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Abstract 
We present CLASSQ-L  (for: class Q-learning) an application 
of the Q-learning reinforcement learning algorithm to play 
complete Wargus games. Wargus is a real-time strategy game 
where players control armies consisting of units of different 
classes (e.g., archers, knights). CLASSQ-L  uses a single table 
for each class  of unit so that each unit is controlled and 
updates its class’ Q-table. This enables rapid learning as in 
Wargus there are many units of the same class. We present 
initial results of CLASSQ-L against a variety of opponents. 
 

Introduction  
Reinforcement learning (RL) is an unsupervised learning 
model in which an agent learns directly by interacting with 
its environment. The agent pursues to maximize some signal 
from the environment. This signal basically tells the agent 
the effects of the action’s it performed  (Sutton and Barto, 
1998). 
 
One of the challenges of applying RL to real-time strategy 
games (RTS) such as Wargus is that these games have large 
state and action spaces.  Games are played in 2-dimensional 
maps. States include information about: 

 
• The number of resources and their (x,y)-

coordinates in a map 
• Information about each unit, including its class 

(e.g., if the unit is an archer) and its (x,y)-
coordinates.  

• Information about each building and its (x,y)-
coordinates 

  
In a given scenario there can be dozens such units and 
buildings. The action space of Wargus is also very large.  
Units execute commands, depending on their class, 
including: 
 

• To construct a building, indicating the class of 
building (i.e., barracks) and its (x,y)-coordinate. 

• To harvest a resource, indicating the class of 
resource (e.g., wood) and its (x,y) coordinate. 

• To move to an (x,y)-coordinate 
• To attack an enemy unit or structure located in an 

(x,y)-coordinate. 
 
Given the large size of the action and state space, it is very 
difficult to use RL algorithms to control the full scope of 
real-time strategy games. Existing research on using RL for 
these kinds of games typically focuses on some aspect of the 
game. We will discuss some of this research in the Related 
Work section. 
 
We introduce CLASSQ-L, an application of the RL algorithm 
Q-learning (Watkins, 1989) that is capable of playing the 
full-scope of the Wargus real-time strategy game. We 
reduce the size of the state-action space by having a separate 
Q-table for each class of unit and building and filtering 
useful state and action information that is customized for 
each class. 

 
In the next section we provide a quick overview of the Q-
learning algorithm. Then we present the CLASSQ-L 
algorithm. Afterwards, we discuss how we model Wargus in 
CLASSQ-L. Then we present an empirical evaluation. Next 
we discuss related work and in the final section we make 
some concluding remarks. 

Q-Learning 
Q-learning is a frequently use reinforcement learning 
technique for two main reasons.  First, it doesn’t require 
knowing the dynamics of the environment (i.e., probability 
distributions over resulting states when actions are taken in 
a given state). Second, it can bootstrap (i.e., estimating over 
existing estimates) enabling it to learn faster in many 
situations.  
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Conceptually, Q-learning works by learning an action-value 
function that gives the expected utility of taking a given 
action in a given state.  The estimated value of action-value 
function of taking action 𝑎 in state 𝑠 at the time 𝑡th is 
denoted as 𝑄(𝑠! , 𝑎!).  Q-learning is defined by: 

𝑄(𝑠! , 𝑎!) ←   𝑄(𝑠! , 𝑎!)
+ 𝛼 𝑟!!! + 𝛾max!𝑄 𝑠!!!, 𝑎 − 𝑄 𝑠! , 𝑎!  

 
Where 𝑟!!! is the reward observed, the parameter  𝛼 controls 
the learning rate ( 0 < 𝛼 ≤ 1),  and 𝛾 is a factor discounting 
the rewards obtained so far (0 ≤ 𝛾 < 1). 
Given learned Q-values, when reaching an state s, Q-
learning algorithms typically select the “greedy” action a. 
That is the action a that has the highest Q(s,a) value with a 
probability  1 − ∈ and select a random action with a 
probability ∈ (with 0 < ∈ < 1). Typically ∈ is set very small 
(i.e., close to 0), so that most of the time the greedy action is 
selected. This method of choosing between the greedy 
action and the random action is called ∈-greedy and it 
enables Q-learning to escape local maxima. 
After a potentially large number of iterations, Q-values are 
learned such that when the greedy action is always chosen 
the return at time t is maximized, where the return is defined 
as the summation of the rewards obtained after time t and 
until the episode ends. 

The CLASSQ-L Algorithm 
CLASSQ-L is an algorithm that is developed to play 
complete Wargus games. In Wargus players compete 
against one another by raising and managing armies of 
different classes of units.  There are various classes of units 
in each team and units in each class have different set of 
actions. The basic idea CLASSQ-L is to maintain a single 
table for all units of the same kind. The motivation for this 
is to speed learning by updating the Q-values for every 
unit’s action. Here, we include building structures whose 
action is to build a certain type of units and peasants which 
can construct building structures. 

CLASSQ-L(s0, Δ, 𝒬, 𝒞, 𝒜, α , γ, ε) = 
1: s←s0; start-episode(); 
2: while episode continues  
3:   wait(Δ) 
4:   𝕤′ ←  GETSTATE() 
5:   for each class C ∈ 𝒞 
6:    𝑠′ ←  GETABSTRACTSTATE(𝕤′, C) 
7:    A ←  GETVALIDACTIONS(𝒜! ,  𝑠′) 
8:    Q ← 𝒬(C) 
9:    for each unit c ∈ C 

10:     if unit c is idle 
11:      if RANDOM(1) ≥ ε 
12:        a ← ARGMAXa′∈A(Q(s′, a′)) 
13:       else  
14:       a ← RANDOM(A) 

15:     EXECUTEACTION(a) 
16:      𝐿! ← concat(𝐿!, <sc, ac, s′>) 
17:      sc ← s′; ac ← a 

END-WHILE 
//After the game is over, update the q-tables 

18: r ← GETREWARD 
19: for each class C ∈ 𝒞 
20:   Q ← 𝒬(C) 
21:   for each unit c ∈ C 
22:    for each <s, a, 𝑠′> ∈ 𝐿! 
23:    Q(s, a) ← Q(s, a) + α [r +  

     γ ARGMAXa′ (Q(s′, a′) − Q(s, a)] 
24: return 𝒬 
 

CLASSQ-L receives as inputs the starting state s0, a waiting 
time Δ, the collection of Q-values for each individual 
classes 𝒬, the set of all classes 𝒞, the set of all possible 
action 𝒜, the step-size parameter α the discount-rate 
parameters γ from Q-learning, and the parameter ε for the ε-
greedy selection of action.  

CLASSQ-L works in two phases. In the first phase we use the 
Q-values learned in previous episodes to control the AI 
while playing the game. In the second phase we update the 
Q-values from the sequence of (s,a,s’) triples that occurred 
in the episode that just ended. 

CLASSQ-L initializes s to the initial state s0 and starts the 
episode (Line 1). During an episode (Line 2), CLASSQ-L 
periodically waits (Line 3) and then observes the current 
state 𝕤! (Line 4). For each class C in the set of classes 𝒞 
(Line 5), create the current state 𝑠′ for the class C by 
customizing the observed state 𝕤! (Line 6). The reason why 
we have to do this is because different classes need different 
kinds of information. The size of the observe state 𝕤! is very 
large and contains various kinds of information. Each class 
require some of the information uniquely.  We will detail 
the kind of information extracted in the next section.  
The next step is to create the set of valid actions A of class C 
under current situation (Line 7).  We should not use 𝒜!  (the 
set of possible actions of class C)  directly because some of 
the actions might not be applicable in the current state.  For 
example, peasants can build farms.  However, without 
enough resources, Wargus will ignore this command.  
Therefore, Line 7 prunes invalid actions. Any action 
randomly chosen from this set of actions is guaranteed to be 
a valid action.  Next, retrieve the Q-table of class C from the 
collection of Q-tables 𝒬 (Line 8). 
For each unit c of class C, if the unit c is idle, CLASSQ-L 
retrieves an action a from the Q-table using ε-greedy 
exploration (Line 9-14). Notice that the algorithm choose an 
action a from the set of valid actions A, not from the set of 
possible actions 𝒜! . Then, execute the action a (Line 15). 
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Because this is offline learning method, Line 16  saves the 
set of sc (the previous state s of unit c), ac (the previous 
action a of unit c) and the current state s′ for the Q-learning 
updates in the second phase.  We wait until the end of the 
game to update the Q-values because we have found 
experimentally to be more effective to use the outcome at 
the end of the game. This is why we have to save the list of 
state-action to perform the off-line update later. Line 17 
updates the previous state sc and the previous action ac.    
In the second phase, after calculating the reward r (Line 18), 
we use the Q-learning update on all the members in the list 
Lc of each individual unit c to update Q-values of each class 
C (Line 19-23). Finally, returns the Q-values (Line 24). 

Modeling Wargus in CLASSQ-L 
We modeled the following 12 classes in CLASSQ-L: 
 

1. Town Hall / Keep / Castle 
2. Black Smith 
3. Lumber Mill 
4. Church 
5. Barrack 
6. Knight / Paladin 
7. Footman 
8. Elven Archer/ Elven Ranger 
9. Ballista 
10. Gryphon Rider 
11. Gryphon Aviary 
12. Peasant-Builder 

 
Because the behaviors of peasants when they act as builders 
or harvesters are so different, we separate them in two 
different subsets.  There is only one peasant who is the 
builder. The rest are all harvesters for either gold or wood 
and, in some situations, the peasants in this group also act as 
repairers. 
 
There is no stable class in the list above because stable has 
no action, so the Q-table is not needed by the stable class. 
The peasant-harvester class also do not have its own Q-
table. We create simple algorithm for job assignment to 
harvesters to maintain the ratio of gold to wood about 2:1. 
There are a few other missing classes such as Mages 
because they don’t seem to work well when controlled by 
using Wargus commands. 
    
In Wargus, the sets of actions of each class are exclusive. 
So, we can make the state space of Q-table smaller by 
having individual Q-table of each class of unit.  All Q-
values are zero initialized.   
 
4.1 State Representation 

Each unit type has different state representation. To reduce 
the number of states, we genralize levels for features that 
have too many values. For example, the amount of gold can 

be any value greater than zero. In our representation we 
have 18 levels for gold. Level 1 means 0 gold whereas level 
18 means more than 4000 gold.   We used the term “level 
number” for such generalizations. Here are the features of 
the state representations for each class: 

 
• Peasant-Builder:  level number of gold, level number of 

wood, level number of food, number of barracks, lumber 
mill built?,1 blacksmith built?, church built?, Gryphon 
built?,  path to a gold mine?, town hall built? 

• Footman, knight, paladin, archer, ballista and Gryphon 
rider: level number of our footmen, level number of 
enemy footmen, number of enemy town halls, level 
number of enemy peasant, level number of enemy 
attackable units that are stronger than our footmen, level 
number of enemy attackable units that are weaker than 
our footmen 

• Town hall: level number of food, level number of 
peasants 

• Barrack: level number of gold, level number of food, 
level number of footman, level number of footmen, level 
number of archers, level number of ballista, level number 
of knights/paladins 

• Gryphon Aviary: level number of gold, level number of 
food, level number of Gryphon Rider 

• Black Smith, Lumber Mill and Church: level number of 
gold, level number of wood 

 
For peasants who are harvesters, we do not use any learning 
to choose the actions they take.  Instead, we simply balance 
between the amount of gold and the amount of wood about 
two units of gold per one unit of wood.  Another work of 
harvesters is to repair damage structures if there are some 
that need repairs. 

4.2 Actions 

Our model abstracts actions from units so that they are at 
higher-level than actual actions the units can take.  The 
actual actions of units include moving to some location, 
attacking another unit or building, patrolling between two 
locations, and standing ground in one location.  However, 
using the actual actions would lead to an explosion in the 
size of the Q-tables.  

 
The list below is the list of all possible actions for each 
class. 
	  
• Peasant-Builder:  build a farm, build a barrack, build a 

town hall, build a lumber mill, build a black smith, build a 
stable, build a church, and build a Gryphon aviary. 

• Town Hall/Keep/Castle: train a peasant, Upgrade itself to 
keep/castle 

• Black Smith: upgrade sword level 1, upgrade sword level 
2, upgrade human shield level 1, upgrade human shield 
level 2, upgrade ballista level 1, upgrade ballista level 2 

                                                
1 The question mark signals that this is a binary feature 
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• Lumber Mill: upgrade arrow level 1, upgrade arrow level 
2, Elven ranger training, ranger scouting, research 
longbow, ranger marksmanship 

• Church: upgrades knights to paladins, research healing, 
research exorcism 

• Barrack: Doing nothing, train a footman, train an Elven 
archer/ranger,  
train a knight/paladin, train a ballista 

• Gryphon Aviary: Doing nothing, Train a Gryphon rider 
• Footman, Archer, Ranger, Knight, Paladin, Ballista, 

Gryphon Rider: wait for attack, attack the enemy’s town 
hall/great hall, attack all enemy’s peasants, attack all 
enemy’s units that are near to our camp, attack all 
enemy’s units that have their range of attacking equal to 
one, and attack all enemy’s units that have their range of 
attacking more than one, attack all enemy’s land units, 
attack all enemy’s air units, attack all enemy’s units that 
are weaker (the enemy’s units that have HP less than 
those of us), and attack all enemy’s units (no matter what 
kind) 

Empirical Evaluation 

We conducted initial experiments for CLASSQ-L  on a small 
Wargus map. 

5.1 Experimental Setup  

At the first turn of each game, both teams start with only 
one peasant/peon, one town hall/great hall, and a gold mine 
near them. We have five adversaries: land-attack, SR, KR, 
SC1 and SC2 for training and testing our algorithm. These 
adversaries come with the Warcraft distribution and have 
been used in machine learning experiments before (see 
Related Work section).  
 

 
Figure 1: The screen capture of the small map from Wargus 
game. 

These adversaries can construct any type of unit unless 
the strategy followed discards it (e.g., land-attack will only 
construct land units. So units such as gryphons are not 
built): 

• Land-Attack: This strategy tries to balance between 
offensive/defensive actions and research. It builds only 
land units. 

• Soldier’s Rush (SR): This attempts to overwhelm the 
opponent with cheap military units in an early state of the 
game.  

• Knight’s Rush (KR): This attempts to quickly advance 
technologically, launching large offences as soon as 
knights are available. Knoghts is the strongest unit in the 
game 

• Student Scripts (SC1 & SC2): These strategies are the top 
two competitors created by students for the tournament in 
a classroom. 

We trained and tested CLASSQ-L by using leave-one-out-
training as the model of our experiment processes. We 
remove from the training set the adversary that we want to 
compete against.  For example, if we want to experiment 
CLASSQ-L versus SC1, the set of adversaries that we use for 
training is {land-attack, SR, KR, SC2}. 

All experiments were performed on the 32 x 32 tile map 
shown in Figure 1. This is considered an small map in 
Wargus. Each competitor starts in one  side  of the forest 
that divides the map into two parts. We added this forest to 
give time to opponents to build their armies. Otherwise, 
CLASSQ-L was learning a very efficient soldier rush and 
defeating all opponents including SR very early in the game. 

5.2 Results 

Our performance metric is: (number of wins – number of 
loses) with m training rounds. First we match CLASSQ-L 
against each opponent with no training (m = 0). Then we 
play against each opponent after one round of training using 
leave-one-out training (m = 1). We repeat this until m = 20. 
We repeat each match 10 times and compute the average 
metric. So the total number of games played in this 
experiment is 21*10 = 210 games. Including training, the 
total number of games run in this experiment is 210 * 3 = 
630 games. 

Our performance metric provides a better metric than the 
difference in Wargus score (our score – opponent’s score) of 
the game because the lower score difference can mean a 
better performance than a larger score difference.  This is 
due to how the Wargus score is computed. For example, our 
team can win the opponent very fast and the score we got is 
just 1735 and the game is over while the opponent got the 
score of 235 before the game end. In this case,  the average 
score of (our team - opponent team) is just 1500. In another   
case, our team can win the opponent with the score of  3450, 
but the game takes very long time to run until the game is 
over; while the opponent team got the score of 1250.  In this 
case, the average score of (our team – opponent team) is 
2200, but it does not mean the performance is better. In fact, 

11



the performance should be worse than the previous case 
because it takes longer time to win.  

Overall the performance of ClassQ-L is better than that of the 
adversaries.  The x-axis shows the results after x number of 
iterations training in the leave-one-out setting. The first bar 
is x = 0 and the last bar is x = 20. 

 

 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 2:  The results of the experiments from Wargus 
game: (a) ClassQ-L vs. Land-Attack, (b) ClassQ-L vs. SR, (c) 
ClassQ-L vs. KR, (d) ClassQ-L vs. SC1 and (e) ClassQ-L vs. 
SC2. 

Related Work 
Wargus is an open source game that was built by reverse 
engineering the commercial game Warcraft 2. Wargus has 
been used frequently as a testbed for research purposes 
because it is an accurate model of real time strategy games 
including elements defining the genre such as research trees, 
players taking action in real-time, players controlling 
different kinds of units, gathering resources, and 
constructing building structures to create new units or to 
upgrade existing units (Mehta et al., 2009).  
 
Our work is related to micro-management in RTS games 
(e.g., (Scott, 2002; Perez, 2011; Synnaeve &  Bessière, 
2011)). In micro-management the complex problem of 
playing an RTS game is divided into tasks. These tasks are 
accomplished by specialized components or agents. For 
example, an agent might be in charge of resource gathering 
tasks, another one of combat and so forth. In CLASSQ-L we 
take this idea further by dividing the load between classes.  
 
Researchers have explored combining RL with techniques 
such as case-based reasoning to address the problem of 
replaying in similar scenarios for RTS games (Sharma et al., 
2007). CLASSQ-L focuses on using reinforcement learning 
to play all aspects of an RTS game. 
 
We now discuss some works using reinforcement learning 
in Wargus. 
 
Ponsen et al. (2006) uses a technique called dynamic 
scripting (Spronck, 2006) to control all aspects of Wargus to 
play complete games. An script is a sequence of gaming 
actions specifically targeted towards a game such as in this 
case Wargus. In dynamic scripting these scripts are 
generated automatically based on feedback while playing 
the game. Ponsen et al. (2006) combines reinforcement 
learning and  evolutionary computation techniques to evolve 
scripts. Like our work in CLASSQ-L the state information is 
heavily engineered.  Their work also reports good results 
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versus the SR and KR as in our case but, unlike CLASSQ-L, 
their system couldn’t overcome the land attack. 
 
Rørmark (2009) uses the idea of micro-management 
described before to have specialized experts on a number of 
tasks in Wargus games. Similar to dynamic scripting it uses 
RL to learn strategic-level decisions. 
 
Jaidee et al. (2012) reports on the use of goal-driven 
autonomy in Wargus. Goal-driven autonomy is 
introspective models were an agent examines the effects of 
its own actions to adjust its behavior over time. Jaidee et al. 
(2012) uses reinforcement learning to reason about long-
term goals. Unlike our work, Jaidee et al. (2012) reports 
only combat tasks in Wargus. Combat units are fixed at the 
beginning of the game and building structures are not 
available. 
 
Marthi et al. (2005) uses concurrent ALISP in Wargus 
games. The basic premise of that work is the user specifying 
a high-level LISP program to accomplish Wargus tasks and 
reinforcement learning is used to tune the parameters of the 
program. This work was demonstrated for resource 
gathering tasks in Wargus. 
 
Conclusions 
 
We presented CLASSQ-L  a Q-learning algorithm to play 
complete Wargus games. CLASSQ-L uses a (1) carefully 
engineered state and action space information and (2) learns 
Q-values for classes of units as opposed to single units. The 
latter enables the rapid learning of the units’ effective 
control because each time a unit performs an action, its 
class’ Q-values are updated. 
 
We performed initial experiments on a small map. In these 
experiments CLASSQ-L  is able to beat all opponents most of 
the time. Some of these opponents were difficult to tackle 
for other learning algorithms. In the near future we want to 
test our system in Wargus maps of larger size. 
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