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Abstract

In this paper, we survey techniques used in intelligent tutoring
systems (ITSs) to model student knowledge. The three tech-
niques that we review in detail are knowledge tracing, per-
formance factor analysis, and matrix factorization. We also
briefly cover other techniques that have been used. This re-
view is meant to be a repository of knowledge for those who
want to integrate these techniques into serious games. It is
also meant to increase awareness and interest as to the tech-
niques available that can be integrated into serious games.

Introduction
The ability to model players can be a great aid to a seri-
ous game designer. Being able to determine what the player
knows or how they are feeling can be used to greatly improve
the learning experience of that player during gameplay. To
do this, however, researchers must be able to create models
of player behavior, or player models. In this paper, we are
defining player model to mean a descriptive computational
model that captures some aspect of player knowledge or be-
havior.

Similar issues arise when looking at intelligent tutoring
systems (ITSs). An ITS must maintain a model of current
student knowledge that is updated whenever the student an-
swers a question or completes a task. As a result, there is a
wealth of information on student modeling and knowledge
modeling techniques with respect to ITSs. The goal of this
paper is to encourage the exploration of student modeling
techniques present in ITSs for use in serious games. To en-
courage this exploration, this paper presents a brief survey of
student modeling techniques used in ITSs as well as exam-
ples of these systems in practice. The techniques that we will
explore in detail are knowledge tracing, performance factor
analysis, and matrix factorization.

Knowledge Tracing
The most commonly used technique for student modeling is
knowledge tracing. Knowledge tracing involves monitoring
a student’s peformance on various questions and then uses
their performance on these questions to update a model that
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Figure 1: A DBN representing student knowledge over time.
Boxes with dashed outlines indicate hidden nodes in the
graph while boxes with solid outlines represent observable
nodes in the graph.

describes their mastery of the skills, or knowledge concepts
(KCs), required to answer the questions.

Formulation
The original knowledge tracing technique (Corbett and An-
derson 1994) used a simple dynamic Bayesian network
(DBN). An example of a DBN can be seen in Figure 1. A
DBN is a graphical model used to represent sequential data.
There are two types of nodes in a DBN: hidden nodes and
observable nodes. As the name implies, hidden nodes repre-
sent some information that is unknown whereas observable
nodes represent information that can be seen. In knowledge
tracing, the student’s knowledge state is represented as a hid-
den node with two possible values, learned or unlearned.
The observable nodes of this model are the student’s perfor-
mance on a given item. At every time step, which in this case
would be every time the student answers a question, the stu-
dent’s knowledge state is either learned or unlearned with a
certain probability. These probabilities are calculated using
the following formula:

p(Ln) = p(Ln−1|e) + (1− p(Ln−1|e)) ∗ p(T ) (1)

In the above equation, p(Ln) is the probability that the
student is in the learned state at time n, e is the current set
of evidence (whether or not the question was correctly an-
swered), and p(T ) is the probability of transitioning from
the unlearned state to the learned state. As you can see in the
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equation, the probability that a student is in a learned state
at a given time is the sum of two separate probabilities. The
first of these is the probability that the student was in the
learned state in the previous time step given that student’s
evidence. The second probability used is the probability that
the student transitioned into the learned state if he was not
in the learned state during the last time step. It is important
to note that this model implies that a student can not forget
once they have entered the learned state. In other words, it is
not possible to transition from the learned state back to the
unlearned state at any time.

Using equation 1, it is possible to make predictions about
a student’s performance on future questions. At each step,
the probability that a student will answer a question correctly
can be calculated using the following equation:

p(Ci,s) = p(Lr,s)∗(1−p(Sr))+(1−p(Lr,s))∗p(Gr) (2)

Here, p(Ci,s) is the probability that a student, s, answers
question i correctly. In the second half of the equation,
p(Lr,s) is the probability that the student, s, is in the learned
state for the rule r that is needed to solve question i, p(Sr) is
the probability that a student will slip (answer incorrectly on
an already known topic), and p(Gr) is the probability that a
student will guess correctly on a topic that is unknown. So,
the probability that a student will answer correctly is also the
sum of two probabilities. The first of these is the probability
that the student has learned the topic times the probability
that they do not slip. The second of these is the probability
that the student has not learned the topic times the probabil-
ity that the student has correctly guessed the answer. In this
model, there are four parameters which must be fit: the guess
parameter p(Gr), the slip parameter p(Sr), the initial proba-
bility of knowing a skill p(L0), and the transition probability
p(T ).

Extensions and Examples
One problem that was soon discovered with the knowledge
tracing model was that it consistently overestimated student
performance. Corbett and Bhatnagar (1997) show that the
standard knowledge tracing model will, on average, over-
estimate student performance by 8%. They claim that stu-
dents are learning suboptimal rules that do not transfer from
the tutoring system to the test. Corbett and Bhatnagar ac-
count for this behavior by adding a third state to this model.
The new states of student knowledge are: unlearned, learned
incorrectly, and learned correctly. To actually make predic-
tions, Corbett and Bhatnagar included an additive term that
is proportional to how well the student is able to acquire
ideal rules. They showed that this extension to the frame-
work essentially eliminated the overestimation that they had
been seeing.

Another issue with the simple model presented above is
that it requires that there only be one KC associated with
each task. Therefore, observing student performance on a
given task only updates the probability of a single KC being
in the learned state. Conati et al. (2002) relax this restric-
tion with the student model in the Andes system (Vanlehn et
al. 2005). In other words, one task can have more than one
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Figure 2: A DBN showing the initial student knowledge
node added in. In the model put forth by Pardos and Hef-
fernan, there would be an initial knowledge node for each
student that could be modeled.

parent node in the Bayesian network. In this system, credit
assignment is done to determine which KC is most likely to
have contributed to the performance of the student. This is
achieved by examining rule prior probabilities. If the prior
probability of one concept is much higher than the other,
then it will receive most of the credit for the solution through
Bayesian update rules.

This model also suffers from the identifiability prob-
lem (Beck 2007). This occurs when the same training data
can be fit equally well by different parameter values. This
can have very noticeable effects on the generalizability of
the model. Beck (2007) offers a solution using Dirichlet pri-
ors to guide parameter values towards their means in order
to raise the probability that these parameters all converge to
the same maximum.

Baker et al. (2008) claim that this introduces a new prob-
lem: model degeneracy. Model degeneracy occurs when pa-
rameter values cause the model to violate its conceptual
foundations (such as students being more likely to answer
correctly if they do not know a skill). Baker et al. address
these issues by adding contextualized estimations of the
guess and slip parameters. Recall that in the original model
these parameters remained constant across all observations.
In this model, they examine logs of student performances
and determine whether each response was a slip or a guess
by examining that student’s future performance. They then
construct models through machine learning that will extract
rules about when a guess or a slip is likely to occur. They
show that this method produces models that are less vulnera-
ble to model degeneracy while being comparable to previous
approaches in addressing the identifiability problem.

Pardos and Heffernan (2010) introduce a prior probabil-
ity over student knowledge in order to add individualization
to the model. This way, the model will be able to take into
account individual differences between students. This was
done by adding in student prior knowledge as the first node
in the network. An example of this network can be seen in
Figure 2. They showed that the best way to initialize this pa-
rameter was to use the student’s average performance on all
observed questions except for the one being predicted and
then let this value be updated during parameter fitting.

Recently, the knowledge tracing model was applied to the
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interactive narrative-based learning environment Crystal Is-
land. To accomplish this, Rowe and Lester (2010) had to
identify which in-game behaviors were most indicative of
student knowledge and construct the DBN using this knowl-
edge. They showed that using this technique to model stu-
dent knowledge in a serious game had promise as it per-
formed better than a random baseline classifier for several
knowledge thresholds.

Possible Applications to Serious Games
For use in serious games, knowledge tracing would need to
be applied to a game in which the tasks that the player were
asked to complete had one knowledge concept that deter-
mined whether the player could complete it or not. Consider
a puzzle that can only be solved by applying a certain KC.
In this example, knowledge tracing could be used to predict
that player’s performance on this task, which can then be
used to scale the difficulty so that it is appropriate for the
current player.

Performance Factor Analysis
Originally introduced as an alternative to knowledge tracing,
performance factor analysis (PFA) addresses some of the
problems that are present in the knowledge tracing model.
The main problem that PFA addresses is that of a task re-
quiring multiple KCs to complete. Since PFA involves a sum
over all contributing KCs, it is able to handle multiple KCs
contributing to student performance.

Formulation
PFA (Pavlik, Cen, and Koedinger 2009) is based on a tech-
nique for educational data mining known as learning factors
analysis (LFA) (Cen, Koedinger, and Junker 2006). In order
to better understand PFA, we will first provide an overview
of LFA.

The LFA model decomposes learning into three factors
that describe different aspects of learning and KCs: the stu-
dent’s ability, the KC’s easiness, and the KC’s learning rate.
Formally, the LFA model is given by the equation below

m(s, j ∈ KCs, n) = αs +
∑

j∈KCs

(βj + γjns,j) (3)

The formula m represents the accumulated learning for a
student s using a KC j. In the above equation, α is used to
encode student ability, β is used to represent the easiness
of a KC, and ns,j is used to determine the weight of prior
observations since γ is added for each observation. In order
to convert thesem values into predictions of probability, one
must use the following equation:

p(m) =
1

1 + e−m
(4)

For each task that will be presented to the student, the
KCs associated with that question are stored in a Q-matrix.
This is used to determine the KCs that best describe each
task based on observed data.

The main issue with LFA is that it does not take into ac-
count student performance beyond the frequency of prior ob-
servations. In order to account for this, Pavlik et al. (2009)
extended the LFA model to be appropriate for predicting stu-
dent performance. They did this by, first, eliminating the α
parameter since student ability is typically not known be-
forehand in an ITS. They also replace the n variable with
two parameters, c and f , which track the student’s correct
responses and incorrect responses respectively. These two
variables are scaled by the variables γ and ρ. The resulting
equation is given by

m(s, j ∈ KCs, c, f) =
∑

j∈KCs

(βj + γjcs,j + ρjfs,j) (5)

Equation 4 is still used to convert these m values into
probability predictions. In this model, there are parameters
that are fit using logistic regression to create a model that
best explains the training data. These parameters are β, γ, α,
and/or ρ.

Extensions and Examples
One of the main issues with the PFA model is that, while
it does take past successes and failures into account, it does
not take into account the order that these successes and fail-
ures occurred in. Gong et al. (2011) extended this framework
to include a decay factor which would decrease the effect
that older questions had on current student knowledge. They
showed that this version of PFA had a higher prediction ac-
curacy than the original framework by a significant margin.

Another issue with the framework as it was originally for-
mulated is that it assumes that the context in which a KC
is learned has no effect on whether or not the concept is
learned. In other words, mastery of two different tasks that
consist of the same two KCs will result in the same amount
of perceived learning for these two KCs. Pavlik et al. (2011)
propose a new way of constructing the Q-matrix to help de-
termine which KCs are most likely to be learned at a given
time. In the original formulation, KCs control an entire col-
umn of the Q-matrix and so when they are fit, they are fit
for all tasks. In the proposed method, each cell of the Q-
matrix is fit. As a result of this, KC associations are found
for specific tasks rather than finding KC associations across
all tasks. Pavlik et al. tested this method on a least common
multiples (LCM) skills dataset and compared the Q-matrix
produced by their method against the Q-matrix produced by
PFA. Pavlik et al. found that PFA did not associate any KCs
to tasks in the dataset whereas their method found several
associations.

Chi et al. (2011) explored adding in support for other
types of instructional intervention into the PFA model. Their
model, which they have named the instructional factors anal-
ysis model (IFM), also receives input about what they call
tell actions. In the ITS that they study, a tell action is an
instructional intervention where the system tells the student
what steps to take next. Previous iterations of PFA do not
take these actions into account since they do not have an im-
mediately observable effect on the student. To account for
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this, Chi et al. add in a variable to account for the num-
ber of tell actions that the student has previously received
on a given KC to equation 5. They showed that IFM out-
performed the standard implementation of PFA on data col-
lected by a natural language physics tutor named Cordillera.

Possible Applications to Serious Games
PFA can be used in serious games in which many concepts
may be necessary in order to complete a task. Using some
of the methods mentioned above, a player’s mastery of these
individual concepts can be gleaned and then additional in-
struction/guidance can be done. Also, these concepts can be
used to determine which concepts need to be improved upon
so that the player can overcome certain challenges.

Matrix Factorization
Recently, matrix factorization has been used to predict stu-
dent performance in tutoring systems. Matrix factorization
is a technique that was originally used in recommender sys-
tems. The goal of a recommender system is to either rec-
ommend new items to a user based on that user’s history, or
to predict how a user will rate an item based on how they
rated items in the past. Using this, Thai-Nghe et al. (2011a)
claimed that the problem of predicting student performance
is similar, computationally speaking, to that of predicting
user ratings. With this in mind, they converted the matrix
factorization algorithm into a form that makes it fit for pre-
dicting student performance.

Formulation
Matrix factorization is the task of approximating a matrix
X as the product of two smaller matrices W and H . Here,
W ∈ RU×K is a matrix containing the latent factors that
describe each student and H ∈ RI×K is a matrix containing
the latent factors that describe each task. In this framework,
the performance of student u one task i is predicted using
the following equation:

p̂ui =
K∑

k=1

wukhik = (WHT ) (6)

To use this equation, however, we must find optimal val-
ues for the elements of the matrices W and H . These values
are typically found using gradient descent in order to mini-
mize some error function. An example of this technique will
be done with the aid of Figure 3. Let’s assume that the ma-
tricesW andH seen in Figure 3 were obtained after training
for K = 2 latent factors. If we wanted to predict the perfor-
mance of Student 2 on Task 2 (which are shown in bold and
italics in the figure), we would simply do the following:
p̂ui = (WHT ) = 0.11 ∗ 0.94 + 0.32 ∗ 0.63 = 0.305 In

this example, the student’s predicted performance is 0.305.
Since performance is typically reported a 0 if the student in-
correctly answers a question and a 1 if the student correctly
answers a question, we can conclude that it is unlikely that
the student will correctly answer the question.

As it is, this model does not take into account student bias,
the ability of the student, or the task bias, the difficulty of the

task. To incorporate these into this model, three new vari-
ables are introduced: the global average performance µ, the
student bias bu, and the task bias bi. The new equation for
prediction becomes

p̂ui = µ+ bu + bi +
K∑

k=1

wukhik (7)

In the above equation, bu is the average amount that the
performance of student u deviates from µ and bi is the av-
erage amount that the performance of task i deviates from
µ. When training this model, these values are updated using
the predictions made from the current values of W and H .

Now the only thing the model lacks is a way to describe
time. To do this, Thai-Nghe et al. (2011) used a technique
called tensor factorization. Tensor factorization is a general-
ized form of matrix factorization. Specifically, a new matrix
Q is introduced which describes the context of a task (the
time). After adding this extra component to the model, the
equation for prediction becomes

p̂ui = µ+ bu + bi + (

K∑
k=1

wkhkφk) (8)

φk =

∑T
t=(T−Tmax+1) qk(t)

Tmax
(9)

In the above equations, q is a vector containing the K la-
tent factors that affect time, and φ is the average value of qk
looking Tmax steps into the past. In other words, this model
will use the average performance over the last Tmax tasks
to predict the student’s performance on the current task. It
is interesting to note that this model does not have explicit
parameters that account for guess and slip actions. This is
because they are assumed to be accounted for as latent fac-
tors that describe the student and the tasks they perform.

Extensions and Examples
An issue with matrix factorization that was pointed out by
Thai-Nghe et al. (2011b) is that it only considers the re-
lationship between the student and tasks/skills. They point
out that there are several other relationships that could be
considered in an ITS, such as the relationship between tasks
and the skills they require. To address this, they extend the
matrix factorization method by using multi-relational ma-
trix factorization (MRMF) (Lippert et al. 2008). MRMF is a
generalization of matrix factorization in which multiple re-
lationships and entities (such as students or tasks) can be
used. Thai-Nghe et al. evaluated this method on the KDD
cup 2010 educational data mining dataset for algebra and
bridge to algebra1. They showed that using MRMF results
in an overall lower root mean squared error than both normal
matrix factorization as well as knowledge tracing.

Recently, Zook et al. (2012) used tensor factorization to
create models of player expertise in a skill-based mission
game. In this work, they described missions in terms of what

1http://www.sigkdd.org/kddcup/index.php?section=2010&me
thod=data
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Figure 3: An example of using matrix factorization for student performance prediction.

skills are necessary to complete them. Using tensor factor-
ization, Zook et al. were able to predict how player perfor-
mance would change over time. They hypothesized that they
can use this predicted player performance to customize the
missions that a player would experience. What is interesting
about this is that they could customize missions in order to
produce a desired performance curve. This is also an exam-
ple of a student model from an ITS being used outside of the
ITS field. In this case, it has been applied to a game meant
solely for entertainment.

Possible Applications to Serious Games

The main benefit of matrix factorization is that the knowl-
edge concepts that are related to a task do not need to be ex-
plicitly known. This, however, is also its greatest weakness.
If it is used to predict performance in a serious game, it will
be difficult to determine why a player performed poorly or
why they performed well. One possible application of ma-
trix factorization to serious games is to use it to sequence
tasks such that the player gets a mixture of tasks that they
are skilled at and tasks that they are not skilled at.

Choosing Between Methods

As we have shown, each of these three methods have distinc-
tive strengths and weaknesses; however, it may not be clear
when one technique should be used over another. The eas-
iest way to determine this is to examine how KCs relate to
ITS questions (or tasks). If each question/task has only one
required KC, then knowledge tracing is the strongest tech-
nique to use. If multiple KCs are required to perform tasks,
then PFA is the most suitable technique. While techniques
exist that allow knowledge tracing to handle tasks that rely
on multiple KCs (such as the techniques used in the An-
des system), it has been shown (Gong, Beck, and Heffernan
2010) that PFA will still outperform knowledge tracing on
these tasks.

While knowledge tracing and PFA are ideal when the ex-
act KCs are known beforehand, it is not always guaranteed
that this knowledge will be available. When this is the case,
matrix factorization is ideal since one does not need to know
the exact KCs that influence student performance. Matrix
factorization only requires that the number of latent factors
be provided.

Other Methods
Due to length constraints, it is not possible to go into great
detail about all of the significant student modeling tech-
niques that exist in ITSs. In this section, we will provide
a brief overview of other techniques and example systems
that do not fit into the categories that we have outlined in the
above sections.

In 1999, Zhou and Evens proposed a simple student
model in which student answers are classified based on their
correctness. The system then uses a planner along with the
answer classification to determine the type of instructional
intervention to execute next. Examples of interventions in-
clude giving the student a hint about the correct answer or
giving the student related questions.

Stathacopoulou et al. (1999) proposed a neuro-fuzzy
model which operates in four stages. The first stage involves
fuzzifying numerical data that contributes to the evaluation
of certain characteristics into one of three categories: small
medium or large. The second stage involves converting these
measurements into student characteristics such as learning
speed. The third stage involves using a neural network to
calculate the final fuzzy sets of student characteristics. The
last stage involves using a backpropagation network to cre-
ate nonfuzzy assessment of student characteristics.

There has been an increasing amount of research done in
applying ensemble methods to student modeling. In machine
learning, an ensemble method is a way to combine the out-
put of many different models in order to improve prediction
accuracy on a problem. Baker et al. (2011) used an ensem-
ble of several popular student modeling techniques (such
as knowledge tracing and PFA) created using linear regres-
sion to predict student performance on a genetics dataset.
They found that ensembling these techniques did not pro-
vide any significant gains over using the base classifiers by
themselves. It is important to note that they hypothesize that
the reason that ensembling did not perform well is because
the base models were, overall, too similar to each other.

Pardos et al. (2012) hypothesize that the reason for the
poor performance, however, was dataset size. In their eval-
uation, they used a dataset from the ASSISTments plat-
form (Razzaq et al. 2007) which contains 15 times the re-
sponses of the genetics dataset used by Baker et al. They
tested several different ensembling techniques with this
dataset and found that the best performing ensemble per-
formed 10% better than the best performing individual stu-
dent model.
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Conclusion
In this paper, we have reviewed several techniques used in
ITSs to model student knowledge with the hope that this
will create an interest in transferring these models to serious
games. We have also given examples of when these mod-
els have been used outside of ITSs in an effort to show that
such a transfer is possible. This paper is meant to create dis-
cussion about modeling techniques that exist in other fields
(ITSs in particular) and how they might be applied to the
problems that researchers in serious games face today.
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