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Abstract

A drama manager is an omniscient background agent
responsible for guiding players through the story space
and delivering an enjoyable and coherent experience.
Most previous drama managers only consider the de-
signer’s intent. We present a drama manager that uses
data-driven techniques to model players and provides
personalized guidance in the story space without re-
moving player agency. In order to guide players’ ex-
periences, our drama manager manipulates the story
space to maximize the probability of the players mak-
ing choices intended by the drama manager. Our system
is evaluated on an interactive storytelling game. Results
show that our drama manager can significantly increase
the likelihood of the drama manager’s desired story con-
tinuation.

Introduction
An interactive narrative is a form of digital entertainment in
which players can create or influence a dramatic storyline
through actions, typically by assuming the role of a char-
acter in a fictional virtual world (Riedl and Bulitko 2013).
Compared to traditional storytelling systems, the interactive
narrative gives the players the opportunity to change the di-
rection or outcome of the stories, thus increasing player en-
gagement. In many cases interactive narrative systems uti-
lize a Drama Manager (DM), an omniscient background
agent that monitors the fictional world and determines what
will happen next in the player’s story experience, often
through coordinating and/or instructing virtual characters in
response to player actions (Bates 1992). Given a number of
things a player can do in a virtual world or computer game
at any given time, the goal of a drama manager is to increase
the likelihood that a player will experience an enjoyable and
coherent narrative.

Prevailing approaches to drama management treat the DM
as a surrogate for the human designer, acting to increase the
likelihood that players will have narrative experiences that
satisfy a set of criteria given by the game designer. This set
of criteria provided by the human author is the only mea-
sures of quality for the player’s interactive experience. In-
tuitively, players have different opinions on whether a nar-
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rative experience is enjoyable or not. In this work, we ask
whether the DM can model players and use these models to
increase the quality of individual players’ narrative experi-
ences. That is, we assert that a drama manager must also be
a surrogate for the player by taking into account his or her
preferences and behaviors.

Work on personalized DM has shown promise. Thue et
al. (2007) show how a DM can choose narrative branches
based on fixed player types. Sharma et al. (2010) use case
based reasoning to choose narrative branches based on fixed
feature vectors. Previously, we used a data-driven technique
based on player ratings to learn players’ preferences over
trajectories through a branching story graph without fixed
player types or fixed feature vectors (Yu and Riedl 2012).
The strength of the data-driven approach is its ability to dis-
cover player types, thus making it applicable to a broader
range of interactive narratives. However, in our prior work,
the DM makes all branch choices, eliminating player agency,
a key aspect of interactive narratives. In this paper, we build
off our previous work with a drama manager that affords the
player full agency while acting to influence the player such
that he or she is more likely to make decisions that lead to
an improved experience according to their own preferences.

Our Personalized Drama Manager (PDM) predicts
players’ personalized trajectories through a human-authored
branching story graph, predicts players’ choices, and mani-
pulates the narrative to increase the likelihood that the player
will make certain choices. The human designer’s intention
is expressed through the branching story graph while player
agency is preserved because the player is never restricted
from choosing particular branch. The paper presents the fol-
lowing novel contributions:

• An extension of the classical branching story graph to al-
low multiple options that lead to the same branch.

• A data-driven technique for predicting which option at
each plot point an individual will choose.

• An algorithm for manipulating a branching story graph
that increases desired player choices without restricting
player agency.

We have evaluated our approach in a simplified testbed
domain based on the original Choose-Your-Own-Adventure
(CYOA) books. The human study results show that our
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drama manager can significantly increase the likelihood the
players choose the intended story plot points.

Background and Related Work

Drama manager agents have been widely used to guide the
users through an expected story experience set by design-
ers. See Riedl and Bulitko (2013) for a recent overview of
AI approaches to interactive narrative. Approaches to drama
management include: search (Weyhrauch 1997; Nelson and
Mateas 2005), planning (Riedl et al. 2008; Cavazza et al.
2009), and reactive behavior planning (Mateas and Stern
2003), case based reasoning (Sharma et al. 2010), and op-
timization (Roberts et al. 2006).

Most personalized DMs learn a model of play style using
discrete play type categories. The PaSSAGE system (Thue et
al. 2007) automatically learns a model of the player’s prefer-
ence through observations of the player in the virtual world,
and uses the model to dynamically select the branches of
a CYOA style story graph. PaSSAGE uses Robin’s Laws
game player types: Fighters, Power Gamers, Tacticians, Sto-
rytellers, and Method Actors. Peinado and Gervás (2004)
use the same player types, while Seif El-Nasr (2007) uses
heroism, violence, self-interestedness, and cowardice as di-
mensions. Sharma et. al, use case based reasoning based on
a fixed set of hand-chosen features to choose branches in the
story graph. Dimensional player models are good for games
for which validated models exist, but may not extend to other
types of interactive narratives.

PBCF (Yu and Riedl 2012) is a data-driven technique for
learning players’ preferences over narrative experiences, ap-
plying collaborative filtering (CF) to players’ ratings of nar-
rative experiences. CF algorithms attempt to detect patterns
in users’ ratings; CF algorithms discover latent user types
that explain and predict user rating behavior. Because the
recommendation of a plot point depends on the history of
plot points previously visited by the player, PBCF extends
standard CF algorithms to solve sequential recommendation
problems. Unfortunately, in order to maximize player expe-
rience, PBCF chooses branches for the player, eliminating
player agency. That is, PBCF is a story generator instead
of a drama manager. We extend PBCF by restoring player
agency; players are able to freely choose options after every
plot point, and no branches are pruned.

Our PDM assumes that an interactive narrative experi-
ence can be represented as a branching story graph, a di-
rected graph in which nodes represent plot points and arcs
represent options the player can choose from. A branching
story graph thus specifies which plot points are allowed to
follow other plot points; it encodes human authorial intent.
For the purposes of a DM agent, a branching story graph
provides the set of successor plot points at any given time.
While the representation is simple, many other drama man-
agement plot representations are reducible to the branch-
ing story graphs (Riedl and Young 2006; Weyhrauch 1997;
Nelson and Mateas 2005; Roberts et al. 2006).

A Personalized Drama Manager
In this section, we describe our Personalized Drama Man-
ager (PDM) which models players’ storytelling preferences
and also models players’ behavioral choices. We hypothe-
size that players, when faced by a set of options afforded by
the game (i.e., the arcs on a branching story graph), choose
options based on a variety of local cues—those that sound
most interesting, that agree with personal motivations, or
that sound most likely to lead to favorable outcomes. Fur-
thermore, we observe that certain trajectories through the
branching story graph are more preferred than others, and
that these preferences are individualistic (Thue et al. 2007;
Yu and Riedl 2012). Therefore, it is possible for players’
local choices of options to be in conflict with their global
future interests.

In this paper, we aim to build a DM that is capable of influ-
encing players’ choices of options such that he or she is more
likely to experience a highly rated narrative according to
their individual preferences. Our PDM approach is summa-
rized as follows. First, we extend the branching story graph
representation to allow for multiple options that branch to
the same successor plot point. Second, given the specialized
branching story graph, the PDM predicts the best trajectory
for a particular player through the graph. Third, the PDM
uses CF to predict which option a player will choose after
each plot point. Finally, when a discrepancy is detected be-
tween plot point predicted to be chosen and successor plot
point predicted to maximize player experience, the PDM
manipulates the branching story graph by showing some op-
tions and hiding other options such that the player is more
likely to choose the personalized plot point. However, at no
point is a successor plot point ever made unavailable.

Authoring Multiple Options
To give our drama manager the ability to manipulate the
branching story graph without making successor plot points
unreachable by the player, we extend the branching story
graph representation such that multiple options are allowed
to point to the same child plot point. Let a branching story
graph be a directed graph G = 〈V,E〉 such that vi ∈ V is a
plot point for i = 1...|V |, and eki,j ∈ E is the kth edge from
vi to vj representing a player option available after plot point
vi. We use e∗i,j to denote the existence of at least one edge
from vi to vj and indicating that vj is an immediate succes-
sor of vi. Figure 1 shows an example branching story graph
with multiple options. The left side of the figure only shows
successor relations, while the right side of the figure zooms
in on one particular branch to show multiple options. As a
shorthand, we use letters to indicate the successor relation
and letters with superscripts to indicate distinct options.

Ideally, there are multiple options between all plot points
and their immediate successors. The goal of the drama man-
ager is to pick a subset of the options to present to the player
such that at least one option leads to each child (ensuring
true player agency) and also increase the likelihood that the
player will pick the option that transitions to the desired
child plot point. For example, suppose the drama manager
predicts that a particular player’s optimal narrative trajec-
tory through Figure 1 is through plot point 11. Suppose the
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Figure 1: Example of a branching story graph with multi-
ple options. Letters indicate successor relations between plot
points, while letters with superscripts indicate distinct op-
tions the player may choose from.

drama manager further predicts that the player’s preferences
over options to be k1 > j1 > k2 > j2 > k3 > j3, such
that the player is predicted to transition to plot point 10 in-
stead. To intervene, a DM can present options j1 and k3 to
the player, while suppressing the other options.

This simple extension to the conventional branching story
graph gives a DM the ability to subtract options from
players’ considerations without completely pruning a branch
of the graph. This preserves the authorial intent behind the
structure of the graph and also ensures that all trajectories
through the graph are available to the player at all times.

We believe that options should be authored to appeal
to different motivations that they players might have, tap-
ping into individual differences. In our own experiments,
we have utilized the following motivational theories, drawn
from Petty (1986) and Cialdini (2006):

• Expert Source: a desire to follow experts’ opinions.
• Scarcity: a desire for something that will soon become un-

available.
• Consistency: a desire to appear consistent with what we

have already done or said.
• Social Proof : a desire to imitate others in similar situa-

tions.
• Reasoning: a desire to follow arguments that sound ra-

tional.
• Number of arguments: a desire to follow statement that

contains repetitive arguments expressed in different ways
without new information.

• Motivation–Friendship: a desire for friendship.
• Motivation–Safety: a desire for being safe.
• Motivation–Money: a desire for being rich.
• Motivation–Fame: a desire for being famous.

Authoring of options based on the above motivational the-
ories is not strictly necessary, but we hypothesize that uti-
lization of motivational categories will improve our drama
manager’s ability to learn players’ preferences for options.

Player Option Preference Modeling
We assume that different players have different preferences
over the options. For each player, if we know his/her pref-
erence for all the options in the extended branching story

Op�on Player1 Player2 Player3 …

* * 2 …

1 * 2 …

* * * …

4 3 * …

* 5 1 …

… … … … …

Figure 2: An illustration of the option-rating matrix.
k1, k2, k3, j1, j2, etc. represent the options in Figure 1. The
stars represent missing ratings.

graph, it will be straightforward for the drama manager to se-
lect a subset of options to show. In this section, we describe
how we train the drama manager to predict which options
the player will prefer at any given plot point.

To predict players’ option preference, we use collabo-
rative filtering (CF) algorithms to build a players’ option
preference model. CF has been successfully applied in rec-
ommender systems to model user preference over movies,
books, music, etc. (Su and Khoshgoftaar 2009). CF algo-
rithms attempt to learn users’ preference patterns from rat-
ings feedback and predict new user’s ratings from previous
user’s ratings which share similar preference patterns.

Applying CF algorithms to option preference, we have
players rate the options presented after each plot point in
the training phase. We then construct an option-rating ma-
trix as in Figure 2. An n by m option-rating matrix contains
the ratings for n options from m players. Each column of the
option-rating matrix contains one player’s preference ratings
for all the options while each row contains ratings for one
option from all the players. The option-rating matrix will be
similar to the product rating matrix in traditional CF algo-
rithms. The matrix will be sparse, containing a large number
of missing ratings since we do not expect each player to read
all the options in the extended branching story graph.

We investigated a variety of common CF training algo-
rithms on the option-rating matrix, including: Non-negative
Matrix Factorization (NMF) (Lee and Seung 2001; Zhang
et al. 2006), probabilistic PCA (pPCA) (Tipping and Bishop
1999), K-Nearest Neighbor, and K-means algorithms. The
learned player model retains the extracted rating patterns
for players of different option preference types and will be
used to predict future players’ preference ratings over the
options. Once training is complete, the player option pref-
erence model can be used to predict players’ ratings for op-
tions that players have never encountered. This includes the
possibility of predicting a player’s preferences for options on
a graph that he or she has never played through if we have
data for the player from another graph.

Drama Manager Algorithm
Our PDM attempts to influence players’ trajectories through
a branching story graph with multiple options per child plot
point. We employ the insight that players will choose the op-
tions that sound the most interesting to them and that a DM
can display options predicted to be more or less preferred
by an individual to influence game play behavior. To achieve
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Figure 3: The branching story graph for the choose-your-own-adventure book: The Abominable Snowman. The digits at the
bottom are the left-most score distribution we used in the evaluation.

this, a DM must have a model of players’ preferences for op-
tions after each plot point to predict how players’ will move
through a branching story graph if left to their own device.
This model is learned using one of the option-matrix CF al-
gorithms described in the previous section.

Our PDM puts the model to use as follows. For each new
player, our PDM must collect a few initial option ratings
r. These ratings can be collected on a graph especially for
training on new players or can come from repeated interac-
tions with the system. Once a player is in the option-rating
matrix and the player model is updated, the PDM uses the
following algorithm to guide the player in the branching
story graph. At each plot point in graph, the PDM performs
the following steps.

1. Determine which child plot point the player should ex-
perience next.

2. Predict the player’s preference for all options using the
option preference model.

3. Display the highest rated option that points to desired
successor plot point and the lowest rated option for each
other successor plot point.

4. Player chooses an option.
5. Collect player’s ratings for the displayed options. In-

clude the ratings into r.
6. Display the corresponding child plot point according to

the player’s selection and go to step 1.

We assume that PBCF (Yu and Riedl 2012) or other player
modeling algorithms can be applied in step 1. The details are
beyond the scope of this paper. It is not strictly necessary to
collect option ratings as in step 5. We do it in our system for
the purpose of collecting as much data as possible to build
more accurate player option preference models. With every
new rating, the PDM will get better understanding of the
current player’s preference over the options.

Evaluation
To evaluate our PDM algorithm, we have conducted a study
whereby our PDM attempts to influence players of an online

choose-your-own-adventure interactive story. We hypothe-
size that our PDM algorithm will be able to significantly af-
fect the behavior of players, as compared to a version of the
interactive story with no drama management. We describe
the Choose-Your-Own-Adventure story, online game envi-
ronment, methodology, and results.

Stories and User Interface

We transcribed two Choose-Your-Own-Adventure books:
The Abominable Snowman and The Lost Jewels of Nabooti,
into two branching story graphs. The original stories were
modified such that each possible narrative trajectory con-
tains exactly six plot points. This was achieved by manually
removing branches that led to “sudden death” outcomes and
merging a few successive plot points. The branching story
graph of The Abominable Snowman contains 26 leaf nodes
and 19 branching points. The branching story graph of The
Lost Jewels of Nabooti contains 31 leaf nodes and 18 branch-
ing points. Figure 3 shows the branching story graph of The
Abominable Snowman.

We authored two additional options for every branch
in the branching story graphs. Each new option was con-
structed by rewriting the existing option with different moti-
vations as described earlier in the paper. In the final extended
branching story graphs, there are thus three different options
per successor plot point at every branching point except the
lowest level, which we left unaltered. In total, there are 214
options in the two branching story graphs.

In the experiments, all the stories were presented plot-
point by plot-point to the players. After each plot point, the
players were asked to rate the story-so-far and all the options
on a scale of 1 to 5 before they could select one of the options
to continue. A larger rating number indicates a greater pref-
erence. Figure 4 shows our online interactive storytelling
testbed. The figure shows two plot points, a place for players
to rate the story-so-far (for PBCF training), and two options
with ratings (for option-preference training).
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Figure 4: A screenshot of the interactive storytelling system.

Table 1: The average within-graph and cross-graph predic-
tion accuracies of option selection for different algorithms.

Algorithm within-graph cross-graph
PPCA 0.7509 0.7589
NMF 0.8123 0.8011
KNN 0.7123 0.6931

KMeans 0.7080 0.6962

Training the Option Preference Model
We recruited 121 participants from Amazon’s Mechanical
Turk. Each player read 6 full-length stories. Each story was
randomly started at the root of one of the two branching
story graphs. Each story was presented plot-point by plot-
point to the player as in Figure 4. At every branching plot
point, the DM randomly picked one option for each suc-
cessor plot point and the player was free to make a choice.
We collected their ratings for all the options and stories they
read. In total we had 121 valid players for a total of 726
play-throughs, and a 121 × 214 option-rating matrix.

Participants were asked to explore the graph as much as
possible. If the players encountered a plot point they had
seen previously, their previous ratings for story-so-far and
options were automatically filled out from their previous re-
sponse.

We randomly selected 80% of the training players and
learned a player model with their rating data. For the re-
maining 20% of data, we computed their within-graph and
cross-graph option selection prediction accuracies. To com-
pute the within-graph accuracy, the DM built the initial rat-
ing vector for each player using the option ratings from the
subtree with plot point 1 as its root in Figure 3. Then based
on the player model and the initial rating vector, the PDM
predicted the player’s option selection behavior in the sub-
tree with plot point 2 as its root. To compute the cross-graph
accuracy, the PDM built the initial rating vector using the op-
tion ratings from the branching story graph of The Lost Jew-

els of Nabooti. Then the PDM predicted the players’ option
selection in the other branching story graph for The Abo-
minable Snowman. We repeated the random split process 50
times and computed the average percent of time the PDM
correctly predicted the players’ selection. Table 1 shows the
DM’s within-graph and cross-graph prediction accuracies
for different algorithms: pPCA, NMF (with 4 dimensions),
K-Nearest Neighbor algorithm (with k = 20), K-mean al-
gorithm (with k = 4). Our system is able to predict players’
selection of options at greater than 80% accuracy.

Testing the Drama Manager
We recruited additional 72 participants from Mechanical
Turk to evaluate our PDM’s ability to guide the players in
a full branching story graph. Each player read 6 full-length
stories plot-point by plot-point.

For the first five stories, players explored the branching
story graph of The Lost Jewels of Nabooti. This allowed us
to incorporate some data about new players and update our
model. As during model training, at every branching plot
point, the PDM randomly picked one option for each succes-
sor plot point. During a player’s sixth trial, the player played
through the branching story graph of The Abominable Snow-
man. At each plot point of Figure 3, the PDM tried to guide
the players to either the leftmost (43 participants) or the
rightmost (29 participants) successor plot point by using
the player model to choose two options pointing to the left-
most/rightmost successor plot point and choosing one option
pointing to each remaining successor plot point.

We analyzed the effectiveness of our PDM in two dif-
ferent ways. First, we looked at the percentage of the time
players choose options that corresponded with the PDM’s
desires. Second, we simulated the situation in which it tar-
gets certain nodes based on predicted scores from PBCF.

Frequency of Player Choices We looked at the percent-
age of the time the player chose an option at any plot point
that leads to the leftmost/rightmost successor plot point.
Table 2 shows the average guidance successful rate for
different configurations. In our training data, we observe
that players chose an option leading to the leftmost branch
53.91% of time and chose an option leading to the right-
most branch 44.52% of time. Note that some plot points have
more than two successors and thus players may choose an
option leading to neither the left nor right successor. When
the PDM was configured to guide the players to the leftmost
child plot point, it succeeded 74.07% of time (p < 0.001).
When it was configured to guide the players to the rightmost
child plot point, it succeeded 70.83% of time (p < 0.001).

Score Distribution Our second method for evaluating our
PDM was to provide a score distribution over all leaf nodes
in Figure 3. This simulates the situation where PBCF at-
tempts to maximize players’ experiences by predicting the
ratings that players will give to leaves. This evaluation tells
us how much more utility (in terms of player enjoyment) the
presence of drama management will achieve over the lack of
drama management. We constructed two score distributions,
leftmost-score distribution and rightmost-score distribution,
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Table 2: The average guidance successful rate for different
PDM configurations.

Condition Leftmost Rightmost
branch branch

No intervention 0.5391 0.4452
DM target: leftmost branch 0.7407 -

DM target: rightmost branch - 0.7083
p-value < 0.001 < 0.001

Table 3: The average scores of the full-length stories ex-
plored by the players for different PDM configurations.

Condition Leftmost Rightmost
leaf leaf

No intervention 3.21 2.77
DM target: leftmost leaf 4.0 -

DM target: rightmost leaf - 4.03
p-value < 0.001 < 0.001

such that for any subtree in the graph, the leftmost or right-
most successor of the root is an ancestor of a higher-scoring
leaf than any other successor of the root. The leftmost-score
distribution is shown at the bottom of Figure 3. For this dis-
tribution, there is a leaf in the left subtree (e.g. leaf 6 in the
subtree with root node 3) scoring higher than any leaves in
the right subtree (e.g. the subtree with root node 19). The
scores for the leaf nodes are in the range of 1 to 5.

Table 3 gives the average scores of the full-length stories
explored by the players for different configurations. With-
out intervention, players followed trajectories resulting in
an average score of 3.21 under the leftmost distribution, and
an average score of 2.77 under the rightmost distribution.
With the PDM attempting to guide the players to the left-
most branches, the system achieved an average score of 4.0
(p < 0.001). With the PDM attempting to guide the players
to the rightmost branches, the system achieved an average
score of 4.03 (p < 0.001).

Discussion
Our evaluation shows that our PDM can significantly influ-
ence the trajectories of players, regardless of how the target
branch is chosen. When instructed to guide the player down
certain branches (left or right), we find that the DM is able
to significantly impact the likelihood that those branches are
chosen. When instructed to guide the player to certain leaf
nodes according to a score distribution, we find that the DM
is able to significantly improve the utility of the player’s ex-
perience according to the scoring metric. In future studies,
we will use a PBCF-generated scoring distribution.

Player behavior is strongly affected by the story and the
wording of options, often yielding a strong preference for
a particular option at a particular plot point. For example,
in our training data on The Abominable Snowman, we see
that 84% of players prefer to transition from plot point 2 to
plot point 41. Upon closer inspection, this branch involves

the player continuing to hunt the Yeti versus abandoning
the quest for a different objective; naturally people reading
this particular book would have a preference for continuing
the quest. Similarly, players preferred to transition from plot
point 0 to plot point 2 75% of the time when left to their
own devices. Our PDM will have a tougher time influenc-
ing players at plot points where players have a strong nat-
ural preference for one branch over another. If we exclude
plot point 0 and 2 from testing analysis, the successful rate
of guidance to the leftmost children will increase to 79.6%,
and the successful rate of guidance to the rightmost children
will increase to 75.86%.

Failure to guide the player at any given plot point reduces
the optimality of the player’s experience (according to some
score distribution). In practice, if this happens our PDM at-
tempts to guide the player to the next highest rated leaf node
in the current subtree of the branching story graph. From
the score comparison in the second evaluation technique, we
show that our PDM is capable of guiding players to stories
with higher simulated preference ratings.

Our evaluation shows that CF can be used for cross-
graph prediction. Once our option preference model has
been trained on two branching story graphs, it is possible for
new players to provide a few ratings (as few as five stories
worth of data) on a training graph and then receive accu-
rate predictions on the other graph. Pragmatically, once the
system is bootstrapped with training data from both graphs,
new players only require a short familiarization phase before
receiving personalized interactive narrative experiences.

Player agency is a critical aspect of interactive narrative.
We did not ask players whether the drama manager reduced
player perception of agency. However, since players are pre-
sented with options for all possible branches—no branches
are outright denied to players—we believe that the appear-
ance of player agency will be upheld.

Conclusions
Personalized drama management aims to deliver a personal-
ized experience while preserving player agency. In this pa-
per, we present a drama management system that can guide
players in the branching story graph by manipulating the
graph to increase the probability of desired story continu-
ation without sacrificing player agency. In the future, our
DM will operate in full conjunction with personalized story
recommendation algorithms such as PBCF.

Player guidance and personalized drama management
have not been widely explored. But we believe that they
are essential parts of building a DM that is responsible
for optimizing the player’s experience in a game or vir-
tual world. Our approach is capable of effectively influ-
ence players’ choices while preserving the appearance of
full player agency. A DM built in this way is more capable
of bringing an enjoyable experience for the players.
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