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Abstract

Location-based games are an emerging paradigm for
training, simulation, entertainment, health and many
other domains. In this paper, we consider the role of ar-
tificial agents in such games. We also examine how hu-
man teams perform when given the same game, played
in both a real environment with mobile devices and also
in a virtual environment that replicates the real environ-
ment. We perform the first direct comparison of real and
virtual instantiations of the same location-based game.
We show the similarities and differences in game play
and then investigate how adding an advice-giving agent
changes the experience.

Introduction
Location-based games are an emerging new genre in interac-
tive digital entertainment. One motivating example is train-
ing and simulation of human teams in mission spaces such
as disaster rescue. Another important domain is serious gam-
ing addressing issues such as health where games are used
to motivate exercise and activity. Games in virtual environ-
ments have certainly been able to capture the notion of geo-
graphical spaces but in the space of serious gaming or games
made to understand human behavior, it is unclear how be-
havior in virtual environments maps to that in real environ-
ments (Williams 2010). Another open question is how we
can use intelligent agents to either improve game play in the
real world or facilitate other goals such as increased activity.

To investigate these questions, we created TEAM-IT , a
location-based game that involves competition and cooper-
ation between multiple human teams. The game is instanti-
ated in both an iOS framework which can be played in the
real world and also in Cosmopolis, a networked virtual en-
vironment. The game allows players to be either humans
or software agents. All players have locations which are
tracked and shared. In the real world version, human players
are tracked via GPS location updates received through mo-
bile devices whereas in Cosmopolis this is available from
the environmental infrastructure.

TEAM-IT supports a variety of intelligent agents. Agents
can be part of a team or have their own teams. They have the
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ability to negotiate and trade for cards with human players,
however, we will not focus on this aspect of the game in this
paper. Here, we focus on an agent’s ability to give advice to
the human and how this can be used to affect game play.

In this paper, we address two main issues: (1) the mapping
of player behavior between a real environment and a virtual
environment for the same geospatial area in a location-based
game and (2) investigating the impact of advice-giving by an
intelligent agent in a real-world instantiation of a location-
based game. To achieve the first, we implemented a 3D
model of the geospatial area of the real-world experiments
into Cosmopolis and ran experiments in both environments,
a non-trivial technical challenge. To address the second, we
created agents that give players suggestions on task collec-
tions to pursue in real-time based on the current location of
team members and investigated how it affected game play.

We ran a pilot experiment exploring both of these is-
sues. The results demonstrate the mapping issue, showing
how human behavior in the virtual game environment differs
markedly from behavior exhibited in the real-world iPad-
based version of the game. These differences illustrate the
challenges in building virtual training simulations that pro-
mote the same behavior as in the real world, and the diffi-
culties surrounding research that examines virtual behavior
and uses it to draw conclusions about real world behavior.
The results also show the benefit of adding advice-giving
AI agents. The agents help the players to score more points
while traveling larger distances. The players also enjoy the
game more when accompanied by the advice-giving agent.

Related Work
Attempts have been made to create a system capable of
running mobile, quasi-location-based games concerned with
agent modeling. In one such game (Chang et al. 2011), a
lightweight framework has been constructed using mobile
phones and adherence to design principles which allow for
efficient development on mobile platforms (Tan and Kin-
shuk 2009). The design principles include multi-platform
adaption, minimal resource usage, mimimal human/device
interaction, reduced data communication bandwidth usage,
and no additional hardware. Environments like Colored
Trails (Grosz et al. 2004) offer great insight into human-
agent interaction by providing an interface to study (van
Wissen, van Diggelen, and Dignum 2009) negotiation and
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various behavioral models. It can be argued that robust game
environments which allow accurate representation of agent
interaction in real-world scenarios are still emerging. Where
multi-agent systems will be operating in the real-world, it
seems important to create a system which directly translates
to such an environment.

Human-agent collectives have been useful for modeling
expected outcomes in scenarios such as disaster relief (Jen-
nings, Rogers, and Moreau 2011). Mixed reality games may
be a powerful contribution to research by leveraging real-
world environmental factors to extract more accurate behav-
ioral models from events observed in game (Fischer et al.
2012). While certain environments like GameBots (Adob-
bati et al. 2001) have been created to simulate human-
agent and multi-agent scenarios, in situations where actions
are more important than emotional responses, the 3D en-
vironment can serve to complicate rather than complement
research. Real-world environments may actually provide
stronger emotional responses and suspension of disbelief in
game scenarios. Other virtual environments (Ishida and Hat-
tori 2009) seek to mimic human involvement by virtualizing
data collected from real-world actors. Our approach takes
the conveniences of virtualization and applies them to a real-
world, spatial solution.

The accuracy and scalability (Hajarnis et al. 2011) limita-
tions of mixed-reality and alternate-reality games are ame-
liorated here due to the campus network. The inaccuracy of
GPS data (Chang et al. 2011) can be overcome by enlarging
the game space, executing trials in an ideal outdoor envi-
ronment and utilizing robust wireless and cellular data net-
works where possible. In terms of scalability, we recognize
the value of being able to load agents asynchronously into
the game environment and as such, have made this action
possible in our game scenarios. Wearable (Kleiner, Behrens,
and Kenn 2006) and physical (Lund and Pagliarini 2011) so-
lutions for multi-agent, human-interactive games provide ro-
bust data collection but may prove difficult to configure both
on the interface side as well as the server side. TEAM-IT
seeks to be configurable in any environment with any num-
ber of agents without the need for prolonged training periods
while still maintaining comprehensive data tracking.

Game Scenarios
In TEAM-IT , each player belongs to a team. The player can
be human or a software agent. Each player is assigned a
number of skills. In our current implementation, skills are
represented by a shape-color pair. Players can move around
the world and discover and complete tasks which give points
to their team. Endgame scenarios can be specified to depend
on point thresholds or any other rules based on the game
state. For this paper, we use a game-timer which fixes the
duration of the game where the team with the most points in
that duration wins.

In the geospatial environment, task collections or “boxes”
are placed at various locations. A player can view these
boxes if they are within a discovery radius of the location.
This discovery radius is modifiable for each game instance.
When a player is within a (typically smaller) application ra-
dius, they can open the box to see the task collection there.

Figure 1: TEAM-IT iPad Map View (left) which shows
player team, skills, points, time remaining, locations of var-
ious boxes and their accessibility and locations of players.
(Right) Five players using iPads to play the game.

Each task in a task collection is associated with a set of
skills that must be applied simultaneously for a given dura-
tion in order for the task to be completed. When completed,
points are awarded to teams as specified by the task. It is pos-
sible for a task to give points to multiple teams for comple-
tion at different values but for this instantiation of the game,
we do not leverage this feature. The latter is useful to in-
vestigate environments where one would want to investigate
simultaneous cooperation and competition between teams.

To apply a skill to a task, a player must move to within the
application radius and use the required skill. If they move
away from the application radius before the required dura-
tion for the task, the task is reset to being incomplete. Of-
ten it may require skills from multiple players to complete
a task. Thus, teams must coordinate to have players in the
right places at the right times to get points.

iPad Implementation
Each player in the game plays through an iOS application on
their device. The number of players is limited by the num-
ber of devices available to the scenario organizers. Once a
device ID is mapped to a player ID, it is set for the dura-
tion of the scenario but can be changed dynamically by the
server.

Using the GPS and WiFi capabilities of the iOS devices,
player location can be monitored and recorded with a preci-
sion radius ranging between 2 and 10 meters. Accuracy de-
pends on signal interference, weather conditions and avail-
ability of cellular data. The relative accuracy of the device
antennas allows dynamic content accessibility depending on
geospatial context. A player must be physically close to an
objective, agent or player in order to interact with that actor
in game. We restrict our interaction radius to a distance of
30 meters, though this adjustable in the client build of the
game.

Figure 1 shows the map view of the TEAM-IT Interface
on the iPad. In the top bar, the players team is identified,
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Figure 2: TEAM-IT iPad Tasks View shows the tasks in
a task collection box, skills required to complete the task,
points received for completing it, and status of each task.

their current score is given along with the time remaining in
the game. At the top right, the player is shown which skills
they have and how many “cards” of that skill they have. In
the main part of the panel, a map has information tagged
at various locations. Boxes within the discovery radius are
shown as orange squares. Boxes within the interaction radius
are shown as larger orange squares with exclamation points.
One is also able to see all players on the screen as a circle
with their player ID and agents which are circles marked
with an “A”. The color of the circle indicates the team. In
this view, there are two agents, one for each team.

If one clicks on a box that is within the interaction radius,
meaning they are sufficiently physically close to the box lo-
cation, it will take them to the task view for that box. Fig-
ure 2 shows the task view of the TEAM-IT Interface on the
iPad. Each row is a task and the symbols in that row denote
the skills that need to be applied simultaneously within the
interaction radius of the box in order for the task to be com-
pleted. At the top right of each row, the points awarded to
each team for completing the task are displayed. Completed
tasks and tasks in-progress are marked dynamically.

Intelligent Agents
TEAM-IT supports having intelligent software agents being
part of the game. They have the same capabilities as players
in terms of begin able to move, discover boxes and apply
cards. Agents can be assigned to any team just as any player
can. Figure 3 shows agents in the Map view of the iPad im-
plementation as well as in Interaction views.

When a player is close to another player, human or soft-
ware, they can interact. One interaction, which is not used
in this paper, is trading. Agents can trade “cards”, i.e., re-
sources, with other players.

A second interaction, which we do use in this paper, is the
ability for agents to give advice to their team members. Soft-
ware agents can be given with arbitrary knowledge of the
game state in order to help game play. In this paper, agents
were given full knowledge of the locations of all the boxes,

Figure 3: Agents in map (top) are marked by an “A”. Exam-
ple advice-giving and negotiation screens are shown.

the tasks they contained as well as the points they would
yield. If asked by a member of their own team, they would
give advice to team members on which location to travel to
and with whom to go there. This advice would take into ac-
count the current location of all the members of the team as
well as other potential goals of the team designer. In our pa-
per, we had a secondary goal (after improving game play ex-
perience) of having the players move more than they would
without advice. This is motivated by domains where facili-
tating health and exercise may be the goal of the designer.

The algorithm for the advice is as follows. The following
procedure is run to generate candidate advice c.

1. Get random subset of players Sc including the player ask-
ing for advice and a random box Bc.

2. Calculate the point efficiency ec as:

ec =

(∑
t∈Bc

ptISc,t

)
/|Sc| ·maxi∈Sc

T (L(i), L(Bc))

which states that the efficiency is the sum of all the points
pt for all tasks in the box (t ∈ Bc) where the subset can
accomplish the task with its skills (IS(c),t) divided by the
longest time that anyone in the the team will take to get
from their current location (L(i)) to the location of the
box (L(Bc)) and the number of players in the subteam
(|Sc|). The locations of the players are obtained dynami-
cally when the request is made. This is a measure of points
per player-minute. If the time required is greater than the
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Figure 4: TEAM-IT Cosmopolis: At the top left, we see how players see boxes and how the task screen is implemented. Players
also have a minimap that echoes the iPad overhead view. At the top right, we show players during game play. At the bottom we
show Cosmopolis screenshots compared to pictures taken from the real world.

time until the end of the game, the candidate advice is
disregarded.

3. Calculate walk score as follows:

wc =
∑
i∈Sc

D(L(i), L(Bc))

which is the sum of all the distances the players have to
walk to get to the box.

4. The candidate c is added to the candidate set with values
(ec, wc).

Because we need to give advice in real-time the number of
candidates generated can be adjusted to meet the computa-
tional limits and dynamics of game play. Once the candidate
set is selected, we could simply give the advice with the
highest efficiency, but since we also wanted to investigate
changing player behavior, we gave the candidate that had
the highest walk score that had an efficiency within 90% of
the maximum efficiency. An example of advice is shown in
the bottom left of Figure 3.

Cosmopolis Implementation
The development of the virtual TEAM-IT game was done us-
ing the Cosmopolis framework (Spraragen et al. 2012). Cos-
mopolis is a Massively Multiplayer Online Game (MMOG)
designed as a research testbed for social and behavioral
models.” Researchers have the ability to develop their own
subgames within an outer world framework. Some of the
features of Cosmopolis include support of AI-based non-
player characters, state-of-the-art graphics and effects, sup-
port of large cities and wilderness zones, as well as an in-
game world editor tool which can be used to create new re-
gions within the game. Because Cosmopolis was designed
as a research testbed, it also includes a very flexible logging
system, which can be extended by the developers of each
subgame. This gives the ability to scientists to extract all the

in-game data and make data analysis much easier. This is en-
abled by the event-based network model of the game which
is used to manage communication between clients and the
server.

For the purposes of this project, we created a new sub-
game within the Cosmopolis world and we tried to provide
players with a similar experience as in the real-world coun-
terpart. We used our campus as the test environment. To do
this we used detailed 3D models that were created by an-
other research lab focusing on geo-immersion. These files
were stored in a KMZ format compatible with Google Earth
and Google 3D Warehouse. We got the models and first
converted them to a Maya compatible format (from KMZ).
Then after converting the longitude and latitude to coor-
dinates in the Cosmopolis world, we applied the required
transformations to simulate the campus.

The configuration data for the game, like player positions,
initial skills, box locations, tasks, etc. are imported in the be-
ginning of the game from XML files. All the screens in the
game, like task completion, trading, are made to resemble
the ones in the mobile application in order to make the tran-
sition between the two easier for the players. Another feature
in the game is the minimap which can be used for navigation
purposes, as it pinpoints players the position of teammates,
boxes and AI agents. Screenshots of the Cosmopolis imple-
mentation of TEAM-IT , game play and comparison with the
real world are shown and discussed in Figure 4.

sectionExperiments and Results
The two questions we are interested in investigating are

the differences between game play of the same location-
based game in a real and virtual environment and the im-
pact of adding advice-giving agents to a real-world location
based game. We ran a pilot experiment where two teams
of five players competed with each other in the same sce-
nario. Each team played 3 games: (A) the iPad version with-
out advice (“No-Agent”), (B) the virtual Cosmopolis version
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Figure 5: Photos of players during experiments in the real world coupled with analogous screenshots from Cosmopolis.

Table 1: Summary of Game Statistics
Scenario Team Score Total Tasks

Dist. (m) Completed
No-Agent A 4550 4905 14
No-Agent B 2810 4818 24

Virtual A 15080 6363 29
Virtual B 8420 5358 37

With-Agent A 12660 8249 17
With-Agent B 9610 5562 12

Table 2: Player Behavior in Virtual vs. Real World
% Score % Incr. % Incr.

Incr. in Dist. in Tasks
Team A 231% 29.7% 107%
Team B 199% 11.2% 54.2%

(“Virtual”), and the (C) the iPad version with advice (“With-
Agent”). The order of game play was ABC for the Team A
and BAC for the Team B. The winning team for each game,
i.e., the one with the higher score for that game, would re-
ceive a prize, in this case, movie tickets. The games were
run for 30 minutes each, after some very basic introduction
on game mechanics in each environment. Photos and screen-
shots of experiments can be seen in Figure 5. Table 1 shows
a summary of the game statistics collected. Due to learning
effects and obviously small sample size, we concentrate on
the strong within-group differences exhibited in the data.

First, we discuss the results of the mapping experiments
between the real and the virtual versions of the game. Our
hypothesis that the activity levels in the virtual world would
likely be higher is borne out. The number of tasks completed
is much higher for both teams, as is the corresponding score.
The distance traveled is also higher in the virtual game vs.
the real world game (Table 2 and Figure 6). By observing the
players during the game, we are also able to suggest qualita-
tive explanations for these differences. Players in the virtual
Cosmopolis game clearly took advantage of the “run” action
much more often than players in the real world actually ran;
players in the real world actually became tired and walked
more frequently. Perhaps an even bigger difference is due to
the physical limitations of the real world infrastructure. In
Cosmopolis, all game communications worked flawlessly,

Table 3: Player Behavior With-Agent vs. No-Agent
% Score % Incr. % Incr.

Incr. in Dist. in Tasks
Team A 178% 68.2% 21.4%
Team B 242% 15.4% -50%

in terms of recording task completion between the desktop
clients and the central game server. In the real world, the
iPad game clients required wireless communication with the
game server, and it was often spotty. This caused players in
the real world to spend much more time completing tasks,
because tasks can only be completed when there is a con-
nection to the server, and they often contended with poor
wireless signals.

Second, we compare the results of the No-Agent base case
and the With-Agent case (Table 3). The AI agent is able to
promote much more player movement. One team traveled
68% more when using the agent’s advice. This corresponded
to each player walking or running 1.6km in half an hour,
which is a good, mild exercise. By examining their velocity
profile over time, we can see that it is actually an even better
exercise routine, since it involves several fast sprints inter-
spersed with rest periods. The agent is also helpful in that it
guides players to the highest point value tasks, which hap-
pen to be located in a distant corner of the campus, relative
to the starting location, as shown in Figure 6. In the No-
Agent games, we can see that Team A happened to find this
corner by chance, through their own exploration of the cam-
pus; while Team B wandered around several other parts of
campus and never found this area. In the With-Agent games,
we see that both teams consulted the advice-giving agent and
ran directly to this area. This resulted in large score increases
for both teams when assisted by the AI agents. In terms of
number of tasks completed, Team A saw a moderate increase
using the agent, while Team B actually only completed half
the number of tasks. Partly this can be understood since the
agent serves to increase the quality (point value) of the tasks
completed, rather than increasing the quantity. In fact, by
recommending distant tasks, it may actually lower the num-
ber of tasks that can be completed. Players also seemed to
find the game more fun with the involvement of the agent.
In written feedback we collected after the game, several re-
spondents noted this; for example, one wrote: “The agent
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Figure 6: Locations and point values of tasks completed by teams in the three scenarios. The star denotes the starting location.

was a great idea and certainly improves the way we play.”

Conclusion
The experiments demonstrate the difficulty in designing vir-
tual world games and training simulators that can accurately
mimic real world situations. Player behavior is markedly
different in the virtual version of the game. Our pilot trial
also shows the benefit of adding an advice-giving AI agent.
Players increased movement, scored higher, and enjoyed
the game more. This paired virtual and real-world game
framework promises to enable many more future investiga-
tions into the mapping problem and the role of AI agents in
location-based games. For example, we are actively design-
ing negotiation agents that trade skills with the players. We
hope to release the framework for use by other researchers
in the field.
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