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Abstract 
The systems with which humans interact are becoming 
increasingly complex; there is a corresponding need for 
such systems to anticipate and understand human action. 
Current approaches to develop this ability do not robustly 
represent human users to the systems with which they are 
interacting. Fusing neurocognitive models with existing 
approaches may provide an effective way to capture and 
represent neural action in a way that behaviors can be 
predicted and shared with the systems that humans are 
operating.  

 Introduction   
Traditional approaches to creating effective couplings 
between humans and the systems they use are often based 
on artificial intelligence or machine learning techniques 
that focus on detecting statistical or probabilistic 
regularities in data (Cooley, 2007) or on cognitive 
architectures that are based on computer processing 
metaphors. 
 Because these approaches are not grounded in the core 
processes that drive human action, the resultant outputs – 
predictions of behavior, estimates of errors and the like – 
do not provide a robust basis for representing human users 
to the systems with which they are interacting. 
Consequently, the responses that these systems provide are 
oftentimes inappropriate or insufficient to the current task 
demands. This state of affairs is a direct result of the levels 
of technology available to understand and represent the 
processes through which the human brain transforms 
information into action.   In the past, when one wished to 
create effective human system collaborations, one was 
forced to do so either by building predictive models based 
on human behaviors or by developing symbolic 
representations of the unseen and uncharacterized 
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cognitive processes leading to those behaviors. Notably, 
the link between brain, cognition and behavior cannot be 
captured through these techniques. 
 A more effective solution is to develop methods for 
capturing and representing neural action in such a way that 
the resultant behaviors can be predicted and shared with 
the systems that humans are operating. These 
representations may be found in the neural processes 
leading to the actual, observed behavior.  Just as 
understanding the equations of motion provides a much 
broader set of capabilities than inferring these equations 
from a limited set of observations (Kelso, 1995), so too 
understanding and modeling the dynamics of neural 
activity as it leads to behavior should provide a much 
richer and more robust set of models than those based on 
either observed behavior or inferred cognitive processes.   
Today, advances in neuroscience and engineering provide 
the basis for building these neurocognitive models and for 
using brain-based techniques to create and maintain very 
robust human machine interactions. The net result of this 
approach should be to either provide a viable alternative to 
classical artificial intelligence / machine learning (AI, ML) 
approaches or. Alternatively, to provide a more 
neurocognitively – inspired approach to developing these 
AI and ML routines. 

Background 
As early as the 1940s, researchers were concerned with the 
question of how to represent the human element in human 
machine systems.  Bates (1947), Craik (1947/1948; 1948) 
and others attempted to represent human performance in 
control theory terms with the goal of developing 
engineering representations of the human that could be 
used to improve the effectiveness of human machine 
interactions. 

 In all cases, the properties of the human being modeled 
resided at the observed behavior level.  For example, Fitts’ 
speed-accuracy tradeoff (Fitts, 1954) emphasized the 
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development of basic relationships guiding human motor 
and cognitive action in response to specific dimensions of 
a cue; and the Hick-Hyman law related decision response 
time to the number of possible choices (Hick, 1952; 
Hyman, 1953). These behavior based representations were 
effective for well-bounded and simple tasks but did not 
prove capable of predicting large scale behaviors in 
response to complex or open ended tasks. 

 Recent advances in neuroscience and related 
technologies have provided deeper insights into how neural 
activity gives rise to observed behaviors. Consequently, it 
has become possible to develop a more dynamic and 
integrative theory of brain in which different regions each 
contribute, in different ways depending on the task 
environment and user state, to the processing of 
information leading to behavior (Singer, 1999; Philiastides 
& Sajda, 2007). These regions form ‘ad hoc’ networks 
across the physical substrate of the brain via 
synchronization signals that briefly bind them together, 
leading to observed behavior (Kahana, 2006; Lisman, 
1995; Singer, 1999). Importantly, human performance in 
this view,  results from the interaction and integration of 
‘building blocks’ like perception, attention & memory, 
which, in turn results from activity across multiple brain 
regions.  Guided by these promising advances in 
understanding the brain’s operating principles, and 
harnessing and extending brain imaging technologies, 
advanced signal processing techniques and data modeling 
approaches, it is now possible to begin to develop 
representations of human performance that are able to 
more effectively: 

1. Adapt to new situations  
2. Account for individual users’ varying physiological / 

mental states 
 3. Update based on individual users’ experiences 

Background 
These detailed representations of human performance are 
known as Neurocognitive models. Neurocognitive models 
are based on the idea that understanding how human 
cognition evolves in the context of neural action is key to 
understanding human behavior, because cognition is how 
the human brain transforms sensed information into 
behavior.  
 On the surface, addressing this challenge may appear to 
be a tall order.  Interpreting actual meaning from neural 
activity has been a long-sought dream of the neuroscience 
community.  In the past, the reliance of cognitive models 
on observed behavior was in many ways a tacit admission 
that, while there is a great need to ‘go to the brain’, in the 
available technologies and theories at the time simply 
precluded doing this – making observed actions the most 
readily accessible feature of human behavior that could be 

accessed to provide critical data to populate models. 
Recently, though, there has been a shift in theories of 
brain, made possible by advances in neuroimaging 
technologies, data analysis techniques and representational 
methods.  These advances have been made possible as 
direct result of developments in three core domains: 
1. Neural Activity Detection Technologies 
2. Decoding Methodologies 
3. Modeling Approaches 
 
Neural Activity Detection Technologies 
Access to the brain has been one of the key limiting steps 
in demonstrating coordinated activity across the brain as 
behavior develops.   
 Technologies, like functional Magnetic Resonance 
Imaging (fMRI), dense array Electroencephalography 
(dEEG), and others are at the point where they may now be 
applied to the challenge of capturing integrated neural 
action as it occurs simultaneously across multiple brain 
regions. Figure (1) provides an overview of some of these 
technologies. Detection technologies can categorized in 
terms of those which require penetration through the head 
(‘Invasive’) and those which do not (‘Non-Invasive’).  
Data sources range from subcellular processes, like ion 
flow through individual membrane spanning channels, to 
individual nerve cell action, neuron-neuron 
synchronization, neural function, and neural structures.  
The processes represented by each of these data sources 
occur across different time scales. Lastly, different data 
sources provide insight into different scales of neural 
action (e.g. ion flow vice integrated action across brain 
regions). 
 
Decoding Methodologies 
Access to integrated neural data is necessary but not 
sufficient for representing performance. New methods for 
analyzing these multivariate data sets must also be 
established, refined and applied to data captured as users 
perform a range of cognitive and motor tasks. One 
promising emerging technique, multivariate decoding 
(Mitchell et al 2004), has the ability to take into account 
the full spatial pattern of brain activity, measured 
simultaneously across many regions, enabling the decoding 
and translation of measured brain activity. Other machine 
learning-based techniques (e.g. Kay et al, 2008) show 
similar promise.   
 
Modeling Approaches 
The final challenge is developing representation 
frameworks into which the detected and decoded 
information may be organized, to simulate and predict 
human performance as part of a neuroadaptive human - 
system control scheme.  Possible solutions include 
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extending current modeling architectures to handle neural 
data (Anderson, et al 2008), developing software or 
silicon-based representations of the detected and decoded 
data that produce behaviors similar to those that result 
from actual neural activity (Fleisher & Krichmar, 2007) or 
developing frameworks intended to capture neurocognitive 
data from the outset (Figure 2; Cohn, 2012).     

Summary 
As the systems with which humans interact become 
increasingly complex, there is a corresponding need for 
these systems to be able to anticipate and understand 
human action. Many current and anticipated technologies 
rely on classical Artificial Intelligence or Machine 
Learning approaches to provide these representations. 
However, such approaches fail to capture the richness of 
human neurocognitive processes. Blended approaches 
fusing neural, cognitive, and related measures with the 
power of Artificial Intelligence or Machine Learning may 
alleviate these challenges.  
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