

Toward Autonomous Crowd-Powered Creation of Interactive Narratives

 Boyang Li, Stephen Lee-Urban, and Mark O. Riedl
School of Interactive Computing, Georgia Institute of Technology

 {boyangli, lee-urban, riedl}@gatech.edu

Abstract
Interactive narrative is a form of storytelling that adapts to
actions performed by users who assume the roles of story
characters. To date, interactive narratives are built by hand.
In this paper, we introduce SCHEHERAZADE, an intelligent
system that automatically creates an interactive narrative
about any topic from crowdsourced narratives. Our system
leverages the experience and creativity of humans by
crowdsourcing a corpus of linear narrative examples. It then
constructs an executable plot graph, which is a knowledge
structure that defines the legal space of an interactive
narrative, by learning the plot events, execution precedence,
and event separations. We demonstrate the system can
successfully construct an interactive narrative based on
noisy human input.

 Introduction

Interactive Narrative (IN) is a form of storytelling in which
users affect a dramatic storyline through actions by
assuming the role of characters in a virtual world. The
simplest INs are Choose-Your-Own-Adventure books and
hypertexts in which each plot point has branching options.
More complex systems use artificial intelligence (AI) to
determine available options for the user.
 A common knowledge representation employed by AI-
based IN is the plot graph, which models the author-
intended logical flow of events in a virtual world as a set of
precedence constraints between plot events (Weyhrauch
1997). A plot graph defines the space of legal story
progression and ultimately determines possible events at
any given point in time. For example, a plot event of the
player opening a vault must be preceded by plot events of
the player finding the vault and acquiring the vault’s key
(Nelson & Mateas 2005).
 This paper asks the question: Can an intelligent compu-
tational system create an interactive narrative? To date,
plot graphs have been created by human authors, who

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

impart their knowledge of how the virtual world should
work. An intelligent system capable of generating a plot
graph would greatly alleviate the need for such manual
work, and allow interactive narratives to be created on
demand. Ideally, a user could declare that he or she wants
to play an interactive narrative about any desired topic,
such as robbing a bank or going on a date, and have it
ready to be played within a short time period. To meet such
demands, an AI system must be able to generate a plot
graph about any topic in a timely and economical manner.
We envision a number of practical applications: facilitating
amateur game creation, rapid acquisition and rapid gener-
ation of training practice environments.
 One of the critical research challenges for the automatic
generation of interactive narratives is how to obtain
domain knowledge about the topic for which to construct
an interactive narrative. This is complicated by the fact that
we cannot assume a pre-existing ontology of plot events.
This is especially true if plot events can be unique to a
particular interactive narrative. Our solution is to delegate
this complex knowledge authoring task to a large number
of anonymous workers via Web services, i.e. we
crowdsource (Quinn & Bederson 2011).
 We do not assume crowd workers possess expertise in
computer science, modeling, or graph structures. Instead,
crowd workers are asked to provide linear archetypical
narratives in natural language for the given topic; this is a
natural mode of communication for humans. This yields a
highly specialized corpus of example narratives from
which a general model of the topic can be learned. This
corpus is constructed in a way that reduces the reliance on
natural language processing (NLP), which is still unreliable
for complex inputs. Crowdsourcing provides access to
human memories and creativity; a surrogate for the lifetime
of experiences held by a human author.
 To our best knowledge, this is the first attempt to
automatically generate an executable plot graph for the
purpose of creating an interactive narrative. We describe
the technical approach, provide a real-world example, and
discuss future directions.

Intelligent Narrative Technologies: Papers from the 2012 AIIDE Workshop
AAAI Technical Report WS-12-14

20

Background and Related Work

A plot graph is usually defined as a set of plot events with
precedence constraints, with which the author of an IN
system indicates a logical flow of events (Weyhrauch
1997). For any given plot event, precedence constraints
indicate which other events must occur first. For example,
finding the vault and the key must precede opening a vault.
Additionally, there may be OR-relations between a plot
event’s parents, indicating that a plot event can be reached
by a variety of distinct means (Nelson & Mateas 2005).
 A plot graph constrains the sequence of events that can
be performed to be consistent with the precedence
constraints. It defines a space of legal sequences of plot
events. It does not, however, distinguish whether one
sequence is better than another. This responsibility is
handled by a Drama Manager (DM), an autonomous,
omniscient, non-embodied agent that attempts to maximize
a set of author-provided heuristic functions to improve user
experiences. Search-based Drama Management (e.g.
Weyhrauch 1997; Nelson & Mateas 2005) uses adversarial
search to select DM actions—causers, deniers, and hints—
that increase the likelihood that the player will follow a
trajectory that scores well. Declarative Optimization-based
Drama Management (e.g. Nelson et al. 2006) uses rein-
forcement learning to select DM-actions. We leave drama
management for an automatically generated plot graph for
future work.
 There are other approaches to Drama Management that
use partial order plans instead of plot graphs (Magerko
2005; Young et al. 2004; Riedl et al. 2008). While these
approaches generate the narratives users experience dy-
namically, they require a hand-authored set of domain
operators, which similarly defines a space of possible story
plans except with events selected and ordered on the fly.
 To date, the creation of interactive narratives and their
plot graphs or domain models is a task for human
designers. Giannatos et al. (2011) describe a technique by
which an intelligent system can suggest new plot events
and new precedence constraints that prune undesirable
narrative sequences, although it cannot indicate the se-
mantic interpretation of these new plot events. Other work
(Nelson & Mateas 2008; Treanor et al. 2012) focuses on
semi-automated generation of simple arcade games but
focus on game mechanics.
 Mining web content is an emerging technique in
interactive entertainment. Crowdsourcing is used in The
Restaurant Game (Orkin & Roy 2009) to teach NPCs to
emulate restaurant-going behavior via player action traces.
The Restaurant Game has an underlying domain model
comprised of the actions and animations that avatars can
perform. In comparison, we learn a list of primitive events
and their precedence from scratch. SayAnything (Swanson
and Gordon 2008) co-creates stories with human assistance

by mining events from Weblogs and thus does not require
a fixed domain model. Human players provide every other
sentence, which helps to retain story coherence.
 Outside of games and storytelling, Chambers and
Jurafsky (2009) describe a technique for learning script-
like knowledge from news corpora but do not specify an
application. By crowdsourcing, our system obtains a
specialized corpus with easy-to-process linguistic structure
that helps overcome many of the challenges of NLP.

The SCHEHERAZADE System

The SCHEHERAZADE system (distinct from the story anno-
tation system by Elson and McKeown (2010)) attempts to
create an interactive narrative from a simple user-provided
topic, such as bank robbery (used throughout the paper).
The system uses Amazon Mechanical Turk (AMT) to
rapidly acquire a number of linear narrative examples
about typical ways in which the topic might occur. This is
equivalent to outsourcing a set of highly relevant expe-
riences from which to learn a generalized model—the plot
graph—of those experiences. Our system can generate an
interactive narrative about any topic for which a crowd of
average people can generally agree on the main events that
should occur, although not necessarily on the specific
sequence of events.
 Our plot graph representation differs slightly from that
of previous work. In our system, a plot graph is a tuple = 〈 , , , 〉 where is the set of plot events, ⊆(,)| , ∈ is a set of ordered pair of events that
describe precedence constraints, ⊆ (,)| , ∈ is a
set of unordered mutual exclusion relations, and ⊆ is
the set of optional events. Whereas some prior plot graph
representations use OR-relations between precedence con-
straints to indicate multiple possible ways of activating a
plot event, we note which plot events can never co-occur in
the same narrative experience. This performs the same
function as OR-relations, but is more general.
 The following sections describe our technique for
automatically learning a plot graph from a human crowd
and using the plot graph during interactive execution.

Plot Graph Learning

To learn a plot graph for a given topic we use a four-stage
process. The first three stages are described in Li et al.
(2012) and summarized below. The fourth stage is
introduced as a new contribution. By identifying mutual
exclusion relations between events and identifying events
that are optional, we make interactive execution possible.
 The process begins with a user request for an interactive
narrative on a particular topic. The system then generates
an automated query to AMT to solicit typical narratives of

21

the given topic, provided in natural language. To simplify
the complexity of natural language processing, crowd
workers are asked to segment their narratives such that
each sentence contains one event. Crowd workers are
instructed to use one verb per sentence, avoid complex
linguistic structures such as conditionals, avoid compound
sentences, and avoid pronouns.
 Second, the system analyzes the simplified natural
language narrative examples to discover the fundamental
plot points on which people agree. Specifically, sentences
from different narrative examples that are semantically
similar are clustered together to create a plot event.
Because of the simplified language used in narrative
examples, the system can use simple semantic similarity
and clustering algorithms to discover plot events with
relatively high accuracy. For example, we identify plot
events for the bank robbery scenario with 80.4% purity, a
standard measure of cluster homogeneity. We can also use
a second round of crowdsourcing to ask crowd workers to
improve the accuracy of NLP / clustering.
 Third, we identify the precedence constraints between
plot events. Crowd workers produce noisy and sometimes
erroneous answers such as omitting steps, requiring
resilience against noise. For all pairs of plot events we
select between the two orderings e1→e2 or e2→e1 based on
statistical frequency (or neither if both orderings are
equally likely or there is not enough data to make a
conclusion). Precedence relations with statistical frequency
greater than a threshold Tp are recognized. Relations that
fall slightly below the threshold may be recognized if
adding the relation to the graph reduces the error metric,
computed as the difference between the distance between
two events on the graph and their average distance in the
input data set. This effectively lowers the threshold locally
and provides a flexible mechanism that caters to noisy
input narratives.
 Fourth, we go beyond prior techniques to identify
mutual exclusion links and optional events. Mutual
exclusion links indicate that two events cannot co-occur in
a single narrative experience. We measure the mutual
information between events to determine whether they
might be mutually exclusive. The mutual information of
two random variables describes their interdependence, or
the extent that one can predict the other. Suppose Ei is a
random variable representing whether event ei exists in an
example narrative. The mutual information between two
events is: MI(,) = ∑ ∑ ∈[,]∈[,] (,)

where C(,) = (,) log (,)() ()

and p(·) denotes a probability distribution or a joint
distribution. Thus, p(E1=1) is the probability that event e1

happens in a narrative, p(E1=0) is the probability that e1
doesn’t happen in any story, p(E1=1, E2=1) is the
probability that e1 and e2 happen in the same narrative, etc.
 Events e1, and e2 are both deemed mutually exclusive
when MI(E1, E2) is sufficiently high, indicating that there is
a non-random relationship between the two variables, and
when (= 1, = 0) + (= 0, = 1) > 0, indicating
that the presence of one event predicts the absence of the
other. We use a threshold Tm on MI(E1, E2) to indicate the
degree of non-randomness required to create a mutual
exclusion link between events e1 and e2.
 For the purpose of creating executable experiences, we
generally assume that precedence constraints are causal in
nature. That is, if e1 precedes e2, e2 can only execute after
e1 is executed. However, if a mutual exclusion relation also
exists between e1 and e2, an contradiction is created: e2
cannot execute before e1 (due to precedence) nor after e1
(due to mutual exclusion). This suggests that the causal
assumption does not apply and we should interpret both
events as being optional, thus allowing one or both to be
skipped. Specifically, two events e1 and e2 are considered
optional if (a) e1 and e2 share a mutual exclusion link and
(b) e1 is a predecessor of e2 according the set of precedence
constraints, and (c) e1 is not mutually exclusive with
another event e3 that is also a predecessor of e2. This case
is shown in Figure 1(a). However, another predecessor e3,
being mutually exclusive to e1, indicates the existence of a
valid path to e2 even if e1 is executed. In this case, we do
not recognize these events to be optional, as shown in
Figure 1(b). The recognition of optional events can be
considered as local relaxation of the causality assumption.
 Figure 2 shows a learned plot graph for a bank robbery
situation. The plot graph was generated from the procedure
described above, although we manually corrected the
semantic clusters to simulate the iterative process of
crowdsourcing corrections, which is not yet implemented.

Interactive Execution

In this section, we describe how SCHEHERAZADE creates an
interactive experience from the plot graph representation.
The plot graph ensures that players always experience
valid stories on the topic, regardless of their choices in the
interactive narrative. Once a plot graph has been con-
structed, the remaining task is to determine what options—
the set of events that can happen next—are available to the

Figure 1. (a) Events A and C must be optional. (b) A and C are
not optional due to the mutual exclusion between A and B.

Legend:

Normal EventA

A Optional Event

BA

C

(a) BA

C

(b)

22

player at any given time point. Figure 3 shows the
SCHEHERAZADE game loop.
 First, the system determines which plot events are
executable. At each step in the game, we compute the set
of executable events. A plot event is executable when all if
its direct, non-optional predecessors have been executed,
except those parents excluded by mutual exclusion rela-
tions, as shown in Figure 4. An executable event can
belong to the player (“John”) or a non-player character
(NPC) (e.g., “Sally”, or the police). Either the player or an
NPC makes a decision to execute an event. NPCs are
addressed further in the next section.
 Once a plot event from the list of executable events is
executed and is added to the history, SCHEHERAZADE
performs graph maintenance to keep track of mutual
exclusion relations and optional events. Events that are
mutually exclusive to the newly executed event are
removed from the graph. A recursive process also removes
any event completely dependent on deleted events, i.e. an
event is removed if all its parents have also been removed.
The exclusion process continues until no such events exist
in the graph. To avoid losing structural information, direct
parents of removed events are linked to direct successors
of removed events with precedence constraints.

 To simplify record keeping, we also remove optional
events that have not been executed but their successors
have. These optional events have been skipped and cannot
be executed without violating precedence relations. The
algorithms for selecting executable events and graph main-
tenance after event execution are given in Figure 4.

Interactive Event Selection

After candidate events for execution are found, someone—
the player or an NPC—must choose from the candidates. A
simple syntactic analysis is used to find the subject of the
sentences underlying each event, which determines the
actor of the event. When every candidate event can be
performed by the player, the system presents all options to
the player and waits for a response. When every candidate
event can be performed by NPCs, the system randomly
picks an event to execute. In future work, a Drama
Manager would inform the selection of NPC events to
better manage the player’s experience.
 Executable events may contain both player options and
NPC options. When this occurs, SCHEHERAZADE waits a
predetermined period of time for the player to make a
selection. By the end of the period, if the player hasn’t

Figure 2. A plot graph for the bank robbery situation

John covers
face

John enters
bank

John sees
Sally

John waits
in line

John approaches
Sally

John gives
Sally bag

Sally is
scared

Sally greets
John

John hands
Sally a noteJohn pulls

out gun

Sally
screams

John points
gun at Sally

John shows
gun

Sally reads
note

John demands
money

Sally calls
police

John drives
away

John gets in
car

John leaves
bank

John opens
bank door

John takes
bag

Sally gives
John bag

Sally presses
alarm

Sally puts
money in bag

The note demands
money

Sally collects
money

Sally opens
cash drawer

Sally give
John money

John collects
money

Police
arrives

Police arrests
John

Legend

Normal EventA

A Optional Event

Precedence constraint

Mutual exclusion

23

acted, the system randomly selects an NPC option. This
introduces a competition mechanism, which may add a
little fun to the game. For example, when playing as a bank
robber, the player may drive away before the police arrive,
or the police may arrive just in time to arrest the player.
More sophisticated techniques for resolving the race
condition will be explored in future work.

Example and Discussion
The plot graph shown in Figure 2 is generated from 60
stories crowdsourced from AMT. The workers were asked
to provide a bank robbery story involving a robber named
John and a bank teller named Sally. Stories that violate our
language requirements were manually filtered and rejected.
The clustering results have been manually corrected. The
threshold Tp = 0.6, Tm = 0.05, and the minimum cluster size
was set to 4. The resultant plot graph contains 31 events,
whose names are manually chosen to reflect the cluster's
content. Events that have no ancestors and occur in the first
half of the graph are automatically selected as possible
“start” points for the interactive experience. Thus, “John
opens bank door” (Figure 2) is excluded and deleted.
 We illustrate the SCHEHERAZADE game loop using the
plot graph from Figure 2. Suppose the history at the current
time point includes “John enters bank,” “John sees Sally,”
“John waits in line,” and “John approaches Sally.” At this
point, there are five options:

• “John gives Sally bag”
• “Sally is scared”
• “Sally greets John”
• “John pulls out gun”
• “John hands Sally a note”

Because “Sally greets John” is optional, it can be skipped,
and thus its two direct successors are also executable.
 Suppose the player quickly decides to pull out a gun.
This event is mutually exclusive with “John hands Sally a
note”, which is deleted from the graph along with several
of its descendants until “Sally collects money”, “Sally puts
money in bag”, and “Sally gives John money”.

“Sally greets John” is also deleted because it is optional
and one of its successors has been executed. This makes
sense: one would not expect to greet a customer once he or
she has pulled a gun.
 Assuming the next two events executed are John
pointing the gun and Sally screaming, the next noteworthy
choices are:

• “John gives Sally bag”
• “John demands money”
• “Sally is scared”

If the player demands money, there will be a choice
between collecting the money in a bag or getting the
money directly, options which are mutually exclusive.
 There are at least 149,148 unique linear experiences that
can be expressed with the bank robbery plot graph, as
determined by a brute-force search. This demonstrates
good authorial leverage (Chen, Nelson, & Mateas 2009)—
the ratio of possible experiences to input authoring effort—
that SCHEHERAZADE is capable of, considering that the
crowd only had to provide 60 linear examples. Figure 5
shows two of those stories.
 Observing the graph, we note that mutual exclusion
relations tend to meet our expectations by separating
alternatives (use a note vs. directly demand money; use a
bag vs. hand over the money) and allowing for different
choices to be mixed freely. As a result, portions of dif-
ferent narrative examples can occur together in unique
combinations. We tend to agree with all the identified
precedence constraints, but feel some may be missing
when events do not appear in enough stories; this may be
resolved by soliciting more narratives from the crowd.
 Since the plot graph is generated from error-prone
human examples, flaws can emerge. Mutual exclusions
may be overly restrictive, such as between "John demands
money" and "Sally gives John bag." We believe most
players will not notice the disappearance of apparently
legitimate choices. Sometimes precedence constraints ap-

Procedure GAMELOOP (plot-graph)
 history = ∅
 For each optional event e in plot-graph

For each p in direct predecessors of e
For each s in direct successors of e

Insert a link from p to s into plot-graph
 Do
 options = EXECUTABLEEVENTS(plot-graph, history)
 executed = WAITFOREXECUTION(options)
 history = history + executed
 UPDATEGRAPH(plot-graph, history)
 While not ISTERMINAL(executed)
End Procedure

Figure 3. The interactive narrative execution loop.

Procedure EXECUTABLEEVENTS(graph, history)
executable = events whose every direct predecessor on graph

is in history OR is optional
return (executable - history)

End Procedure

Procedure UPDATEGRAPH(graph, history)
 excluded = events recursively excluded by mutual exclusions
 expired = events ruled out by temporal orderings
 For each e in excluded

For each p in direct predecessors of e on graph
 For each s in direct successors of e on graph

Insert a link from p to s into graph
 return REMOVEEVENTS(graph, excluded ∪ expired)
End Procedure

Figure 4. Finding executable events and updating the graph after
event execution.

24

pear to be missing, such as the one between “John shows
gun” and “John gives Sally bag” in Figure 5 (left). How-
ever, when the options are presented to human players,
they might naturally make the more logical choices. Future
experimentation will determine the effects of flaws such as
these on real human players.

Future Work
Currently SCHEHERAZADE can acquire a plot graph and
execute it interactivity. Future work will involve the use of
drama management to improve NPC event selection, which
is currently shallow. We also note that the current knowl-
edge structures do not support sophisticated textual de-
scriptions of events, as seen in Interactive Fictions. We
will continue to leverage the crowdsourcing paradigm to
create richer knowledge structures that drive text-to-scene
algorithms (Coyne, Bauer, & Rambow 2011).

Conclusions

In this paper, we introduce the problem of automatic
creation of interactive narratives. The SCHEHERAZADE
system allows a human user to specify any topic that he or
she wishes to convert into an interactive experience. Our
system overcomes knowledge bootstrapping issues by
tapping the experiences and creativity of humans via
crowdsourcing services to automatically construct an exe-
cutable plot graph. It is shown the system can handle noisy
input narratives with omitted events and several variations
of the same topic. The work presented here is an important
first step toward the goal of creating AI systems that
minimizes the cost of the authoring for interactive
narratives. We envision that reduced authoring cost will
one day bring about large-scale applications of AI
techniques previously considered intractable to build.

Acknowledgements

We gratefully acknowledge the support of the U.S.
Defense Advanced Research Projects Agency (DARPA)
for this research.

References

Chambers, N. and Jurafsky, D. 2009. Unsupervised learning of
narrative event chains. Proc. of ACL/HLT 2009.

Chen, S., Nelson, M., and Mateas, M. 2009. Evaluating the
Authorial Leverage of Drama Management. Proc. of the 5th Conf.
on AI and Interactive Digital Entertainment.

Coyne, B., Bauer, D. and Rambow, O. 2011. VigNet: Grounding
language in graphics using frame semantics. Proc. of the ACL
Workshop on Relational Models of Semantics.

Elson, D.K., McKeown K.R. 2010. Building a Bank of
Semantically Encoded Narratives. Proc. of the 7th Int'l Conf. on
Language Resources and Evaluation, Malta.

Giannatos, S., Nelson, M. Cheong, Y. and Yannakakis, G. 2011.
Suggesting new plot elements for an interactive story. Proc. of the
4th Workshop on Intelligent Narrative Technologies.

Li, B., Appling, D.S., Lee-Urban, S., and Riedl, M.O. 2012.
Learning Sociocultural Knowledge via Crowdsourced Examples.
Proc. of the 4th AAAI Workshop on Human Computation.

Magerko, B. 2005. Evaluating preemptive story direction in the
Interactive Drama Architecture. Journal of Game Development.

Nelson, M. and Mateas, M. 2005. Search-based drama
management in the interactive fiction Anchorhead. Proc. of the 1st
Conf. on AI and Interactive Digital Entertainment.

Nelson, M. and Mateas, M. 2008. An Interactive game-design
assistant. Proc. of the 2008 International Conference on
Intelligent User Interfaces.

Nelson, M., Mateas, M. Roberts, D.L. and Isbell, C. 2006.
Declarative optimization-based drama management in Interactive
Fiction. IEEE Computer Graphics and Applications, 26, 30-39.

Orkin J., Roy, D. 2009. Automatic learning and generation of
social behavior from collective human gameplay. Proc. of the
8th Int’l Conf. on Autonomous Agents and Multiagent Systems.

Quinn, A. and Bederson, B. 2011. Human computation: A survey
and taxonomy of a growing field. Proc. of the 2011 ACM SIGCHI
Conf. on Human Factors in Computing Systems.

Riedl, M.O., Stern, A., Dini, D. and Alderman, J. 2008. Dynamic
experience management in virtual worlds for entertainment,
education, and training. International Transactions on System
Science and Applications, 3, 23-42.

Swanson, R. and Gordon, A. 2008. Say Anything: a massively
collaborative open domain story writing companion. Proc. of the
1st Int’l Conf. on Interactive Digital Storytelling.

Treanor, M., Schweizer, B., Bogost, I., and Mateas, M. 2012. The
micro-rhetorics of Game-O-Matic. Proc. of the 2012 Conference
on the Foundations of Digital Games.

Weyhrauch, P. 1997. Guiding Interactive Fiction. Ph.D.
Dissertation, Carnegie Mellon University.

Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin, R.J. and
Saretto, C.J. 2004. An architecture for integrating plan-based
behavior generation with interactive game environments. Journal
of Game Development, 1, 51-70.

John enters bank.
John sees Sally.

John waits in line.
John approaches Sally.

Sally greets John.
John hands Sally a note.

The note demands money.
Sally reads note.

Sally opens cash drawer.
Sally collects money.
John gives Sally bag.

John shows gun.
Sally puts money in bag.

Sally presses alarm.
Sally gives John Bag.

John takes the bag.
Sally is scared.

John leaves bank.
Police arrests John.

John covers face.
John enters bank.
John waits in line.
John sees Sally.

John approaches Sally.
John gives Sally bag.
John pulls out gun.

John points gun at Sally.
Sally scared.

Sally screams.
John demands money.
Sally collects money.

Sally puts money in bag.
Sally presses alarm.
John takes the bag.
John leaves bank.

Police arrests John.

Figure 5. Example Stories

25

