visualizing information
collected from players in playtests. This paper proposes
that another source of metrics is the game itself, and that
not all information needs to (or ought to) come from
empirical playtests. I discuss seven strategies for ex-
tracting information from games, and discuss how the
information retrieved in this manner relates to empiri-
cal playtest metrics—which it differs from but can often
complement.

Introduction
A common (and sensible) way for a game designer to im-
prove his or her understanding of a design-in-progress is to
playtest a prototype. Doing so gives the designer empirical
information about what players do in the game (and when
and how they do it), as well as about their subjective re-
actions. There has been considerable recent work in using
visualization and AI tools to improve the process of collect-
ing and understanding this empirical information. The most
well-known visualization is probably the “heatmap”, a map
of a game level color-coded by how frequently some event
occurs in each part of the map, allowing a quick visual rep-
resentation of, e.g., where players frequently die (Thomp-
son, 2007). This can be extended into more complex anal-
ysis of gameplay patterns (Drachen and Canossa, 2009),
characterization of play styles (Drachen, Canossa, and Yan-
nakakis, 2009), and analysis of player experience (Pedersen,
Togelius, and Yannakakis, 2009).

In all these approaches, the source of information is ex-
clusively the player. Empirical information is collected from
players, by methods such as logging their playthroughs,
tracking their physiological responses during play, adminis-
tering a post-play survey, etc. Then this data is analyzed and
visualized in order to understand the game and the gameplay
it produces, with a view towards revising the design.

For some kinds of game-design questions, it’s sensible or
even necessary for our source of information to be empirical
data from players. If we want to know if a target audience
finds a game fun, or what proportion of players notice a hid-
den room, we have them play the game and find out. But an
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additional purpose of playtesting is for the designer to bet-
ter understand their game artifact, in the sense of a system
of code and rules that works in a certain way. Some com-
mon results of playtesting aren’t really empirical facts at all.
When the designer looks over a player’s shoulder and re-
marks, “oops, you weren’t supposed to be able to get there
without talking to Gandalf first”, that isn’t an empirical fact
about players or gameplay that’s being discovered, but a log-
ical fact about how the game works.

While this kind of improved understanding of a game ar-
tifact can be discovered through playtesting, the only real
role of the player in uncovering that kind of information is
to put the game through its paces, so the designer can ob-
serve it in action. We need not treat the game as a black
box only understandable by looking at what happens when
players exercise it, though; we can analyze the game itself
to determine how it operates. Indeed, designers do so: when
they design rule systems and write code, they have mental
models of how the game they’re designing should work, and
spend considerable time mentally tracing through possibili-
ties, carefully working out how rules will interact, and per-
haps even building Excel spreadsheets before the game ever
sees a playtester. Can we use AI and visualization techniques
to augment that thinking-about-the-game-artifact job of the
designer, the way we’ve augmented thinking about player
experience?

This paper sketches seven strategies for doing so, sev-
eral existing and others new. While they can be used as
alternatives to player-based metrics and visualizations for
some kinds of design questions, especially early on in pro-
totyping (so that the designer can focus playtesting on more
subjective or experiential questions), many also work nat-
urally alongside existing metrics/visualization approaches.
Although my own work (with collaborators) has been based
on modeling game mechanics in symbolic logic (Nelson and
Mateas, 2008; Smith, Nelson, and Mateas, 2009, 2010), this
paper attempts to discuss strategies in a way that’s open to
a range of technical approaches that could be used to realize
them—focusing on what we might want to get out of ana-
lyzing games and why.

Strategy 1: “Is this possible?”
The easiest questions to ask are of the form: can X happen?
Examples: Is the game winnable? Can the player collect ev-
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Figure 1: Heatmaps of player deaths: left is empirical deaths
from several playthroughs, while right is analytically possi-
ble death locations.

ery item? Can the player die while still in the first room?
Can the player die right on this spot I’m clicking? Can both
of these doors ever be locked at the same time?

This strategy answers any yes/no question whose answer
is determined directly by the rules of the game: whether a
game state is possible, or an event can ever happen, given all
possible player behaviors. In fact questions might not even
involve variation on the player’s part, but variation in the
system: Do enemies ever spawn at the bottom of a pit?

This analysis strategy could be exposed directly to the de-
signer in a query setup. Alternately, classes of answers can
be visualized. For example, we can ask, for every square in
a grid-divided level, whether the player could die there, and
color-code the map accordingly, producing a version of the
popular player-death heatmap that shows instead where it is
possible for players to die.

Figure 1 shows on the left, a heatmap of deaths in a
few playthroughs of a room in a Zelda-like game; and on
the right, a map of where it’s possible to die. There’s a
clear structural pattern immediately visible in the second fig-
ure, derived from the game rules rather than from empirical
playtest data: the player can only die in two specific rows.
In the first figure, this pattern hasn’t quite been made clear
via the pattern of empirical player deaths. Especially with
more complex patterns, it can take a lot of playtesting data to
spot these sorts of structural features in the possibility space,
which are usually caused by unnoticed interactions of rules,
or interactions between game mechanics and level design. In
addition, it can be useful to have both kinds of heatmaps, to
allow the designer to disentangle which patterns are caused
by the possibility space, and which are caused by patterns
within player behavior. A figure like the second one can even
be used to tweak level design at a more detailed level, e.g. to
place safe spots.

Several techniques can been used to implement this strat-
egy. Salge et al. (2008) playtest games with a simulated
player that evolves itself in order to try to achieve par-
ticular outcomes. My own work uses logical inference for
query-answering (Nelson and Mateas, 2008). More specific
(and likely more efficient) algorithms can be used for spe-
cial cases of possibility as well; for example, flood-fill al-
gorithms are sometimes used to make sure there are no dis-
connected parts of a level, and graph-reachability algorithms

happens(move(player,north),1)
happens(attack(monster,player),2)
happens(attack(monster,player),3)
happens(die(player),3)

Figure 2: Gameplay trace of a player dying.

can be used for similar purposes. A challenge with using
these special-case algorithms in a larger system is to auto-
matically recognize when they’re applicable, and in which
variants; for example, basic flood-fill suffices for reachabil-
ity as long as a level doesn’t involve movable walls or keys.

Strategy 2: “How is this possible?”
Beyond finding that something is possible, a designer often
wants to know how it could happen. In player metrics this
is answered by collecting a log or trace of the actions the
player took, along with information about game state (such
as the player’s position and health). These traces can be used
both for debugging (to track down how something happened
when it shouldn’t have been possible), and as a way to un-
derstand the dynamics of the game world, by looking at the
paths that can lead to various game states.

Figure 2 shows a fairly boring event log of a player dying
after walking up to a monster and then doing nothing. This
could be elaborated with the value of various game states
at each point in the log, such as the player’s position and
health. However, its boringness of course raises the follow-
on question: can you show me not only ways that something
is possible, but interesting ways that it could happen? For
some outcomes, like those that should never happen, any log
is interesting, but for others this is a trickier question. One
approach is to let the designer interactively refine the trace
they’re requesting. In this example, they could ask for a way
the player dies without ever standing around doing nothing,
and then go on to add more caveats if the result were still too
mundane; we refer to this as trace zooming (Smith, Nelson,
and Mateas, 2009).

In a simulation framework like that of Salge et al. (2008),
the log of how something is possible would simply be a
log of the actions taken during the successful simulation
run (although it may take time to recompute new runs if
something like interactive zooming is offered). In a logical
framework, it can be posed as an abduction problem: find-
ing a sequence of events that, if they happened, would ex-
plain how the sought-after outcome could come about (Nel-
son and Mateas, 2008); zooming would be abduction with
added constraints on the explanations. It’s also possible to
view finding a path to an outcome as a planning problem
within the story world, and use a classical AI planner. For
example, Pizzi et al. (2008) find solutions to game levels and
display them as comic-like sequences of illustrated events.

Strategy 3: Necessity and dependencies
Once we know what things are possible, and how they can
happen, we might also want to know what must happen. Can
you beat Final Fantasy VI without ever casting “Meteo”?

15



Which quests can the player skip? Is this powerful sword I
just added to the game needed or superfluous?

These kinds of questions also relate to the questions that
can be asked via the first two strategies. Some kinds of ne-
cessity questions can be rephrased in terms of whether it’s
possible to reach a particular state that lacks the property we
want to determine the necessity of. For example, whether it’s
necessary to level-up to level 5 before reaching the second
boss is equivalent to asking whether it’s possible to reach
that boss while at a level of 4 or below. Other kinds of ne-
cessity questions can be rephrased in terms of zooming in
on traces. For example, asking whether a particular sword
is necessary to beat the game is equivalent to asking for
a gameplay trace where the player beats the game, which
doesn’t contain the pick-up-that-sword event.

In empirical playtesting, it’s common to collect metrics
about usage: how many players achieve a particular quest,
use each item, etc. Similarly to how we can juxtapose empir-
ical data with analytically determined possibilities in Strat-
egy 1, in this strategy we can juxtapose empirical data with
analytically determined necessities. Of course, if the empir-
ical results show less than 100% for some item or event, it
couldn’t have been necessary, but on the other hand there
may be things that 100% of our playtesters did which aren’t
actually necessary, which this game-analysis strategy would
distinguish.

More automatic dependency analysis is also possible. For
example, asking whether it’s necessary for event A to pre-
cede event B, or vice versa, can let us build up a graph of
necessary event ordering, which at a glance indicates some
of the causal structure of the game world. That includes
causal structure that wasn’t explicitly written; for example,
entering a locked room might have several explicit precon-
ditions, like the player needing to find a key before entering,
but also several implicit preconditions caused by interaction
of other rules, like the player needing to find a particular suit
of armor before entering (because there is simply no way
they can successfully get to the room without having first
acquired that suit of armor).

To our knowledge, no existing game-analysis work ex-
plicitly aims at this kind of automatic necessity or depen-
dency analysis. Our own work follows the approach, de-
scribed in this section, of reducing necessity and dependency
analysis to a series of queries implemented using strategies 1
and 2.

Strategy 4: Thresholds
Sometimes there are magic numbers delineating the bound-
aries of possible behavior, or of a certain regime of game
behavior. What is the shortest possible time to complete a
Super Mario Bros. level? What range of money could a Sim-
City player possess when five minutes into the game?

This strategy can give useful information often not
discovered in initial playtesting, for example by finding
speedruns of a level, or cheats to quickly finish it, that the
usually not-yet-expert-at-the-game players in a playtesting
session wouldn’t have found. In addition, it can be paired
profitably with empirical player data to give an idea of how
close the particular range of data being observed comes to

the theoretical bounds that the game’s rules define. For ex-
ample, any graph that graphs players as a distribution on a
numerical scale could also draw bounds of the largest and
smallest possible value—and not just largest or smallest a
priori, as in a score that’s defined to range from 0 to 100,
but actually possible in a specific context.

In addition to telling us whether playthroughs signifi-
cantly different on a particular metric’s axis from the empir-
ically observed ones are possible, the relationship between
the empirical range of data and the theoretical extrema can
tell us something about the players in our playtest. For ex-
ample, in earlier work we discovered that the typical players
in our playtest of an underground-mining game were much
more cautious with returning to the surface to refuel than
was strictly necessary (Smith, Nelson, and Mateas, 2009).
This can then be used in concert with Strategy 2 to figure
out how to achieve the threshold values.

In our logic-based approach, thresholds are found using
a branch-and-bound method. A possible solution (of any
value) is first found, and then a constraint is added that a new
solution be better than the one already found (e.g. shorter, if
we’re looking for the shortest playthrough). Then we look
for another solution meeting the new constraints, and repeat
until no additional solutions are found. This has the advan-
tage of generality, but can be slow.

Future work on the problem could explicitly use an opti-
mization method, whether a randomized one like genetic al-
gorithms, or a mathematical one like linear programming. In
addition, there are a wide range of algorithms to find max-
imal or minimal solutions to more specific problems. For
example, given a model of a level, we can find the shortest
spatial path through the level using a standard algorithm like
Dijkstra’s algorithm. As with the specialized algorithms in
Strategy 1, a difficulty in using these specialized algorithms
would be automatically determining when they’re applica-
ble; for example, the shortest spatial path through a level
may not be the shortest actually achievable path, given the
game mechanics—it might not even be a lower bound, if the
mechanics include teleportation. On the other hand, these
kinds of differences might also give information; the differ-
ence between the shortest spatial path through a level and the
shortest path that a player could possibly achieve through a
level might give an indication of its worst-case difficulty, for
example, since it would mean that there is some minimal
level of off-perfect-path movement the player would have to
perform.

Strategy 5: State-space characterization
The strategies so far can be seen as trying to probe a game’s
state-space from various perspectives. Could we more di-
rectly analyze and characterize the state-space of a game?

One possibility is to try to visualize the state space. In
any nontrivial game, the full branching state graph will be
unreasonably large to display outright. However, it may be
possible to cluster or collapse the possible dynamics into a
smaller representation meaningful states and dynamics (Co-
hen, Davis, and Warwick, 2000). In addition, techniques de-
veloped for summarizing the state space of empirical player
data could be applied to summarizing sampled traces from
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the overall space of possible playthroughs (Andersen et al.,
2010).

More interactively, single traces can display some infor-
mation about their neighbors in the state space; for example,
branch points might show alternate events that could have
happened at a given point in the trace, besides the event that
actually happened in that trace. This can be used to “surf”
the space of possible playthroughs, in a more exploratory
manner than the specifically requested traces returned from
Strategy 2. Alternately, we can start with empirically col-
lected traces and observe their possibility-space neighbors;
this can be used to bootstrap a small amount of playtest-
ing data into a larger amount of exploration, by showing
possible—but not actually observed—gameplay that is sim-
ilar to the observed gameplay.

Moving into more mathematical territory, games largely
based on mathematical approaches such as differential equa-
tions, influence maps, and dynamical systems (Mark, 2009)
might be analyzed using standard mathematical approaches,
such as finding fixed points or attractors or displaying phase-
space diagrams. Some basic experimentation along these
lines is sometimes done during Excel prototyping, but this
area (to my knowledge) remains largely unexplored.

Strategy 6: Hypothetical player-testing
The strategies so far try to investigate the overall way a game
operates. We could restrict this by trying to characterize only
how a game operates with a particular, perhaps highly sim-
plified, model of a player. Such a restriction is not intended
mainly to insert a realistic player model, but to investigate
how the game operates in various extreme or idealized cases.
For example, what happens when the game is played by a
player who always attacks, except heals when low on health?
If that player does very well, the game might be a bit too
simple. Or, in a multiplayer game, different players could be
pitted against each other to see how they fare, which might
tell us something about the design space.

The Machinations system (Dormans, 2009) simulates hy-
pothetical players playing a Petri net game model, and col-
lects outcomes after a number of runs. Our logic-based sys-
tem applies strategies 1–4 conditioned on a player model,
answering various questions about possibility, necessity,
etc., under the added assumption that the player is act-
ing in a particular manner. In a slightly different formula-
tion, Monte-Carlo “rollouts” of boardgames pit two possible
strategies against each other in a specific point in the game,
to determine how they fare against each other (Tesauro and
Galperin, 1996).

Strategy 7: Player discovery
While hypothetical players can be useful for probing how a
game behaves under various kinds of gameplay, we found
that designers often had difficulty inventing such hypothet-
ical players, and instead wanted the process to work back-
wards: given a game prototype, could we automatically de-
rive a simple player model that can consistently achieve
certain outcomes (Nelson and Mateas, 2009)? For exam-
ple, rather than having to try out questions such as, “can

this game be beaten by just mashing attack repeatedly?”,
some designers would prefer we analyze the game and come
back with: here is the simplest player model that consistently
beats your game.

That question can be seen as a stronger or more gener-
alized version of trace-finding (Strategy 2). Finding how a
particular outcome is possible returns one possible instance
where it could happen. Finding a player that can consistently
make the outcome happen is a compressed description of
many such instances.

There are several ways to invent these kinds of player
models. One approach is to sample many possible traces
reaching the requested state (using techniques from Strat-
egy 2), and then inductively extract a player model from
these traces, or perhaps several player models from different
clusters of traces. There are already techniques from empir-
ical gameplay metrics that can be used to infer such player
models (Drachen, Canossa, and Yannakakis, 2009), which
could be applied to extracted gameplay traces instead.

A different approach is to directly infer whether there ex-
ists a player model from a class of simplified players that
can reach the desired state. For example: is there any sin-
gle button a player can mash constantly to beat the game?
If not, is there a 2-state button-mashing finite state machine
that can consistently beat the game (perhaps alternating be-
tween “attack” and ”heal”)? If not, we can query for state
machines with more states, or other kinds of more complex
player models. One axis of complexity is how “blind” the
player model is: the button-mashing or alternate-between-
two-states model ignores the game state completely. If
there’s no simple blind finite state machine that can beat the
game, how about one that only looks at one game state (or
two game states)? If a player model of that kind exists, it
would tell us something about the game state that is relevant
for decision-making. We’ve been performing some experi-
ments in this kind of player-model inference using logical
abduction, but overall the space of possible approaches is
quite open.

In multiplayer games, player discovery can be related to
game-theory terminology, such as finding optimal strategies
(for various kinds of optimality), dominated strategies, etc.
While using game theory for videogame analysis or balanc-
ing has often been discussed, it seems to resist practical ap-
plication in part due to the mismatch in scale between the
size of games that game-theory software typically handles,
and even small videogame prototypes. In particular, most
computational game theory assumes either a one-step game,
or an iterated (staged) game with relatively few steps, typi-
cally as few as three or four; whereas most videogames go
on for many timesteps, and have their dynamics emerge over
at least slightly longer timescales. Overcoming this problem
would require either finding a way to pose many of the inter-
esting problems in terms of less-iterated game-theory prob-
lems, or else scaling the tools to many more iterations.

Finally, a large class of gameplay algorithms can be used
as player-discovery algorithms of a sort, especially if they
produce interesting internal structure that tells us some-
thing about the game they learn to play. For example, a
reinforcement-learning algorithm that learns a state-value
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function would be an interesting source of data for augment-
ing the kinds of state diagrams in Strategy 5, adding to them
information about how valuable each state is from the per-
spective of reaching a particular goal.

Conclusion
While playtesting games is, and will remain, a valuable
source of information about gameplay, the game artifact it-
self need not be a black box, since we can learn many things
about a game design simply by better understanding the
game itself—how the rules and code inside the game op-
erate and structure play experience. This analysis of games
can benefit from an ecosystem of metrics and visualization
techniques that will hopefully grow as rich as that now fea-
tured in player metrics research.

Towards that end, this paper sketches seven strategies for
extracting knowledge from a game artifact: what informa-
tion we might extract from a game, why we would want to
extract it, and how it relates to the kinds of information we
can find in playtests. While I’ve briefly mentioned existing
work that tackles the implementation of some of these strate-
gies, much remains unstudied, both in terms of undertaking
many kinds of analysis at all, and for those that have been
undertaken, in understanding the strengths and weaknesses
of various technical approaches to modeling games and ex-
tracting information from them.
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