
AI Authoring for Virtual Characters in Conflict

Paulo Gomes and Arnav Jhala
UC Santa Cruz, CA, 95064, USA

Abstract

Game developers strive to have engaging believable
characters in their work. One of the elements that has
been pointed out as contributing to believability is social
behavior. A category of social behavior is interpersonal
conflict. In our current research we compare two AI
approaches to model NPC conflict resolution strategies:
one using the reactive planning language ABL and an-
other using the AI framework FAtiMA. We identify the
following metrics to evaluate social behavior modeling:
mapping theory, emotion, model checking, variability,
policy change. In our analysis we found it was easier
to map conflict concepts in ABL and the model check-
ing process was faster. FAtiMA had better support for
emotion and other emergent attributes.

Introduction
Game developers strive to have engaging believable charac-
ters in their work. One of the elements that has been pointed
out as contributing to believability is social behavior (Mateas
1999). Although character’s social behavior is often repre-
sented in games through interactive dialogs and cinematics,
few titles consider it as a core game mechanic (Prom Week
being one of the exceptions (McCoy et al. 2010)). Further-
more, commonly used AI techniques such as dialog trees
and behavior trees seem to lack the support that social play
may require. Namely, dialog trees can lead the story thread
to break down due to unforeseen inconsistencies (Wardrip-
Fruin 2012). Consequently, developing high-level behav-
ior authoring languages and frameworks for video game so-
cial behavior is an important avenue in research (Yannakakis
2012).

Among social behavior mechanisms in contemporary
video game titles, it is becoming popular to have the main
character’s actions valued with one of two opposing values
(Light vs Dark, Renegade vs Paragon). These actions con-
trol the main character’s position in a scalar scale. Moreover,
this position determines what type of actions the player is al-
lowed to perform with different characters (e.g. if the player
has thwarted the Empire’s missions she might find herself
unwelcome at the Sith Lords’ kickback).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, a system like this may not capture the nuances
of the interpersonal character history a designer desires.
Consider that as an expressive goal, if a game character has
recently shot an NPC sidekick (possibly by accident) this
NPC should be more reluctant to cooperate with the player.
Additionally, consider that as a player you may need to con-
vince the said NPC to perform a dangerous task. When the
player performs a request to the NPC a conflict situation
arises: two characters with conflicting goals (NPC staying
alive, Main character saving the kingdom). This conflict
should be performed in a way that considers the expressive
contextual requirement (taking into account the accidental
shot).

Using the mentioned opposing sides mechanism will
hardly map the contextual condition. One could resort to
a flag system, having a flag for the NPC being upset with the
main character and setting it to true when the shot happens.
However, such flags and handlers exponentially increase the
authoring burden in specification of the branching narrative
leading to tightly controlled story arcs and its negative effect
on player agency. Frameworks that model social behavior
explicitly may provide a better fit for the described conflict
constructs. Additionally, they may support different degrees
of cooperation and take into account authorable character
traits. These traits would allow to maintain interaction con-
sistency even if the player had several side-kicks to choose
from.

Many AI approaches are being explored for modeling in-
telligent virtual characters that could provide a rich set of
believable interactions. Behavior trees for instance tend to
be used as a more centralized approach, that is, a reason-
ing algorithm that operates on shared memory and behav-
ior libraries for all characters. On the other hand there are
approaches that focus more on individual agents. We will
look into more character directed approaches. Specifically
we will analyze conflict situations as an example of rich so-
cial interactions.

To support these situations the modeling systems should
be robust and expressive, take into account context, while
being finely tunable by designers. In our current research
we compare two AI approaches to model NPC conflict reso-
lution strategies: one using the reactive planning language
ABL (Mateas and Stern 2004), and another using the AI
framework FAtiMA (Dias, Mascarenhas, and Paiva 2011).

Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

135



In our work we wanted to study the extent to which these ap-
proaches supported conflict expressiveness but also to layout
a methodology on how to evaluate a system’s expressiveness
regarding a social behavior feature (in our case conflict).

In this article we will start by explaining what we under-
stand by interpersonal conflict. We will continue by giving
a brief description of the two frameworks considered. Fol-
lowing this we look at a concrete conflict scenario and how
it can be modeled in both. Afterwards, based on the mod-
eling process described, we compare how both frameworks
are able to support the interpersonal conflict context. Finally,
we summarize the comparison and point possible avenues of
future work.

Definitions
In the current work we are trying to model interpersonal con-
flict as a social behavior feature example. For clarification,
by interpersonal conflict we mean:

a situation in which two individuals have opposing in-
terests and at least one of them acknowledges said in-
terests.
A system that models interpersonal conflict should encode

different scenarios and different ways of dealing with them.
Consequently, it is also relevant to define a categorization
of conflict resolution strategies. In a initial approach, we
decided to consider a simple and clear categorization that
would still allow for some variability. The one presented
is inspired in the summarizing categorization proposed in
(Rahim 2010). The categories are the following:
• Dominating: the individual pursues personal goals with

low concern for the interests of the other individual. For
instance, consider that a manager is contacted by a sub-
ordinate that tells him that he probably won’t be able to
meet a defined deadline. A dominating strategy by the
manager might be to threaten to fire him if he does not
meet the deadline.

• Integrating: the individual tries to account for personal
but also other party’s interests. In the previously described
scenario, the manager might suggest a bonus in compen-
sation for over time, and at the same time try to discuss
with the subordinate the underlying reasons for the prob-
lem.

• Avoiding: the individual does not address either of the
goals. In the same scenario, the manager might tell the
subordinate to come back later because he is currently too
busy.

• Accommodating: the individual thwarts personal goals
and addresses other party’s goals. In our scenario, the
manager could simply tell the subordinate that it is fine
that the deadline is missed without looking into the rea-
sons for the schedule slide.
Rahim also proposed a Compromise category (Rahim

2010) as intermediate compared to the other four. In an
initial modeling effort we considered that it would be more
valuable to focus on the presented four strategy types with
clearer bounds. One can see a representation of the different
strategies in Figure 1.

Figure 1: Conflict resolution strategy types.

Modeling approaches
The two interpersonal modeling approaches studied were
ABL and FAtiMA. Bellow we give a quick introduction to
both, just enough to understand how they can be used to per-
form the mentioned modeling.

FAtiMA
Fearnot AffecTIve Mind Architecture (Dias, Mascarenhas,
and Paiva 2011) is a computational model of appraisal the-
ory of human emotions which is authorable in XML. Gener-
ically appraisal theory claims that emotions are valanced in-
terpretations of perceived events. Appraisal theories also
claim that these interpretations depend on several appraisal
variables: desirability of an event, praiseworthiness of an
action, likability attitude towards an object, likelihood of a
future event, among other. FAtiMA models this appraisal
derivation process. Furthermore, it generates an emotional
state based on these appraisal variables using an OCC theory
of emotions (Ortony, Clore, and Collins 1990) inspired pro-
cess (affect derivation). A strong motivation for having an
agent architecture with a model of emotion is not only that
it can simulate the emotional processes, but also, that emo-
tion has been shown to be an integral process of human’s
decision making process (Damasio 1994).

An important consideration in modeling interpersonal
conflict in FAtiMA is that individual agents’ behavior is de-
fined by a STRIPS-like planner (Fikes and Nilsson 1972).
Core to this planner are actions and goals. Actions have pre-
conditions and effects. For instance, eating an apple might
have as precondition that the agent believes it is holding an
apple and as an effect that the apple is eaten. Goals have suc-
cess conditions. For example, the agent Adam might have as
a goal nourishment, with the success condition that it has re-
cently eaten food. At any time point an agent has several
potential goals to pursue in memory. The goal selected will
depend on its relative importance. Importance is calculated
according to the associated appraisal variables. For instance,
if two goals are desirable, the one with prospective higher
desirability will be selected.

FAtiMA architecture has actually been used to model con-
flict (Campos, Martinho, and Paiva 2013). However, in the

136



referenced work there is a stronger emphasis on the conflict
detecting process rather than in the strategy choice phase.

ABL
ABL is a programming language for reactive planning
(Mateas and Stern 2004). It was designed to support vir-
tual characters and it compiles to Java. It follows the prin-
ciples of a hierarchical task network style planner. Goals
are not defined by preconditions and success conditions. In-
stead, they are defined by the possible solutions for that goal.
These solutions are called behaviors. Behaviors are recipes
to reach the goal. A behavior itself has preconditions and
children. These children can be atomic actions or new goals.
Executing the behavior is performed by executing its chil-
dren. At any time the system maintains a tree of the current
active behaviors.

Like FAtiMA, ABL has atomic actions called acts. They
can be declared actions in the world or mental acts. Men-
tal acts are arbitrary pieces of Java code. Another crucial
structure of the language is the Working Memory Element
(WME). A WME is a piece of information representing a
belief of the AI about the current state of the world or of
a previous event. WMEs are the fundamental element of
information representation in ABL. They can be referenced
in preconditions. A behavior is only activated if there is a
consistent unification of all the variables in the precondi-
tions. Additionally, WMEs can be changed in mental acts.
A more detailed decription of the architecture is available at
http://abl.soe.ucsc.edu.

Conflict Modeling
Now that we briefly looked at the two frameworks, we will
discuss how they can be used to model interpersonal conflict.
We will start by describing a scenario that will serve as an
example for both. Consider the following example scenario:

Adam asked Bob to buy him a ticket so they could both
go to a show. As Bob is friends with Adam, he bought
it. Afterwards, Adam told Bob he did not want to go to
the concert anymore so would not pay the ticket back.
Bob told Adam that he should pay no matter what.

In the following scenario the characters have opposing inter-
ests: Bob wants to get his money back, and Adam doesn’t
want to run out of money. They both realize there is a con-
flict of interests when Adam tells Bob he is not going to
pay. There are acknowledged opposing interests between
two individuals, thus according to our definition this is an
interpersonal conflict. This scenario is inspired in a conflict
description gathered through crowd-sourcing (Swanson and
Jhala 2012). Additionally, we may notice that Bob tries to
ensure his goal is achieved with little concern for Adam’s
interests. Consequently, Bob’s strategy can be classified as
dominating. In the remainder of this section we will focus
on modeling the moment in which Bob has to decide how to
respond to Adam’s refusal to pay.

ABL Modeling
The just presented scenario can be described in ABL. Al-
though ABL supports the synchronized behavior of individ-

ual virtual characters, we decided to use the conflict sce-
nario as an abstraction rather than individual agents. Con-
sequently, one ABL Entity models the whole conflict situa-
tion. This approach has been used in practice by the Games
and Playable Media Group in the IMMERSE project (IM-
MERSE 2012).

Keeping in mind that we are using the situation as an ab-
straction, and not the agents, we define the following types
of goals: infer conflict and resolve conflict. There is only one
infer conflict goal that is used to the detect conflicts. There
are different corresponding behaviors for this goal that rep-
resent different conflict situations (e.g. owing conflict). The
behavior selected depends on the preconditions that encode
the conflict context (e.g. a character owes another money).
On the other hand, there are several resolve conflict goals
which represent trying to resolve different types of conflict
situations (e.g. resolveChoresConflict). Furthermore, each
resolve conflict goal has different behaviors corresponding
to different resolution strategies (dominating, avoiding, ac-
commodating, integrating).

Consider the following infer conflict behavior example
and focus for now on the preconditions.
// Infer owing conflict
sequential behavior inferConflict(){

precondition {
(CancelOwesWME characterInDebt::characterInDebt
characterInDebtTo::characterInDebtTo)

(OwesWME characterInDebt==characterInDebt
characterInDebtTo==characterInDebtTo)

!(ConflictWME type==ConflictType.OWE
characterA==characterInDebt
characterB==characterInDebtTo)

}
specificity 2;
mental_act{

RelWME upsetWME;
upsetWME = new RelWME("upset",
characterInDebtTo,
characterInDebt);

ConflictWME conflictWME = new ConflictWME(ConflictType.OWE,
characterInDebt,
characterInDebtTo);

BehavingEntity.getBehavingEntity().addWME(upsetWME);
BehavingEntity.getBehavingEntity().addWME(conflictWME);

}
with (priority 4) subgoal resolveOwesConflict();

}

This behavior tries to encode the type of conflict described
in the example scenario. It detects if a character is in debt
to another and refuses to pay through a CancelOwesWME
condition:
(CancelOwesWME characterInDebt::characterInDebt
characterInDebtTo::characterInDebtTo)

The behavior has two children that will be executed se-
quentially (notice the sequential tag before the name). These
children are: a mental act, in which several WMEs are added
(recording what happened); a subgoal of resolving this spe-
cific type of onflict (resolveOwesConflict). Now consider
one of the possible behaviors corresponding to the resolve-
OwesConflict:
// Dominating strategy
sequential behavior resolveOwesConflict(){

precondition {
(ConflictWME type==ConflictType.OWE characterA::characterA
characterB::characterB)
(PersonalityWME character==characterB
type==PersonalityType.HIGH_CONCERN_SELF)

}
specificity 2;
mental_act{

AblCompilation.getInstance().
println(characterB+": "+"You better find a way to pay me!");

137



ConflictActionWME conflictActionWME;
conflictActionWME = new ConflictActionWME(ConflictType.OWE,
ResponseType.DOMINATING,
characterB,characterA);

BehavingEntity.getBehavingEntity().addWME(conflictActionWME);
}

}

The behavior will only be selected if the character has
high concern for its personal interests:
(PersonalityWME character==characterB
type==PersonalityType.HIGH_CONCERN_SELF)

This condition is inspired in the presented definition of dom-
inating strategy. The expression of the strategy results in
the lending character to express his goal with no interest for
the goals of the other character (“You better find a way to
pay me!”). This was what happened in our example sce-
nario. However, it is easy to define alternative strategies. It
is only necessary to add a new resolveOwesConflict behav-
ior. For instance, one can define an integrating behavior with
the same preconditions, but in which the lending character
suggests payment over time. Since the preconditions are the
same, this will cause the generated system to choose ran-
domly between the two, causing variability. Alternatively,
an accommodating behavior could be defined for when the
lending character has low concern for self (precondition) re-
sulting in him giving up getting his money back and express-
ing it.

FAtiMA Modeling
The same alternative strategies can be modeled in FAtiMA.
Contrary to ABL, using the situation as an abstraction is not
an option in FAtiMA since an individual emotional state is
maintained per agent and it affects the decision making pro-
cess.

In ABL we define that each goal corresponds to a dif-
ferent resolution strategy. Instead of selecting the strategy
through preconditions, the strategy will be chosen accord-
ing to the different importance the agent gives to the goals:
goals with higher importance for an agent are more likely to
be pursued than those with lower importance. This impor-
tance corresponds to a desirability that in turn will affect the
agent’s emotional state.

Moreover, since goals do not have recipes on how to ex-
ecute them (behaviors in ABL) the atomic actions will have
to have a strategy bias, meaning that if a strategy is chosen,
certain actions are more likely to be selected for execution.
This is achieved by setting the value of a character attribute
if an action is chosen, and using that same attribute/value
pair in a goal success condition. Consider the two following
example actions:
<Action name="UnilateralDemand([person],[objectOwed])">
<PreConditions>

<Property name="[person](isPerson)" operator="=" value="True" />
</PreConditions>
<Effects>
<Effect probability="1.0">

<Property name="[AGENT](resolvedOwesConflict)"
operator="=" value="True" />

<Property operator="=" name="[AGENT](isRude)" value="True"/>
</Effect>
</Effects>
</Action>

<Action name="FallbackDemand([person],[objectOwed])">
<PreConditions>

<Property name="[person](isPerson)" operator="=" value="True" />
</PreConditions>

<Effects>
<Effect probability="1.0">

<Property name="[AGENT](resolvedOwesConflict)"
operator="=" value="True" />

<Property operator="=" name="[AGENT](lostMoney)" value="True"/>
</Effect>
</Effects>
</Action>

Both UnilateralDemand and FallbackDemand will resolve
the owes conflict:
...
<Effect probability="1.0">

<Property name="[AGENT](resolvedOwesConflict)"
...

However, the first will result in the character being rude
and the second in losing money:
// UnilateralDemand
...
<Effect probability="1.0">
<Property operator="=" name="[AGENT](isRude)" value="True"/>
...

// FallbackDemand
...
<Effect probability="1.0">
<Property operator="=" name="[AGENT](lostMoney)" value="True"/>
...

In turn, the agent can have two interest goals: of maintain-
ing calm by not being rude, and not losing money. Consider
that the first will be violated by UnilateralDemand and the
second by FallbackDemand. Additionally, consider a third
goal that has as a precondition that someone owes the agent
and as a success condition that the corresponding conflict is
resolved:
<ActivePursuitGoal
name="ResolveOwesConflict([character],[objectOwed])">
<PreConditions>
<Property name="[character](ownsTo)"

operator="=" value="[SELF]" />
</PreConditions>
<SuccessConditions>
<Property name="[SELF](resolvedOwesConflict)"
operator="=" value="True" />
</SuccessConditions>
<FailureConditions>
</FailureConditions>
</ActivePursuitGoal>

We again have the example scenario modeled. The ele-
ment that is missing is the strategy selection according to
the goal importance. That is defined in the following way:
<Goals>
<Goal name="ResolveOwesConflict([character],[objectOwed])"

importanceOfSuccess="6" importanceOfFailure="6" />
<Goal name="MaintainCalm()"

importanceOfSuccess="3" importanceOfFailure="3" />
<Goal name="MaintainMoney()"

importanceOfSuccess="4" importanceOfFailure="4" />
</Goals>

In this case the most important goal is resolving the conflict,
followed by not losing money, and keeping calm lastly. Not
considering other potential goals, the described character,
when having someone owe it money, will try to do a unilat-
eral demand. A dominant strategy is favored. If Maintain-
Calm was more important than MaintainMoney, but still less
important than ResolveOwesConflict, the character would
end up choosing to fallback on its demands. An accom-
modating strategy would be favored. Finally, if Resolve-
OwesConflict was less important than both, the agent would
chose neither, resulting in a avoiding strategy. In the three
cases, since both MaintainMoney and MaintainCalm goals
are activated, and the agent considers actions that would vi-
olate them, the agent worries about them. This is imple-
mented as a fear emotion added to the characters emotional
state.

138



Modeling comparison
We have already started to identify differences in both mod-
eling strategies as we were describing them. Here we will
go into greater depth regarding the authorial differences be-
tween frameworks. We assume that when the system is au-
thored the designers have narrative elements in mind (char-
acter traits, action tendencies, desired outcomes, general
theme, etc.). Consequently, it is valuable to evaluate the
methods in a narrative perspective. We will consider the ap-
proach described in (Thue, Bulitko, and Spetch 2008) for
categorizing design decisions in interactive narratives. That
is not to say that the output of both systems will necessarily
be a story. It might in fact score low in Ryan’s metrics for
classical narrativeness (Ryan 2006).

In (Thue, Bulitko, and Spetch 2008) narrative is structured
into story events. These have core attributes quoted here for
clarity:
• Idea A brief description of the action that occurs.
• Actors The people/creatures/forces that either perform

some action or are acted upon.
• Time The time at which the action begins.
• Place The environment(s) in which the action occurs.
• Actions The changes that actors make to themselves, other

actors, or their environment.
• Reasons The notions held by actors that prompt their ac-

tions.
Orthogonally, the choice of these attributes can be clas-

sified according to the following design decision properties
(Thue, Bulitko, and Spetch 2008):

• Chooser The party who made the decision - either the
player or the author.

• Time The time at which the authoring decision was made.
• Method The mechanism used to make the decision - this

may be author imagination, a particular (computer) algo-
rithm, or an in-game player action.

• Justification The author’s or player’s reason for using the
method that they chose.

The list of the possible values we will consider for
Chooser are: player, author and emergent (resulting from an
emergent AI driven system). Notice that in (Thue, Bulitko,
and Spetch 2008) the emergent value for Chooser was not
explicitly identified. In (Thue, Bulitko, and Spetch 2008) de-
cision time can either be offline (before system deployment)
or online (after system is deployed authorship still affects
story decisions). For the considered systems it is always of-
fline in case of an author choice, and online for both player
and emergent decisions. We will describe the attributes ac-
cording to what is directly supported by each framework
(hypothetically all features are available since both systems
interface with Java code). The comparative analysis is sum-
marized in Figure 2.

Regarding the Idea, Actors and Place for both frameworks
we have that the chooser is the author, and both method and
justification have no restrictions or are biased in any direc-
tion. FAtiMA has been applied in serious game applications

which would lead it for more pedagogically oriented justi-
fications. However, the framework itself does not condition
authoring in that direction.

FAtiMA takes into account the player and an emer-
gent system when deciding the events’ Time property.
Events/actions can happen when emotions trigger motivat-
ing goals to be activated or when the user takes action. In
ABL the system can react to player input each time it eval-
uates its behavior tree (player) and sequenced behavior can
be encoded (author). Concerning the action property, ABL
behaviors are selected according to preconditions and speci-
ficity defined by the author, and the player can affect WMEs
used in action preconditions. In FAtiMA the concatena-
tion of unitary actions results in an emergent action plan to
achieve the most relevant goals, and the player’s actions af-
fect the emotional state of characters that will in turn affect
their actions. Finally, the Reasons in ABL are authorially
encoded by the link between behaviors and actions, while in
FAtiMA the concrete motivation for a sequence of actions
is determined dynamically at runtime. Additionally, in FA-
tiMA one can define personality traits for characters.

By identifying these design decision features we can have
a clearer idea of what steps require more effort or have more
restrictions. We analyzed the two approaches according to
the following modeling dimensions:
• mapping theory: if the framework allows existing map-

ping community concepts directly (direct) or forces adap-
tation to the framework’s concepts (indirect).

• emotion: if the framework supports the expression of
characters’ emotional state.

• model checking: how the framework inform about pos-
sible problems in the authored input. This dimension is
pointed out as an area of potential innovation in (Mehm et
al. 2012).

• variability: how the framework supports variation on the
experiences generated (Chen et al. 2009).

• policy change: effort to fine tune generated experiences
in a specific direction (inspired in (Chen et al. 2009)).
Given our modeling, we draw some values for the men-

tioned dimensions (summarized in Figure 2). We found it
harder to directly map theoric conflict concepts of organi-
zational management, such as resolution strategies, in FA-
tiMA. Neither goals or unitary actions in FAtiMA are a good
fit for the notion of strategy. On one hand strategies should
define acted behavior like unitary actions, on the other they
should also encode Reasons dependent on character traits,
that in FAtiMA can only be specified at the goal level. We
were forced to use boolean character attributes to establish
this link, which are little more than flags. In ABL we could
map a resolution strategy (e.g. dominating) in a type of con-
flict (e.g. owes conflict) to a behavior fulfilling a goal of
resolving that type of conflict (e.g. resolveOwesConflict).

FAtiMA’s focus on emotions does not match well the con-
flict theory we considered. Nevertheless, conflict situations
tend to generate emotional responses and FAtiMA generated
an emotional state for the characters with little additional ef-
fort (e.g. fear emotions caused by threatened goals). Con-

139



Properties ABL FAtiMA
time (event) author & sequencing emergent & emotion triggering

player behavior tree re-evaluation player
actions (event) author & preconditions and specificity emergent & plans

player WMEs changed player actions affect emotional state
reasons (event) author behavior to goal link emergent & plans and emotions

author character traits
mapping theory direct indirect through emotion concepts
emotion none emergent plan analysis
model checking early compilation time later runtime XML verification
variability embedded randomness between equivalent

behaviors
uncontrollable numeric uncertainty of goal im-

portance comparison
policy change medium effort preconditions numeric tuning harder numeric tuning of goal importance

and other personality attributes

Figure 2: Authoring differences between ABL and FAtiMA

cerning model checking, the fact that XML authoring errors
in FAtiMA are only detected at runtime makes debugging
slower, namelly for Actions and Reasons. ABL’s compiler
error checking allowed a faster iterative process.

In regards to variability of Actions, when in ABL two be-
haviors fulfill a goal, have their preconditions met, and have
the same specificity, the system selects one random behav-
ior (e.g. choice between dominating or integrating strategies
if the character has high concern for self). Thus, variabil-
ity is embedded on how the behavior choice is made. In
opposition, by default FAtiMA ranks plans according to the
extent by which they achieve goals, selecting the optimal
one. Consequently, at any time only one behavior can be se-
lected, even if two should be equally likely. For instance, if
goal A’s importance is only slightly more important than B,
there should be a close to 50% chance of B being selected,
but currently A would have a 100% chance of being selected.
There is still variability due to the dynamic influence of the
emotional state on the characters decision making, and con-
sequent numeric uncertainty, but it is harder to get an insight
on how that variability will occur.

In a related topic, it is harder to fine tune the experience
from a design point of view in a specific direction in FA-
tiMA because so much of the action choice is left to the
emotionally driven planner (policy change). It is unclear
how each specific numeric importance value, in the goals
for instance, will affect the resulting actions (e.g. effect on
behavior choice of changing the exact importance on goals).
Unlike ABL in which by linking behaviors goals explicitly
this fine tuning is more flexible. Nevertheless, there is still
some numeric obscureness when it comes to scalar values
used in ABL’s preconditions, since for an author to under-
stand which behavior will be selected in a certain context
she needs to go through all behavior preconditions fulfilling
that goal.

Conclusions
In this paper we have described how to model interpersonal
conflict in ABL and FAtiMA, and compared design charac-
teristics of both. Generalizing the method used, we conclude
that a possible approach to compare the social expressive-

ness of AI frameworks is to: model example scenarios; spec-
ify design decisions of Chooser, Time, Method and Justifica-
tion for event properties; consider how these design choices
support or hinder the modeling dimensions (mapping theory,
emotion, model checking, variability and policy change).

In the specific context of interpersonal conflict, we found
it was easier to map conflict concepts in ABL and the model
checking process was faster. FAtiMA had better support for
emotion and other emergent attributes.

From our study we have realized that in both approaches
the process of selecting behaviors based on several related,
but separately defined, preconditions is abstruse, conse-
quently affecting policy change. To address this issue, we
propose structuring preconditions in decision trees for both
frameworks. Behaviors that fulfilled the same goal would
be the leafs of a decision tree that would take into account
personality traits and contextual factors. Besides making the
behavior selection more clear, presenting the decision trees
visually to designers would help them understand the con-
sequences of their choices. It should of course be noted that
in FAtiMA we would not directly have common goals, but
rather common post conditions. Alternatively, the decision
tree might simply provide an additional scalar bonus to the
behavior selection, effectively relaxing a precondition to a
scalar factor.

Acknowledgments
This work has been supported, in part, by the FP7 ICT
project SIREN (project no: 258453). We would like to thank
John Grey for his invaluable introduction to ABL and Reid
Swanson for his feedback on modeling conflict.

References
Campos, J.; Martinho, C.; and Paiva, A. 2013. Conflict
inside out: A theoretical approach to conflict from an agent
point of view. In in Proceedings of the Twelfth International
Conference on Autonomous Agents and Multiagent Systems.
Chen, S.; Nelson, M.; Sullivan, A.; and Mateas, M. 2009.
Evaluating the authorial leverage of drama management. In

140



Proceedings of the AAAI Spring Symposium on Intelligent
Narrative Technologies II.
Damasio, A. 1994. Descartes’ error: Emotion, reason, and
the human brain.
Dias, J.; Mascarenhas, S.; and Paiva, A. 2011. Fatima mod-
ular towards an agent architecture with a generic appraisal
framework. In Proceedings of the International Workshop
on Standards for Emotion Modeling.
Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence 2(3):189–208.
2012. Immerse. http://games.soe.ucsc.edu/immerse-project-
job-opening.
Mateas, M., and Stern, A. 2004. A behavior language: Joint
action and behavioral idioms. Life-like Characters. Tools,
Affective Functions and Applications 194:1–28.
Mateas, M. 1999. An oz-centric review of interactive drama
and believable agents. Artificial intelligence today 297–328.
McCoy, J.; Treanor, M.; Samuel, B.; Tearse, B.; Mateas, M.;
and Wardrip-Fruin, N. 2010. Comme il faut 2: a fully real-
ized model for socially-oriented gameplay. In Proceedings
of the Intelligent Narrative Technologies III Workshop, 10.
Mehm, F.; Reuter, C.; Göbel, S.; and Steinmetz, R. 2012.
Future trends in game authoring tools. In Entertainment
Computing-ICEC 2012. Springer. 536–541.
Ortony, A.; Clore, G. L.; and Collins, A. 1990. The cognitive
structure of emotions. Cambridge university press.
Rahim, M. 2010. Managing conflict in organizations. Trans-
action Pub.
Ryan, M.-L. 2006. Avatars of story, volume 17.
Swanson, R., and Jhala, A. 2012. Rich computational
model of conflict for virtual characters. In Intelligent Vir-
tual Agents, 502–504. Springer.
Thue, D.; Bulitko, V.; and Spetch, M. 2008. Making sto-
ries player-specific: Delayed authoring in interactive story-
telling. In Interactive Storytelling. Springer. 230–241.
Wardrip-Fruin, N. 2012. Expressive Processing: Digital
Fictions, Computer Games, and Software Studies. Reading,
Massachusetts: The MIT Press.
Yannakakis, G. N. 2012. Game ai revisited. In Proceed-
ings of the 9th conference on Computing Frontiers, 285–
292. ACM.

141




