
Adversarial Planning for Multi-Agent
Pursuit-Evasion Games in Partially Observable Euclidean Space

Eric Raboin
University of Maryland

Computer Science Dept., and
Inst. for Systems Research
College Park, MD, USA

eraboin@cs.umd.edu

Ugur Kuter
Smart Information Flow

Technologies (SIFT), LLC
211 N. 1st St., Suite 300
Minneapolis, MN, USA

ukuter@sift.net

Dana Nau
University of Maryland

Computer Science Dept., and
Inst. for Systems Research
College Park, MD, USA

nau@cs.umd.edu

S. K. Gupta
University of Maryland

Mechanical Engr. Dept., and
Inst. for Systems Research
College Park, MD, USA

skgupta@umd.edu

Abstract

We describe a heuristic search technique for multi-agent
pursuit-evasion games in partially observable Euclidean
space where a team of trackers attempt to minimize their un-
certainty about an evasive target. Agents’ movement and ob-
servation capabilities are restricted by polygonal obstacles,
while each agent’s knowledge of the other agents is limited to
direct observation or periodic updates from team members.
Our polynomial-time algorithm is able to generate strategies
for games in continuous two-dimensional Euclidean space,
an improvement over past algorithms that were only appli-
cable to simple gridworld domains. We demonstrate that our
algorithm is tolerant of interruptions in communication be-
tween agents, continuing to generate good strategies despite
long periods of time where agents are unable to communicate
directly. Experiments also show that our technique generates
effective strategies quickly, with decision times of less than a
second for reasonably sized domains with six or more agents.

Introduction
Pursuit and evasion strategies are important in many video-
game environments, and this paper concentrates on gener-
ating such strategies in continuous, partially observable Eu-
clidean space. We provide a polynomial time algorithm ca-
pable of generating online strategies for a team of cooper-
ative tracker agents that wish to pursue an evasive target.
The goal of the tracker team is to minimize their uncertainty
about the target’s location by the end of a fixed time period.
The domain may have arbitrarily shaped polygonal obstacles
that limit movement as well as observability.

To minimize uncertainty about a target’s location, the
trackers must work both to maintain visibility on the tar-
get, but also to move to strategic locations prior to visibil-
ity loss so that recovery is possible. Past approaches aimed
at maintaining visibility for as long as possible (Muppirala,
Hutchinson, and Murrieta-Cid 2005; Murrieta et al. 2004),
or discovering the location of a hidden target (Suzuki and
Yamashita 1992; LaValle et al. 1997), is not suited for sce-
narios where the target frequently passes in and out of visi-
bility. Since we want to generate strategies quickly, this also
rules out many combinatorial search techniques.

Prior work on this problem included a game-tree search
algorithm that could generate strategies for simple gridworld
domains, where time was divided into discrete time steps

and agents were only permitted to move in one of four cardi-
nal directions (Raboin et al. 2010). That work also assumed
that agents would be in constant communication, since it
generated trajectories using a heuristic method that required
knowing the location of every agent on the team.

We introduce the Limited-communication Euclidean-
space Lookahead (LEL) heuristic for evaluating tracker
strategies in 2-D Euclidean space, with sporadic communi-
cation among the trackers. Our contributions include—

• An algorithm for computing LEL in two-dimensional Eu-
clidean space with polygonal obstacles, where communi-
cation between agents may be interrupted for long periods
of time.

• An efficient method for computing the set of trajectories
for each agent that are consistent with a trackers’ obser-
vation history, which consists of direct observations and
information shared periodically by other tracker agents.

• Complexity analysis showing that our algorithm for com-
puting LEL runs in polynomial time with respect to the
size of the domain and number of agents.

• Experiments showing that our algorithm quickly gener-
ates strategies in the continuous domain that are twice as
effective at retaining visibility on the target, compared to
a strategy that follows the shortest path to the target.

Formalism
We define a multi-agent, imperfect-information game where
a single target agent a0 is pursued by a team of n tracker
agents {a1, a2, . . . an}. The tracker team’s goal is to mini-
mize uncertainty about the target’s location at the end of the
game. The agents’ capabilities are defined below.

We assume that each agent ai is a holonomic point robot
with a fixed maximum velocity vi. Agents can be located
anywhere in the region Cfree ⊆ R2, defined as free space.
The domain may have multiple obstacles, where each ob-
stacle is a polygon in R2, and Cfree is the set of locations
not intersecting any obstacles. The game’s state s ∈ S is
a set of locations for each agent, {l0, l1, . . . ln}, and a time
tk. Each game has an initial state s0, and a time tend in-
dicating when the game ends. A game’s history h ∈ H at
time tk ≤ tend is the set of trajectories followed by each
agent {f0, f1, . . . fn} from time t0 until tk, where fi(t) de-

Artificial Intelligence in Adversarial Real-Time Games: Papers from the 2012 AIIDE Workshop
AAAI Technical Report WS-12-15

19

tracker

tracker
target

sensor range

obstacle

Figure 1: Example pursuit scenario with two tracker agents
and a single target agent. Shaded areas represent the region
that can be observed by the tracker agents.

notes the location of agent ai at time t. Since agents can
move freely in two-dimensional Euclidean space, the set of
all states S, and set of all game historiesH , are both infinite.

Agent ai can travel from location lj to location lk only if
a path exists from lj to lk, and every location in that path is
contained in Cfree. Thus, agent ai’s reachability function is

Ri(lj , t) = {lk : locations 〈lj , lk〉 are connected in
Cfree by a path of length d ≤ t/vi}

which is the set of locations agent ai can reach in time t
starting from location lj . This can be generalized to

Ri(L, t) = {lk : lj ∈ L ∧ lk ∈ Ri(lj , t)} (1)

which is the set of locations agent ai can reach in time t
starting from anywhere in L ⊆ R2.

Agent ai can observe location lk from location lj only if
lk is contained within the observable region Vi(lj). We de-
fine the observable region as the set of locations within ai’s
sensor range, ri, where the line-of-sight is not obstructed by
an obstacle. Thus, agent ai’s observability function is

Vi(lj) = {lk : locations 〈lj , lk〉 are connected in Cfree

by a line segment of length d ≤ ri}

which is the set of locations observable to agent ai while
located at lj . Observability can also be generalized as

Vi(L) = {lk : lj ∈ L ∧ lk ∈ Vi(lj)} (2)

which is the set of locations agent ai can observe while lo-
cated somewhere in L ⊆ R2. An example state of the game
that illustrates observability is shown in Fig. 1.

Agent ai may recall its past location fi(t) for any time
t ≤ tk, but it does not know the trajectory fj followed by
any other agent aj 6=i. ai only knows the location of the other
agents in the initial state s0 and its observation history.

During a game, agent ai’s observation history is a finite
set of observations Oi = {o0, o1, . . . ok} where each obser-
vation is a tuple 〈aj , L, t〉, meaning fj(t) ∈ L, or “agent aj
is located in region L at time t.” If observation o ∈ Ω is in
agent ai’s observation history at time t, the information in
o is available to ai at any time t′ ≥ t. As with states and
histories, the set of possible observations, Ω, is infinite.

hidden region

tracker

sensor range

Figure 2: Left: example where a tracker has lost sight of a
target. The hidden region is the hatched area. Right: poly-
gons generated by expanding the hidden region’s boundary.

Observations are made at discrete time intervals, such that
the number of observations in a particular observation his-
tory remains finite. Since agents are free to move between
observations, we define a set of rules for computing the pos-
sible trajectories followed by each agent that are consistent
with prior observations.

Given an observation history, an agent is able to determine
the region where another agent may be located, even if that
agent’s actual location is not known. Given Oi, the set of
locations guaranteed to contain agent aj at time t is

R+
j (Oi, t) = Rj(L, t− t′) (3)

where 〈aj , L, t′〉 is the most recent observation in Oi de-
scribing agent aj at some time t′ ≤ t. This expands the set
of locations where aj might be, as illustrated in Fig. 2.

If agent ai happens to observe agent aj at time t, meaning
fj(t) ∈ Vi(fi(t)), then the tuple 〈aj , {fj(t)}, t〉 is added to
agent ai’s observation history. If ai does not directly observe
aj , the observation history is updated with a set of locations
instead. Agent ai can compute this hidden region as

hiddenj(Oi, fi, t) = R+
j (Oi, t) \ Vi(fi(t)) (4)

which is the set of locations that aj can reach by time t, mi-
nus the locations observed by agent ai. If ai does not directly
observe aj at time t, then 〈aj , hiddenj(Oi, fi, t), t〉 is added
to agent ai’s observation history.

Each tracker receives periodic updates from the other
agents on their team. An update from tracker aj includes
aj’s current location and aj’s observation history Oj . This
can be merged with ai’s latest observations by computing

mergek(Oi,Oj , t) = R+
k (Oi, t) ∩R+

k (Oj , t) (5)

where 〈a0,merge0(Oi,Oj , t), t〉 represents ai and aj’s com-
bined knowledge of the target at time t. This observation,
and 〈aj , {lj}, t〉 are both added to tracker ai’s observation
history as the result of the update.

Agent ai’s observation history Oi and past trajectory fi
map to an information set Ii(t) ⊆ H ,i.e., the set of possible
game histories given ai’s knowledge at time t. History h is
in Ii(t) if and only if 〈fi,Oi〉 is consistent with h. Formally,
Ii(t) = {h : (fi ∈ h) ∧ ∀fj∈hC(Oi, fj)}, where C(Oi, fj)
is the consistency relationship C(Oi, fj) = 〈aj , L, t〉 ∈
Oi → fj(t) ∈ L. As with states and histories, the set of
all possible information sets at time t > t0 is infinite.

20

In practice, we only need the most recent observation in
each history. This is sufficient both to compute LEL (see be-
low) and to maintain an accurate hidden region for the target.

A pure strategy σi for agent ai is a function mapping the
agent’s information set, Ii(t) to the move it should perform
at time t. Since changes to agent ai’s observation history
occur only at regular time intervals, σi(Ii(t)) should specify
a trajectory f for agent ai to follow from time t until the
next update occurs to Oi. Trajectory f is feasible for ai at
time t if and only if f(t) is equal to fi(t) and ∀j,k[(t ≤ tj ≤
tk)→ f(tk) ∈ Ri(f(tj), tk − tj)].

A strategy profile ~σ = (σ0, σ1, . . . σn) assigns a single
pure strategy to each agent. Since the game is deterministic,
~σ should produce a unique history h(~σ) at the end of the
game. The expected value of profile ~σ is E(~σ) = u(h(~σ))
where u(h) is the size of the region guaranteed to contain
the target based on the trackers’ observation histories at the
end of a game with history h. This value can be computed
given the observation history Oi(h) generated by history h,

u(h) = |
⋂n

i=1R
+
0 (Oi(h), tend)| (6)

The utility for the tracker team is −E(~σ), meaning the
highest possible utility is zero, which happens when the tar-
get is directly observable at the end of the game. We leave
the objective function for the target undefined, but set out
to maximize −E(~σ) under a worst-case assumption: i.e. we
assume that the target will always pick a strategy that min-
imizes the trackers’ utility. This is equivalent to playing a
zero-sum game against an opponent that always chooses the
best-response to the player’s strategy.

LEL Heuristic
LEL is based on the RLA heuristic introduced in (Raboin et
al. 2010). It works by estimating how large the hidden re-
gion will be in the game’s future if a tracker agent follows a
particular trajectory. The hidden region is the set of locations
where the target could be located based on the information
provided in an agent’s observation history. The size of this
region at the end of the game is equivalent to the tracker
team’s utility, as defined in equation 6.

Given observation history Oi, the target is guaranteed to
be located somewhere in R+

0 (Oi, t) at time t. The region
visible to the tracker team is bounded by

V +(Oi, t) =
⋃n

j=1 Vj(R
+
j (Oi, t)) (7)

which contains every location that a tracker agent could ob-
serve at time t, given any trajectory consistent withOi. If the
target is not visible at time t, then agent ai can approximate
the hidden region where it may be located by computing

R+
0 (Oi, t) \ V +(Oi, t) ⊆ hidden0(Oi, fi, t)

which is the set of locations that the target can reach by time
t that are guaranteed to be unobservable by the trackers. This
is a subset of the actual hidden region defined in the Formal-
ism section. The value returned by the LEL heuristic is the
average size of this region over a given time interval,

ulel(Oi, t, d) = 1
d

∑t+d
k=t

∣∣R+
0 (Oi, k) \ V +(Oi, k)

∣∣ (8)

tracker

tracker

target

Figure 3: Trajectories generated using the LEL heuristic in
a domain with two tracker agents and an evasive target. The
tracker agents start in the lower left and move past obstacles
while attempting to surround the target from both sides.

where t is the current time, and d, the prediction depth, is
how far into the future to compute the approximation. In the
next section is an algorithm to quickly evaluate LEL.

To select a trajectory for agent ai at time t, several candi-
date trajectories should be sampled using the LEL heuris-
tic. Let l′ be a possible waypoint for agent ai and tk be
the desired arrival time. The LEL value for this trajectory is
ulel(Oi + 〈ai, {l′}, tk〉, tk, d). The waypoint with the small-
est LEL value corresponds to a trajectory where the pre-
dicted size of the hidden region is the smallest.

If a tie occurs when selecting a trajectory for agent ai, the
tie can be broken by re-computing LEL using the location of
just one tracker agent. To do this, substitute Vi(R+

i (Oi, t))
for V +(Oi, k) in the heuristic and compute

utb(Oi, t, d) = 1
d

∑t+d
k=t

∣∣R+
0 (Oi, k) \ Vi(R+

i (Oi, k))
∣∣ (9)

which is what LEL would return if there were no other
tracker agents on the team. This only needs to be computed
in case of a tie, which happens when some subset of the
tracker team is able to observe all of the locations that the
target can reach. In this case, the tie-breaker ensures that the
remaining tracker agents move into a reasonable position.

Algorithm
We assume that the boundary of any regionL is a set of poly-
gons in R2. These polygons can be disjoint and have holes,
allowing a close approximation of most regions that will ap-
pear in the game (e.g., obstacles, and the hidden region).

Computing LEL requires a set of reachability functions
{rdist0, rdist1, . . . rdistn} where each function rdistj(l) re-
turns the Euclidean shortest-path distance from agent aj’s
location at time t to location l. If ai does not know the lo-
cation of agent aj , then ai must compute the shortest-path
distance from R+

j (Oi, t), the set of locations guaranteed to
contain aj at time t based on ai’s observation history.

Evaluating rdisti(l) can be done in logarithmic time us-
ing a shortest-path map (Mitchell 1991), but our implemen-
tation achieves linear time complexity by using the Fast-
Marching Method. This technique is able to compute the
Euclidean shortest-path distances for a set of locations in a
Cartesian grid, evaluating all possible trajectories, including

21

trajectories that do not pass through the grid points (Sethian
1995). Thus, we can provide a close numerical approxima-
tion of LEL by evaluating the set of locations Lraster, where
Lraster is a two-dimensional grid of width w and height
h. The Fast-Marching Method is able to correctly compute
rdisti(l) for all l ∈ Lraster in time O(m), where m = w · h.

Computing LEL also requires the visibility functions,
{vdist1, vdist2, . . . vdistn} where each vdistj(l) returns the
shortest-path distance from agent aj’s location at time t to
the nearest location that can observe l, such that vdisti(l) =
minl′∈Vpoly(l) rdisti(l′), where Vpoly(l) is a polygon con-
taining the set of locations visible from l.

Evaluating vdisti(l) is considerably more challenging
than evaluating rdisti(l), since it requires computing the
minimum distance over an set of locations in Vpoly(l).
Rather than computing this explicitly, Algorithm 1 uses a
sampling technique to approximate the visibility distance:

Algorithm 1 Approximate agent ai’s visibility map vdisti.
Lsample = finite subset of Cfree

for all l ∈ Lraster

vdisti(l) = ∞
for all l ∈ Lsample

for all l′ ∈ (Lraster ∩ Vpoly(l))
vdisti(l′) = min(rdisti(l), vdisti(l′))

Since each visible region Vpoly(l) is polygonal and the
points in Lraster form a two-dimensional grid, we can com-
pute algorithm 1 efficiently using scan-line rasterization.

Given {vdist1, vdist2, . . . vdistn} and rdist0, we can
compute the difference in time between when the target can
first reach a location and when it can first be seen by one of
the trackers. This is evaluated as follows

∆(x, y) = mini

(
1
vi
· vdisti[x, y]− 1

v0
· rdist0[x, y]

)
where rdist[x, y] and vdist[x, y] correspond to the approxi-
mation of vdist and rdist at location 〈x, y〉 computed in the
previous section. Then, the value for LEL is

ulel = 1
wh

∑w
x=0

∑h
y=0 max(0,min(∆(x, y), d)) (10)

To connect this algorithm to the definition of LEL in equa-
tion 8, note that the size of an arbitrary polygonal region can
be approximated by counting how many points in Lraster

are contained by the polygon. The quality of the approxi-
mation depends on the size of the raster, but with any suffi-
ciently large raster we can approximate the size of the hidden
region,R+

0 (Oi, t)\V +(Oi, t), and use that to compute LEL.
However, rather than computing this region at each time
step as is done in equation 8, we simply determine when
each point in Lraster is first intersected by R+

0 (Oi, t) and
V +(Oi, t), then use the difference in time to determine how
long the point was contained inR+

0 (Oi, t)\V +(Oi, t). That
is what is done in equation 10 using our algorithm, allowing
us to leverage the Fast-Marching Method and avoid perform-
ing costly set operations over complex polygonal regions.

Experiments
To evaluate the algorithm presented in this paper, we per-
formed a series of experiments on randomly generated do-

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

n = 2
n = 3
n = 4

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
n = 2
n = 3
n = 4

Prediction Depth Prediction Depth

S
iz

e
of

 H
id

de
n

R
eg

io
n

S
uc

ce
ss

 R
at

e

Figure 4: LEL performance at various prediction depths,
with n trackers per team. Left: hidden region size at game’s
end. Right: proportion of games where target was visible at
game’s end.

mains with two-dimensional polygonal obstacles. The start-
ing location for each tracker agent was chosen at random,
while the starting location for the target was set to a random
location within the trackers’ observable region. To make the
game more challenging, in all of our experiments we set the
target’s velocity to be 10% faster than any of the tracker
agents, meaning the target could out-run tracker agents.

All figures discussed in this section show results from an
average of 500 randomly generated trials. For each trial, the
score for the tracker team was determined by the size of the
hidden region at the end of a fixed time period.

We also evaluated the max-distance (MD) heuristic, a sim-
ple hand-coded rule that instructs the tracker team to follow
the ”shortest-path” to the target. If the target is not visible,
the MD heuristic will assume the target is as far away as
possible and follow the shortest-path to that location. This
heuristic provides a baseline comparison for judging the
quality of the strategies produced by LEL, and has been used
for a similar purposed in the past (Raboin et al. 2010).

To generate obstacles for our experiments we used a ran-
domized version of Kruskal’s algorithm to create a maze
(Kruskal Jr. 1956). We then randomly removed half the walls
from the maze to increase the domain’s connectivity. The
result was a continuous domain with many obstacles for the
target to hide behind, but with very few dead-ends. Each trial
in our experiments used a different set of randomly gener-
ated obstacles and starting locations.

When generating strategies for the target, we assumed that
the target always knew the exact location of the tracker team.
We used the LEL heuristic with a fixed prediction depth to
select a trajectory for the target that would minimize the
tracker team’s utility. Targets using this worst-case strategy
are much harder to track than targets which simply maxi-
mize their distance from the trackers (Raboin et al. 2010).

Tracker success. Fig. 4 shows the average success rate for
a team of n trackers using LEL with different prediction
depths, where “success” means the target is visible at the
end of the game. Higher prediction depths decreased hid-
den region’s size at the end of the game, and increased the
likelihood of success. With two agents, the heuristic’s per-
formance decreased slightly at prediction depths above 200,
indicating that the quality of the heuristic function’s predic-
tion likely declines beyond a certain depth.

22

2 3 4
0

1000

2000

3000

4000

5000

6000

7000

LEL
MD

2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

LEL
MD

Team Size Team Size

S
iz

e
of

 H
id

de
n

R
eg

io
n

S
uc

ce
ss

 R
at

e

Figure 5: LEL and MD performance at different team sizes.
Left: Average (over 500 games) of the hidden region size (in
pixels on a 100x100 raster) at end of game. Right: proportion
of games where the target was visible at game’s end.

0 40 80 120 160 200
0

1000

2000

3000

4000

5000

6000

7000

8000

LEL
MD

0 40 80 120 160 200
0

0.1

0.2

0.3

0.4

0.5
LEL
MD

Time Between Updates Time Between Updates

S
iz

e
of

 H
id

de
n

R
eg

io
n

S
uc

ce
ss

 R
at

e

Figure 6: Results for LEL and MD with interrupted commu-
nication. As the time between updates increases, agents are
able to communicate less frequently. Left: average size of
the hidden region at the end of the game. Right: proportion
of games where the target was visible at the end.

Fig. 5 shows that teams using LEL were over twice as
effective as teams using the MD heuristic. On average, a 3-
agent team using LEL was more successful than a 4-agent
team using MD. In other words, teams using the LEL heuris-
tic performed better than teams using the MD heuristic, even
though the teams using the MD heuristic had more agents.

Interrupted communication. Figs. 6 and 7 show the effect
of interrupting communication among the trackers. They
could communicate only periodically, to report their cur-
rent location, the target’s location in their observation his-
tory, and no other information. Hence agents did not know
where the other agents on their team were located, only the
location provided during the most recent update.

As expected, when the period of time between updates
was increased, the trackers became less successful at track-
ing the target. However, the tracker team still performed sur-
prisingly well when using the LEL heuristic, even when up-
dates were spaced apart by large amounts of time. When
agents were permitted to communicate as frequently as pos-
sible they exchanged information 500 times per game, com-
pared to only 5 times per game when communication was
at a minimum. Despite this significant reduction in the fre-
quency with which agents could communicate, agents that
generated strategies using LEL still out-performed agents
that used the MD heuristic, even if agents using the MD
heuristic were allowed constant communication.

0 40 80 120 160 200
0

1000

2000

3000

4000

5000

6000
n = 2
n = 3
n = 4

0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

n = 2
n = 3
n = 4

Time Between Updates Time Between Updates

S
iz

e
of

 H
id

de
n

R
eg

io
n

S
uc

ce
ss

 R
at

e

Figure 7: Results for teams of n agents using the LEL heuris-
tic with interrupted communication. Left: average size of the
hidden region at the end of the game. Right: proportion of
games where the target was visible at the end of the game.

10000 60000 110000 160000
0

50

100

150

200

250

300

350

2 3 4 5 6
170

175

180

185

190

195

200

205

210

Figure 8: Left: running time in milliseconds for an agent to
select its next move using LEL. The dashed lines show one
standard deviation from the mean. Right: running time for
LEL using a 400x400 raster, with various team sizes.

Running time. Fig. 8 shows the average CPU time for a sin-
gle agent to decide which trajectory to follow using the LEL
heuristic.1 In these experiments, LEL heuristic was evalu-
ated nine separate times per decision, once per waypoint as
discussed in the LEL Heuristic section.

The relationship between the average CPU time per deci-
sion and the size of the domain (both the number of obstacles
and the size of the raster used to compute LEL) was approx-
imately linear. The relationship between team size and aver-
age CPU time per agent was also approximately linear. For
the largest games we evaluated, with six tracker agents and
between 700 and 750 obstacle vertices, the average decision
time per agent was under half a second.

Discussion. Agents that used LEL to select waypoints exhib-
ited very different behavior compared those that followed
the shortest path to the target. Using LEL, typically one
tracker would follow the target closely, while the remaining
agents positioned themselves somewhere in the domain that
would corner the target. Fig. 3 provides an example of this:
tracker a follows the target directly, while tracker b moves
along the southern end of the domain to intercept the target
if it passes behind any of the obstacles. This kind of “divi-
sion of labor” is seen often when LEL is used, even though
each tracker selects its own trajectory independently.

Apparent in Fig. 4, increasing the prediction depth of LEL

1All experiments were performed using a 2.40 GHz Intel Xeon
processor running Java Virtual Machine 6.

23

is subject to diminishing returns, eventually providing no
additional benefit, and in some cases actually hurting per-
formance. This is likely due to the fact that LEL will at some
point evaluate all the locations in the domain, after which no
additional information is provided by searching deeper. This
result, and the rate of improvement when compared to MD,
are both analogous to what was seen when RLA was used in
the gridworld domain (Raboin et al. 2010).

Related Work
LEL can be viewed as an extension of the RLA heuristic
in(Raboin et al. 2010), which could evaluate strategies for
a simple gridworld game similar to the problem explored in
this paper. RLA did not work in continuous Euclidean space,
nor was it able to generate strategies when there were in-
terruptions in communication between agents. In addition to
RLA, there are numerous strategy generation algorithms for
related visibility-based pursuit-evasion games, with varying
degrees of similarity the game defined in this paper. We sum-
marize some of these approaches below.

Much work on pursuit-evasion games has focused on
robot patrolling, or hider-seeker games, where the objec-
tive of the tracker is to find an unseen target within some
enclosed domain. Graph-based versions of the hider-seeker
game have existed for some time (Parsons 1976), and ver-
sions of this problem exist in both continuous (Suzuki and
Yamashita 1992; LaValle et al. 1997; Gerkey, Thrun, and
Gordon 2006; Meng 2008) and discrete domains (Amigoni,
Basilico, and Gatti 2009; Basilico, Gatti, and Amigoni 2009;
Halvorson, Conitzer, and Parr 2009). This problem has been
simplified in the past by assuming the target has unbounded
speed (Gerkey, Thrun, and Gordon 2006), or by approximat-
ing its movement (Tovar and LaValle 2008). There are also
several approaches to the problem of maintaining visibil-
ity on the target (Muppirala, Hutchinson, and Murrieta-Cid
2005; Murrieta et al. 2004), but this is a different problem
from finding a target that is not visible already.

Conclusion
We presented a formalism and algorithm for generating
strategies in multi-agent pursuit-evasion games that occur in
partially observable Euclidean space where communication
between agents can be interrupted. Our algorithm, using a
heuristic method known as LEL, is able to generate strategies
for a team of tracker agents that are trying to minimize their
uncertainty about the location of an evasive target. We have
presented experimental results showing that LEL was more
than twice as likely to maintain visibility on the target when
compared to a simple hand-coded strategy that followed the
shortest path to the target. We also presented experimental
results showing that LEL is tolerant of interruptions in com-
munication, continuing to perform well even when commu-
nication between agents is infrequent.

Our implementation does rasterization in software using
a software-emulated depth buffer. This could be accelerated
by doing rasterization in hardware using GPU resources.
Modern graphics hardware is designed to perform these op-
erations very quickly, so any implementation that takes ad-

vantage of this will most likely show a significant speed-up
when compared to the running time of our implementation.

While the worst-case target strategy used in this paper is
helpful for determining the minimum performance of tracker
strategies, there is no reason to assume that the target will
always exhibit worst-case behavior, because the target may
not know the tracker agents’ locations. Future work could
investigate whether LEL can be enhanced by using opponent
modeling to predict the target’s movement, and whether this
improves tracker teams’ success rates.

Acknowledgments. This work was supported in part by
ONR grant N000141210430 and a UMIACS New Research
Frontiers Award. The information in this paper does not nec-
essarily reflect the position or policy of the funders.

References
Amigoni, F.; Basilico, N.; and Gatti, N. 2009. Finding the
optimal strategies in robotic patrolling with adversaries in
topologically-represented environments. In ICRA-09.
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In AAMAS-09.
Gerkey, B.; Thrun, S.; and Gordon, G. 2006. Visibility-
based pursuit-evasion with limited field of view. Int. J.
Robot. Res. 25(4):299–315.
Halvorson, E.; Conitzer, V.; and Parr, R. 2009. Multi-step
multi-sensor hider-seeker games. In IJCAI-09.
Kruskal Jr., J. 1956. On the shortest spanning subtree of
a graph and the traveling salesman problem. Proc. Amer.
Math. Soc. 7(1):pp. 48–50.
LaValle, S.; Lin, D.; Guibas, L.; Latombe, J.; and Motwani,
R. 1997. Finding an unpredictable target in a workspace
with obstacles. In ICRA-97.
Meng, Y. 2008. Multi-robot searching using game-theory
based approach. Int. J. Adv. Robot. Sys. 5(4):341 –350.
Mitchell, J. S. B. 1991. A new algorithm for shortest paths
among obstacles in the plane. AMAI 3:83–105.
Muppirala, T.; Hutchinson, S.; and Murrieta-Cid, R. 2005.
Optimal motion strategies based on critical events to main-
tain visibility of a moving target. In ICRA-05.
Murrieta, R.; Sarmiento, A.; Bhattacharya, S.; and Hutchin-
son, S. 2004. Maintaining visibility of a moving target at
a fixed distance: The case of observer bounded speed. In
ICRA-04.
Parsons, T. D. 1976. Pursuit-evasion in a graph. Theory and
Applications of Graphs 426–441.
Raboin, E.; Nau, D. S.; Kuter, U.; Gupta, S. K.; and Svec,
P. 2010. Strategy generation in multi-agent imperfect-
information pursuit games. In AAMAS-10.
Sethian, J. A. 1995. A fast marching level set method for
monotonically advancing fronts. In PNAS, 1591–1595.
Suzuki, I., and Yamashita, M. 1992. Searching for a mobile
intruder in a polygonal region. SIAM J. Comp. 21:863–888.
Tovar, B., and LaValle, S. 2008. Visibility-based pursuit-
evasion with bounded speed. Int. J. Rob. Res. 27:1350–1360.

24

