

CLASSQ-L: A Q-Learning Algorithm for
Adversarial Real-Time Strategy Games

Ulit Jaidee, Héctor Muñoz-Avila

1Department of Computer Science & Engineering; Lehigh University; Bethlehem, PA 18015
ulj208@lehigh.edu | munoz@cse.lehigh.edu

Abstract
We present CLASSQ-L (for: class Q-learning) an application
of the Q-learning reinforcement learning algorithm to play
complete Wargus games. Wargus is a real-time strategy game
where players control armies consisting of units of different
classes (e.g., archers, knights). CLASSQ-L uses a single table
for each class of unit so that each unit is controlled and
updates its class’ Q-table. This enables rapid learning as in
Wargus there are many units of the same class. We present
initial results of CLASSQ-L against a variety of opponents.

Introduction
Reinforcement learning (RL) is an unsupervised learning
model in which an agent learns directly by interacting with
its environment. The agent pursues to maximize some signal
from the environment. This signal basically tells the agent
the effects of the action’s it performed (Sutton and Barto,
1998).

One of the challenges of applying RL to real-time strategy
games (RTS) such as Wargus is that these games have large
state and action spaces. Games are played in 2-dimensional
maps. States include information about:

• The number of resources and their (x,y)-

coordinates in a map
• Information about each unit, including its class

(e.g., if the unit is an archer) and its (x,y)-
coordinates.

• Information about each building and its (x,y)-
coordinates

In a given scenario there can be dozens such units and
buildings. The action space of Wargus is also very large.
Units execute commands, depending on their class,
including:

• To construct a building, indicating the class of
building (i.e., barracks) and its (x,y)-coordinate.

• To harvest a resource, indicating the class of
resource (e.g., wood) and its (x,y) coordinate.

• To move to an (x,y)-coordinate
• To attack an enemy unit or structure located in an

(x,y)-coordinate.

Given the large size of the action and state space, it is very
difficult to use RL algorithms to control the full scope of
real-time strategy games. Existing research on using RL for
these kinds of games typically focuses on some aspect of the
game. We will discuss some of this research in the Related
Work section.

We introduce CLASSQ-L, an application of the RL algorithm
Q-learning (Watkins, 1989) that is capable of playing the
full-scope of the Wargus real-time strategy game. We
reduce the size of the state-action space by having a separate
Q-table for each class of unit and building and filtering
useful state and action information that is customized for
each class.

In the next section we provide a quick overview of the Q-
learning algorithm. Then we present the CLASSQ-L
algorithm. Afterwards, we discuss how we model Wargus in
CLASSQ-L. Then we present an empirical evaluation. Next
we discuss related work and in the final section we make
some concluding remarks.

Q-Learning
Q-learning is a frequently use reinforcement learning
technique for two main reasons. First, it doesn’t require
knowing the dynamics of the environment (i.e., probability
distributions over resulting states when actions are taken in
a given state). Second, it can bootstrap (i.e., estimating over
existing estimates) enabling it to learn faster in many
situations.

Artificial Intelligence in Adversarial Real-Time Games: Papers from the 2012 AIIDE Workshop
AAAI Technical Report WS-12-15

8

Conceptually, Q-learning works by learning an action-value
function that gives the expected utility of taking a given
action in a given state. The estimated value of action-value
function of taking action 𝑎 in state 𝑠 at the time 𝑡th is
denoted as 𝑄(𝑠! , 𝑎!). Q-learning is defined by:

𝑄(𝑠! , 𝑎!) ← 𝑄(𝑠! , 𝑎!)
+ 𝛼 𝑟!!! + 𝛾max!𝑄 𝑠!!!, 𝑎 − 𝑄 𝑠! , 𝑎!

Where 𝑟!!! is the reward observed, the parameter 𝛼 controls
the learning rate (0 < 𝛼 ≤ 1), and 𝛾 is a factor discounting
the rewards obtained so far (0 ≤ 𝛾 < 1).
Given learned Q-values, when reaching an state s, Q-
learning algorithms typically select the “greedy” action a.
That is the action a that has the highest Q(s,a) value with a
probability 1 − ∈ and select a random action with a
probability ∈ (with 0 < ∈ < 1). Typically ∈ is set very small
(i.e., close to 0), so that most of the time the greedy action is
selected. This method of choosing between the greedy
action and the random action is called ∈-greedy and it
enables Q-learning to escape local maxima.
After a potentially large number of iterations, Q-values are
learned such that when the greedy action is always chosen
the return at time t is maximized, where the return is defined
as the summation of the rewards obtained after time t and
until the episode ends.

The CLASSQ-L Algorithm
CLASSQ-L is an algorithm that is developed to play
complete Wargus games. In Wargus players compete
against one another by raising and managing armies of
different classes of units. There are various classes of units
in each team and units in each class have different set of
actions. The basic idea CLASSQ-L is to maintain a single
table for all units of the same kind. The motivation for this
is to speed learning by updating the Q-values for every
unit’s action. Here, we include building structures whose
action is to build a certain type of units and peasants which
can construct building structures.

CLASSQ-L(s0, Δ, 𝒬, 𝒞, 𝒜, α , γ, ε) =
1: s←s0; start-episode();
2: while episode continues
3: wait(Δ)
4: 𝕤′ ← GETSTATE()
5: for each class C ∈ 𝒞
6: 𝑠′ ← GETABSTRACTSTATE(𝕤′, C)
7: A ← GETVALIDACTIONS(𝒜! , 𝑠′)
8: Q ← 𝒬(C)
9: for each unit c ∈ C

10: if unit c is idle
11: if RANDOM(1) ≥ ε
12: a ← ARGMAXa′∈A(Q(s′, a′))
13: else
14: a ← RANDOM(A)

15: EXECUTEACTION(a)
16: 𝐿! ← concat(𝐿!, <sc, ac, s′>)
17: sc ← s′; ac ← a

END-WHILE
//After the game is over, update the q-tables

18: r ← GETREWARD
19: for each class C ∈ 𝒞
20: Q ← 𝒬(C)
21: for each unit c ∈ C
22: for each <s, a, 𝑠′> ∈ 𝐿!
23: Q(s, a) ← Q(s, a) + α [r +

 γ ARGMAXa′ (Q(s′, a′) − Q(s, a)]
24: return 𝒬

CLASSQ-L receives as inputs the starting state s0, a waiting
time Δ, the collection of Q-values for each individual
classes 𝒬, the set of all classes 𝒞, the set of all possible
action 𝒜, the step-size parameter α the discount-rate
parameters γ from Q-learning, and the parameter ε for the ε-
greedy selection of action.

CLASSQ-L works in two phases. In the first phase we use the
Q-values learned in previous episodes to control the AI
while playing the game. In the second phase we update the
Q-values from the sequence of (s,a,s’) triples that occurred
in the episode that just ended.

CLASSQ-L initializes s to the initial state s0 and starts the
episode (Line 1). During an episode (Line 2), CLASSQ-L
periodically waits (Line 3) and then observes the current
state 𝕤! (Line 4). For each class C in the set of classes 𝒞
(Line 5), create the current state 𝑠′ for the class C by
customizing the observed state 𝕤! (Line 6). The reason why
we have to do this is because different classes need different
kinds of information. The size of the observe state 𝕤! is very
large and contains various kinds of information. Each class
require some of the information uniquely. We will detail
the kind of information extracted in the next section.
The next step is to create the set of valid actions A of class C
under current situation (Line 7). We should not use 𝒜! (the
set of possible actions of class C) directly because some of
the actions might not be applicable in the current state. For
example, peasants can build farms. However, without
enough resources, Wargus will ignore this command.
Therefore, Line 7 prunes invalid actions. Any action
randomly chosen from this set of actions is guaranteed to be
a valid action. Next, retrieve the Q-table of class C from the
collection of Q-tables 𝒬 (Line 8).
For each unit c of class C, if the unit c is idle, CLASSQ-L
retrieves an action a from the Q-table using ε-greedy
exploration (Line 9-14). Notice that the algorithm choose an
action a from the set of valid actions A, not from the set of
possible actions 𝒜! . Then, execute the action a (Line 15).

9

Because this is offline learning method, Line 16 saves the
set of sc (the previous state s of unit c), ac (the previous
action a of unit c) and the current state s′ for the Q-learning
updates in the second phase. We wait until the end of the
game to update the Q-values because we have found
experimentally to be more effective to use the outcome at
the end of the game. This is why we have to save the list of
state-action to perform the off-line update later. Line 17
updates the previous state sc and the previous action ac.
In the second phase, after calculating the reward r (Line 18),
we use the Q-learning update on all the members in the list
Lc of each individual unit c to update Q-values of each class
C (Line 19-23). Finally, returns the Q-values (Line 24).

Modeling Wargus in CLASSQ-L
We modeled the following 12 classes in CLASSQ-L:

1. Town Hall / Keep / Castle
2. Black Smith
3. Lumber Mill
4. Church
5. Barrack
6. Knight / Paladin
7. Footman
8. Elven Archer/ Elven Ranger
9. Ballista
10. Gryphon Rider
11. Gryphon Aviary
12. Peasant-Builder

Because the behaviors of peasants when they act as builders
or harvesters are so different, we separate them in two
different subsets. There is only one peasant who is the
builder. The rest are all harvesters for either gold or wood
and, in some situations, the peasants in this group also act as
repairers.

There is no stable class in the list above because stable has
no action, so the Q-table is not needed by the stable class.
The peasant-harvester class also do not have its own Q-
table. We create simple algorithm for job assignment to
harvesters to maintain the ratio of gold to wood about 2:1.
There are a few other missing classes such as Mages
because they don’t seem to work well when controlled by
using Wargus commands.

In Wargus, the sets of actions of each class are exclusive.
So, we can make the state space of Q-table smaller by
having individual Q-table of each class of unit. All Q-
values are zero initialized.

4.1 State Representation

Each unit type has different state representation. To reduce
the number of states, we genralize levels for features that
have too many values. For example, the amount of gold can

be any value greater than zero. In our representation we
have 18 levels for gold. Level 1 means 0 gold whereas level
18 means more than 4000 gold. We used the term “level
number” for such generalizations. Here are the features of
the state representations for each class:

• Peasant-Builder: level number of gold, level number of

wood, level number of food, number of barracks, lumber
mill built?,1 blacksmith built?, church built?, Gryphon
built?, path to a gold mine?, town hall built?

• Footman, knight, paladin, archer, ballista and Gryphon
rider: level number of our footmen, level number of
enemy footmen, number of enemy town halls, level
number of enemy peasant, level number of enemy
attackable units that are stronger than our footmen, level
number of enemy attackable units that are weaker than
our footmen

• Town hall: level number of food, level number of
peasants

• Barrack: level number of gold, level number of food,
level number of footman, level number of footmen, level
number of archers, level number of ballista, level number
of knights/paladins

• Gryphon Aviary: level number of gold, level number of
food, level number of Gryphon Rider

• Black Smith, Lumber Mill and Church: level number of
gold, level number of wood

For peasants who are harvesters, we do not use any learning
to choose the actions they take. Instead, we simply balance
between the amount of gold and the amount of wood about
two units of gold per one unit of wood. Another work of
harvesters is to repair damage structures if there are some
that need repairs.

4.2 Actions

Our model abstracts actions from units so that they are at
higher-level than actual actions the units can take. The
actual actions of units include moving to some location,
attacking another unit or building, patrolling between two
locations, and standing ground in one location. However,
using the actual actions would lead to an explosion in the
size of the Q-tables.

The list below is the list of all possible actions for each
class.
	
• Peasant-Builder: build a farm, build a barrack, build a

town hall, build a lumber mill, build a black smith, build a
stable, build a church, and build a Gryphon aviary.

• Town Hall/Keep/Castle: train a peasant, Upgrade itself to
keep/castle

• Black Smith: upgrade sword level 1, upgrade sword level
2, upgrade human shield level 1, upgrade human shield
level 2, upgrade ballista level 1, upgrade ballista level 2

1 The question mark signals that this is a binary feature

10

• Lumber Mill: upgrade arrow level 1, upgrade arrow level
2, Elven ranger training, ranger scouting, research
longbow, ranger marksmanship

• Church: upgrades knights to paladins, research healing,
research exorcism

• Barrack: Doing nothing, train a footman, train an Elven
archer/ranger,
train a knight/paladin, train a ballista

• Gryphon Aviary: Doing nothing, Train a Gryphon rider
• Footman, Archer, Ranger, Knight, Paladin, Ballista,

Gryphon Rider: wait for attack, attack the enemy’s town
hall/great hall, attack all enemy’s peasants, attack all
enemy’s units that are near to our camp, attack all
enemy’s units that have their range of attacking equal to
one, and attack all enemy’s units that have their range of
attacking more than one, attack all enemy’s land units,
attack all enemy’s air units, attack all enemy’s units that
are weaker (the enemy’s units that have HP less than
those of us), and attack all enemy’s units (no matter what
kind)

Empirical Evaluation

We conducted initial experiments for CLASSQ-L on a small
Wargus map.

5.1 Experimental Setup

At the first turn of each game, both teams start with only
one peasant/peon, one town hall/great hall, and a gold mine
near them. We have five adversaries: land-attack, SR, KR,
SC1 and SC2 for training and testing our algorithm. These
adversaries come with the Warcraft distribution and have
been used in machine learning experiments before (see
Related Work section).

Figure 1: The screen capture of the small map from Wargus
game.

These adversaries can construct any type of unit unless
the strategy followed discards it (e.g., land-attack will only
construct land units. So units such as gryphons are not
built):

• Land-Attack: This strategy tries to balance between
offensive/defensive actions and research. It builds only
land units.

• Soldier’s Rush (SR): This attempts to overwhelm the
opponent with cheap military units in an early state of the
game.

• Knight’s Rush (KR): This attempts to quickly advance
technologically, launching large offences as soon as
knights are available. Knoghts is the strongest unit in the
game

• Student Scripts (SC1 & SC2): These strategies are the top
two competitors created by students for the tournament in
a classroom.

We trained and tested CLASSQ-L by using leave-one-out-
training as the model of our experiment processes. We
remove from the training set the adversary that we want to
compete against. For example, if we want to experiment
CLASSQ-L versus SC1, the set of adversaries that we use for
training is {land-attack, SR, KR, SC2}.

All experiments were performed on the 32 x 32 tile map
shown in Figure 1. This is considered an small map in
Wargus. Each competitor starts in one side of the forest
that divides the map into two parts. We added this forest to
give time to opponents to build their armies. Otherwise,
CLASSQ-L was learning a very efficient soldier rush and
defeating all opponents including SR very early in the game.

5.2 Results

Our performance metric is: (number of wins – number of
loses) with m training rounds. First we match CLASSQ-L
against each opponent with no training (m = 0). Then we
play against each opponent after one round of training using
leave-one-out training (m = 1). We repeat this until m = 20.
We repeat each match 10 times and compute the average
metric. So the total number of games played in this
experiment is 21*10 = 210 games. Including training, the
total number of games run in this experiment is 210 * 3 =
630 games.

Our performance metric provides a better metric than the
difference in Wargus score (our score – opponent’s score) of
the game because the lower score difference can mean a
better performance than a larger score difference. This is
due to how the Wargus score is computed. For example, our
team can win the opponent very fast and the score we got is
just 1735 and the game is over while the opponent got the
score of 235 before the game end. In this case, the average
score of (our team - opponent team) is just 1500. In another
case, our team can win the opponent with the score of 3450,
but the game takes very long time to run until the game is
over; while the opponent team got the score of 1250. In this
case, the average score of (our team – opponent team) is
2200, but it does not mean the performance is better. In fact,

11

the performance should be worse than the previous case
because it takes longer time to win.

Overall the performance of ClassQ-L is better than that of the
adversaries. The x-axis shows the results after x number of
iterations training in the leave-one-out setting. The first bar
is x = 0 and the last bar is x = 20.

(a)

(b)

(c)

(d)

(e)

Figure 2: The results of the experiments from Wargus
game: (a) ClassQ-L vs. Land-Attack, (b) ClassQ-L vs. SR, (c)
ClassQ-L vs. KR, (d) ClassQ-L vs. SC1 and (e) ClassQ-L vs.
SC2.

Related Work
Wargus is an open source game that was built by reverse
engineering the commercial game Warcraft 2. Wargus has
been used frequently as a testbed for research purposes
because it is an accurate model of real time strategy games
including elements defining the genre such as research trees,
players taking action in real-time, players controlling
different kinds of units, gathering resources, and
constructing building structures to create new units or to
upgrade existing units (Mehta et al., 2009).

Our work is related to micro-management in RTS games
(e.g., (Scott, 2002; Perez, 2011; Synnaeve & Bessière,
2011)). In micro-management the complex problem of
playing an RTS game is divided into tasks. These tasks are
accomplished by specialized components or agents. For
example, an agent might be in charge of resource gathering
tasks, another one of combat and so forth. In CLASSQ-L we
take this idea further by dividing the load between classes.

Researchers have explored combining RL with techniques
such as case-based reasoning to address the problem of
replaying in similar scenarios for RTS games (Sharma et al.,
2007). CLASSQ-L focuses on using reinforcement learning
to play all aspects of an RTS game.

We now discuss some works using reinforcement learning
in Wargus.

Ponsen et al. (2006) uses a technique called dynamic
scripting (Spronck, 2006) to control all aspects of Wargus to
play complete games. An script is a sequence of gaming
actions specifically targeted towards a game such as in this
case Wargus. In dynamic scripting these scripts are
generated automatically based on feedback while playing
the game. Ponsen et al. (2006) combines reinforcement
learning and evolutionary computation techniques to evolve
scripts. Like our work in CLASSQ-L the state information is
heavily engineered. Their work also reports good results

-‐4

-‐2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-‐L vs	 land-‐attack
Number	 of	 (winings	 -‐	 losings)

-‐6

-‐4

-‐2

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-‐L vs	 SR
Number	 of	 (winings	 -‐	 losings)

-‐4

-‐2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-‐L vs	 KR
number	 of	 (winings	 -‐	 losings)

-‐6

-‐4

-‐2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-‐L vs	 SC1
number	 of	 (winings	 -‐	 losings)

-‐10

-‐8

-‐6

-‐4

-‐2

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-‐L vs	 SC2

Number	 of	 (winings	 -‐	 losings)

12

versus the SR and KR as in our case but, unlike CLASSQ-L,
their system couldn’t overcome the land attack.

Rørmark (2009) uses the idea of micro-management
described before to have specialized experts on a number of
tasks in Wargus games. Similar to dynamic scripting it uses
RL to learn strategic-level decisions.

Jaidee et al. (2012) reports on the use of goal-driven
autonomy in Wargus. Goal-driven autonomy is
introspective models were an agent examines the effects of
its own actions to adjust its behavior over time. Jaidee et al.
(2012) uses reinforcement learning to reason about long-
term goals. Unlike our work, Jaidee et al. (2012) reports
only combat tasks in Wargus. Combat units are fixed at the
beginning of the game and building structures are not
available.

Marthi et al. (2005) uses concurrent ALISP in Wargus
games. The basic premise of that work is the user specifying
a high-level LISP program to accomplish Wargus tasks and
reinforcement learning is used to tune the parameters of the
program. This work was demonstrated for resource
gathering tasks in Wargus.

Conclusions

We presented CLASSQ-L a Q-learning algorithm to play
complete Wargus games. CLASSQ-L uses a (1) carefully
engineered state and action space information and (2) learns
Q-values for classes of units as opposed to single units. The
latter enables the rapid learning of the units’ effective
control because each time a unit performs an action, its
class’ Q-values are updated.

We performed initial experiments on a small map. In these
experiments CLASSQ-L is able to beat all opponents most of
the time. Some of these opponents were difficult to tackle
for other learning algorithms. In the near future we want to
test our system in Wargus maps of larger size.

Acknowledgements
This work was supported in part by the National Science
Foundation grant 0642882 and the Naval Research
Laboratory.

References

Jaidee, U., Munoz-Avila, H., Aha, D.W. (2012) Learning and
Reusing Goal-Specific Policies for Goal-Driven Autonomy.
Proceedings of the 20th International Conference on Case Based
Reasoning (ICCBR 2012). Springer.
Marthi, B., Russell, S., Latham, D., and Guestrin, C. (2005)
Concurrent hierarchical reinforcement learning. In Proceedings of

the 20th national conference on Artificial intelligence (AAAI-05),
AAAI Press 1652-1653.
Mehta, M. and Ontañón, S. and Ram, A (2009) Using Meta-
Reasoning to Improve the Performance of Case-Based Planning,
in International Conference on Case-Based Reasoning (ICCBR
2009), LNAI 5650, pp 210 – 224
Perez, A. U. (2011) Multi-Reactive Planning for Real-Time
Strategy Games. MS Thesis. Universitat Autònoma de Barcelona.
Ponsen, M., Munoz-Avila, H., Spronk, P., Aha, D. (2006)
Automatically generating game tactics with evolutionary learning.
AI Magazine. AAAI Press.
Rørmark, R. (2009) Thanatos - A learning RTS game AI. MS
Thesis, University of Oslo.
Scott, B. (2002) Architecting an RTS AI. AI game Programming
Wisdom. Charles River Media.
Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C., and
Ram, A (2007) Transfer learning in real-time strategy games using
hybrid CBR/RL. In Proceedings of the 20th international joint
conference on Artifical intelligence (IJCAI-07). Morgan
Kaufmann Publishers Inc.
Spronck, P. (2006). Dynamic Scripting. AI Game Programming
Wisdom 3 (ed. Steve Rabin), pp. 661-675. Charles River Media,
Hingham, MA.
Sutton, R.S., & Barto, A.G. (1998). Reinforcement learning: An
introduction. MIT Press, Cambridge, MA.
Synnaeve, G., Bessière, P. (2011) A Bayesian Model for RTS
Units Control applied to StarCraft. CIG (IEEE).
Watkins, C.J.C.H., (1989), Learning from Delayed Rewards. Ph.D.
thesis, Cambridge University

13

