
Integrating Monte Carlo Tree Search with Knowledge-Based Methods
to Create Engaging Play in a Commercial Mobile Game
Daniel Whitehouse and Peter I. Cowling and Edward J. Powley

Department of Computer Science, University of York, UK
dw830@york.ac.uk, peter.cowling@york.ac.uk, edward.powley@york.ac.uk

Jeff Rollason
AI Factory Ltd., Pinner, Middlesex, UK

jeff.rollason@ntlworld.com

Abstract

Monte Carlo Tree Search (MCTS) has produced many
recent breakthroughs in game AI research, particularly
in computer Go. In this paper we consider how MCTS
can be applied to create engaging AI for a popular
commercial mobile phone game: Spades by AI Fac-
tory, which has been downloaded more than 2.5 million
times. In particular, we show how MCTS can be inte-
grated with knowledge-based methods to create an in-
teresting, fun and strong player which makes far fewer
plays that could be perceived by human observers as
blunders than MCTS without the injection of knowl-
edge. These blunders are particularly noticeable for
Spades, where a human player must co-operate with
an AI partner. MCTS gives objectively stronger play
than the knowledge-based approach used in previous
versions of the game and offers the flexibility to cus-
tomise behaviour whilst maintaining a reusable core,
with a reduced development cycle compared to purely
knowledge-based techniques.

Monte Carlo Tree Search (MCTS) is a family of game
tree search algorithms that have advanced the state-of-the-
art in AI for a variety of challenging games, as surveyed
in (Browne et al. 2012). Of particular note is the success
of MCTS in the Chinese board game Go (Lee, Müller, and
Teytaud 2010). MCTS has many appealing properties for
decision making in games. It is an anytime algorithm that
can effectively use whatever computation time is available.
It also often performs well without any special knowledge
or tuning for a particular game, although knowledge can be
injected if desired to improve the AI’s strength or modify its
playing style. These properties are attractive to a developer
of a commercial game, where an AI that is perceived as high
quality by players can be developed with significantly less
effort than using purely knowledge-based AI methods. This
paper presents findings from a collaboration between aca-
demic researchers and an independent game development
company to integrate MCTS into a highly successful com-
mercial version of the card game Spades for mobile devices
running the Android operating system.

Most previous work on MCTS uses win rate against a
fixed AI opponent as the key metric of success. This is ap-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

propriate when the aim is to win tournaments or to demon-
strate MCTS’s ability to approximate optimal play. However
for a commercial game, actual win rate is less important than
how engaging the AI is for the players. For example if the
AI is generally strong but occasionally makes moves that
appear weak to a competent player, then the player’s enjoy-
ment of the game is diminished. This is particularly impor-
tant for games such as Spades where the player must cooper-
ate with an AI partner whose apparent errors result in losses
for the human player. In this paper we combine MCTS with
knowledge-based approaches with the goal of creating an AI
player that is not only strong in objective terms but is also
perceived as strong by players.

AI Factory1 is an independent UK-based company, incor-
porated in April 2003. AI Factory has developed a successful
implementation of the popular card game Spades, which to
date has been downloaded more than 2.5 million times and
has an average review score of 4.5/5 from more than 78 000
reviews on the Google Play store. The knowledge-based AI
used in previous versions plays competitively and has been
well reviewed by users. This AI was developed using ex-
pert knowledge of the game and contains a large number
of heuristics developed and tested over a period of 10 years.
Much of the decision making is governed by these heuristics
which are used to decide bids, infer what cards other players
may hold, predict what cards other players may be likely to
play and to decide what card to play.

In AI Factory Spades, players interact with two AI oppo-
nents and one AI partner. Players can select their partners
and opponents from a number of AI characters, each with
a strength rating from 1 to 5 stars. Gameplay data shows
that relatively few players choose intermediate level oppo-
nents: occasional or beginning players tend to choose 1-star
opponents, whereas those players who play the game most
frequently play almost exclusively against 5-star opponents.
Presumably these are experienced card game players seek-
ing a challenge. However some have expressed disappoint-
ment with the 5-star AI: although strong overall, it occa-
sionally makes apparently bad moves. Our work provides
strong evidence for a belief commonly held amongst game
developers: the objective measures of strength (such as win
rate) often used in the academic study of AI do not nec-

1http://www.aifactory.co.uk

Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

100



essarily provide a good metric for quality from a commer-
cial AI perspective. The moves chosen by the AI may or
may not be suboptimal in a game theoretic sense, but it is
clear from player feedback that humans apply some intu-
ition about which moves are good or bad. It is an unsatisfy-
ing experience when the AI makes moves which violate this
intuition, except possibly where violating this intuition is a
correct play, but even then this appears to lead to player dis-
satisfaction. The primary motivation for this work is to im-
prove the strongest levels of AI play to satisfy experienced
players, both in terms of the objective strength of the AI and
in how convincing the chosen moves appear.

Previous work has adapted MCTS to games which, like
Spades, involve hidden information. This has led to the de-
velopment of the Information Set Monte Carlo Tree Search
(ISMCTS) family of algorithms (Cowling, Powley, and
Whitehouse 2012). ISMCTS achieves a higher win rate than
a knowledge-based AI developed by AI Factory for the Chi-
nese card game Dou Di Zhu, and also performs well in other
domains. ISMCTS uses determinizations, randomisations of
the current game state which correspond to guessing hidden
information. Each determinization is a game state that could
conceivably be the actual current state, given the AI player’s
observations so far. In Spades, a determinization is generated
by randomly distributing the unseen cards amongst the other
players. Each ISMCTS iteration is restricted to a newly gen-
erated determinization, resulting in a single tree that collects
statistics from many determinizations.

We demonstrate that the ISMCTS algorithm provides
strong levels of play for Spades. However, previous work on
ISMCTS has not dealt with the requirements for a commer-
cially viable AI. Consequently, further research and devel-
opment was needed in order to ensure the AI is perceived to
be high quality by users. However, the effort required to in-
ject knowledge into MCTS was small compared to the work
needed to develop a heuristic-based AI from scratch. MCTS
therefore shows great promise as a reusable basis for AI in
commercial games. The ISMCTS player described in this
paper is used in the currently available version of AI Fac-
tory Spades for the 4- and 5-star AI levels, and AI Factory
have already begun using the same code and techniques in
products under development.

This paper is structured as follows. We begin by outlining
the rules of Spades and describing the knowledge-based ap-
proach used in AI Factory Spades. We then discuss some of
the issues encountered in integrating MCTS with an exist-
ing mature codebase, and in running MCTS on mobile plat-
forms with limited processor power and memory. We assess
our MCTS player in terms of both raw playing strength and
player engagement. We conclude with some thoughts on the
promise of MCTS for future commercial games.

Spades
Spades is a 4-player trick taking card game which originated
in the United States in the 1930s but has since spread world-
wide (Pagat 2013). Spades shares many similarities with the
game of Bridge, with equally deep strategy yet slightly sim-
pler rules. The players are named after the compass points,
with North and South forming a coalition against East and

West. A game is played across multiple rounds where each
partnership receives a score at the end of each round. The
winning partnership has the highest score when one or both
partnerships exceed 500 total points at the end of a round.

At the start of a round each player is dealt a 13 card hand
from a standard 52 card deck. In turn, players provide a sin-
gle bid which is an estimate of how many tricks they expect
to take from their hand that round. Each trick consists of
each player in turn playing a card out onto the table. One
of the players (rotating between rounds) is designated the
leader and may play any card (with the exception that ♠
cards cannot be led until broken, i.e. until a ♠ is played as
a non-leading card). Subsequent players must match the suit
of that card if they can. If a player cannot follow suit, they
may play any card. The winning card is the one with the
highest rank matching the suit played by the leader, unless
a ♠ card was played in which case the ♠ trumps the other
suit (and the highest ranked ♠ wins the trick instead). The
winner of the trick becomes the leader of the next trick. The
round ends when all players have played all their cards, so a
round consists of 13 tricks.

At the end of the round, scoring is performed. Each part-
nership aims to take enough tricks between them to match
their total bid. It does not matter whether or not the individu-
als in a partnership make their bids, only that the total is met.
If a partnership makes their bid, they earn 10 times their bid
in points but if they fail they lose that many points instead.
Any extra tricks taken are called bags and are worth 1 point
each. If throughout the course of a game a partnership col-
lects 10 or more bags, they lose 100 points and 10 bags. The
scoring rules change when a player bids nil (0 tricks). In this
case scoring is performed as usual but the player bidding nil
wins 100 points if they individually took no tricks, or loses
100 points if they took any tricks.

Knowledge-based AI for Spades
The existing AI player for AI Factory Spades is based on
a heuristic-based program written in 2003 that was later
evolved with substantial heuristic knowledge and in 2012
enhanced to use basic variations of Monte Carlo methods.

The AI chooses its bid based on a heuristic assessment of
its hand. Each card has a certain probability of taking a trick
(which may depend on what other cards are in hand). Sum-
ming these probabilities gives an expected number of tricks.
This type of hand evaluation is commonly used by experi-
enced human players. The bidding heuristics also take into
account whether either partnership is at risk of exceeding
the 10 bag limit and thus incurring a penalty: if the player
partnership is close to the bag limit, it is often better to bid
high than risk taking more bags. The bid is also adjusted by
a personality factor (allowing for “timid” and “aggressive”
AI characters) and a small random factor.

In Spades, players can make inferences on what cards
other players hold in their hands, based on their bids and the
cards they choose to play. The AI maintains a table for each
player other than itself, recording the probabilities of that
player holding each individual card in the deck. These prob-
abilities are updated as the game progresses according to a
set of hand-designed rules. There are also hard constraints

101



which follow from the rules of the game: if a player fails to
follow suit then they cannot possibly hold any cards in that
suit, so the probabilities are set to zero.

For card play, the AI uses flat Monte Carlo evaluation
with heuristic simulations. Each move from the current
game state is assessed by playing out a set number of simu-
lated rounds. The simulations use a combination of random
moves and moves chosen according to a heuristic evaluation
with automatically tuned weights (Rollason 2012). The AI
then chooses the move with the best average simulation re-
sult. The number of simulations depends on the stage in the
current round and on the AI player level: at the beginning
of the round a 5-star player uses 128 simulations per avail-
able move, and a 4-star player uses half as many. To avoid
occasional mistakes or “oddball” plays, a bonus is added to
the Monte Carlo evaluations for the best and second best
moves according to the knowledge-based heuristic evalua-
tion. Thus the final choice of move is skewed towards that
recommended by a heuristic evaluation (Rollason 2011).

To model the hidden information in the game, each sim-
ulation is played out on a randomised version of the cur-
rent game state (a determinization). The AI uses the inferred
probabilities described above to randomise the other play-
ers’ hands, i.e. to redistribute the unseen cards amongst the
players. The algorithm first deals high cards (J,Q,K,A)
and ♠ cards to each player according to their bids, using
a similar hand assessment to the one used in bidding. It
then deals the remainder of the cards in descending suit or-
der, dealing each card according to its inferred probabilities
and ensuring that each player is dealt the correct number
of cards. It is important to note that the AI never “cheats”:
knowledge of other players’ cards, other than that gained
by inference, is never used in the AI’s decision process.
There are similarities between this approach and that used by
GIB (Ginsberg 2001), which achieved world champion level
play in Bridge. GIB uses fewer determinizations (around
50), but solves each one to find the exact game theoretic
value rather than performing Monte Carlo simulations.

It is difficult to estimate the strength of state of the art
AI for Spades, since we are unaware of any competitions
or benchmark programs to test against. Based on player
feedback and reviews, the AI is perceived as reasonably
strong overall, but some of its individual decisions can ap-
pear weak. For example if the human player has bid nil, the
AI partner will sometimes lead with a low card which forces
the human player to take a trick, where leading with a high
card in the same suit would have been safer. Also, the AI
players sometimes waste high-value cards or trumps, play-
ing a card of much higher value than needed to win the trick
or stealing a trick from their partner. These occurrences are
rare, but the size of the player base for AI Factory Spades
means they are encountered by hundreds of players and po-
tentially result in commercially damaging negative reviews.

MCTS implementation
MCTS for mobile devices
Many of the successes of MCTS, particularly for Go and
General Game Playing, have seen highly parallelised imple-

mentations of the algorithm running on powerful worksta-
tions or clusters (Enzenberger et al. 2010; Björnsson and
Finnsson 2009). Mobile devices are rapidly increasing in
power but have yet to achieve this level of performance, and
a significant proportion of AI Factory’s user base still play
on older devices. Even on high-end devices, a well-behaved
mobile game should moderate its processor usage in order to
preserve multitasking performance and extend battery life.

Our MCTS implementation is written in C++ and inter-
acts directly with the AI Factory Spades game engine. The
number of MCTS iterations for the highest AI difficulty level
is set to 2500, which gives a reasonable tradeoff between
playing strength and decision time. Executing 2500 itera-
tions takes less than a quarter of a second on a Samsung
Galaxy S II. On less capable handsets the number of iter-
ations is automatically scaled down so that moves do not
take longer than 250ms; this is not a hard technical limit,
but many players complain of slow performance if it is ex-
ceeded. The bottlenecks for fast performance in MCTS im-
plementations tend to be cloning the game state, generating
lists of legal moves, and playing moves during simulation.
and these parts of the code were extensively optimised.

Since each MCTS iteration adds a new node to the tree,
the memory required by MCTS is the maximum number of
iterations multiplied by the size of the node structure. In
our implementation this gives a modest memory footprint
of 2500× 56 bytes = 140 kilobytes.

ISMCTS for Spades
We use ISMCTS for card play only; initial testing showed
that ISMCTS is poor at making bidding decisions. This is
not surprising, as assessing the bid purely by tree search po-
tentially requires the search to look ahead to the end of the
round. Thus our player uses the knowledge-based bidding
heuristics described in the previous section.

Each ISMCTS iteration begins by generating a deter-
minization of the current information set at random. To let
the ISMCTS player use the knowledge-based inference en-
gine, we use the hand randomisation algorithm described in
the previous section to generate determinizations.

Usually MCTS algorithms play out a game to comple-
tion on each iteration. This performs poorly in Spades since
there may be many rounds left to play, and playing rounds
randomly usually results in both teams repeatedly failing
their bid and accumulating negative points so that the score
threshold of 500 points is never reached. Instead we termi-
nate the playouts at the end of the current round and back-
propagate the score difference value

(sp − 10bp)− (so − 10bo)

c
. (1)

Here sp and so are the numbers of points accumulated in
this round by the player and opponent partnerships respec-
tively, and bp and bo are the numbers of bags accumulated in
this round. The normalising constant c is chosen to ensure
the evaluation produces values typically within the interval[
− 1

2 ,
1
2

]
; the size of this interval is 1, so standard values

for the UCB1 exploration constant can be used (Audibert,
Munos, and Szepesvári 2009). Each bag is equated with a

102



penalty of 10 points, meaning that the AI sees the penalty
of bags upfront rather than when 10 bags are accumulated.
This simple evaluation captures several key tactical ideas in
Spades such as making your bid, preventing your opponents’
bid, avoiding bags and giving bags to your opponent. This
evaluation is applied only to compare outcomes of the cur-
rent round during card play, so it does not need to capture
tactical ideas for bidding.

Integrating heuristic knowledge
We shall see that the ISMCTS player described here is strong
in terms of empirical win rate, but occasionally makes plays
which appear weak to a human observer. This issue was ad-
dressed in the knowledge-based player by skewing the final
choice of move away from that suggested by the flat Monte
Carlo assessment and towards that recommended by the
heuristic move evaluation. However, overruling the MCTS
player in this way would remove the flexibility of MCTS to
find stronger card plays when the play recommended by the
knowledge-based heuristic, while plausible, is weak.

Instead we use an approach similar to progressive
bias (Chaslot et al. 2008), in which heuristic knowledge is
used to skew the initial exploration but the influence of this
knowledge decays to zero as the search progresses. Specif-
ically, each available move is assigned a skew value in the
range

[
1
2 ,

3
2

]
. These skew values are derived from a mod-

ification of the existing knowledge-based heuristics. Dur-
ing search, the backpropagated reward is multiplied by the
corresponding skew value, so that moves with skew value
greater than 1 have their rewards inflated and moves with
skew value less than 1 have their rewards reduced. The skew
values decay towards 1 as more MCTS iterations are exe-
cuted: the values are scaled by t

k+t , where t is the itera-
tion number and k is a tuned constant. This allows MCTS to
overrule the heuristic knowledge as search progresses.

Quality and experience of play
Playing strength
To test the objective strength of the MCTS AI, we played
a large number of AI-versus-AI games. In each of these
games, both members of one partnership use the MCTS AI
(with or without integrated heuristic knowledge) and both
members of the other partnership use the knowledge-based
AI. We test 2 × 4 × 2 = 16 combinations in total: two set-
tings for knowledge embedding (enabled or disabled), four
settings for the number of MCTS iterations (1200, 1700,
2600 or 5000), and two settings for the difficulty level of
the knowledge-based AI (“default” or “hardest”). In the cur-
rent version of the game, 4- and 5-star players use MCTS
and the lower levels use the knowledge-based AI. The 4-
and 5-star MCTS players use 1000 and 2500 MCTS iter-
ations respectively. The default knowledge-based AI tested
here corresponds to a 3-star player. Extrapolating the star
rating system, the hardest knowledge-based AI is effectively
a 6-star player. The hardest AI would consume more than 2
seconds per move on a Samsung Galaxy S II, and represents
a more challenging level of play than is available in the pub-
lished game. The MCTS player with 5000 iterations would

need only 0.5 seconds per move.
For each combination we play 1000 full games, and

record the number of games won by the MCTS partner-
ship. To assess statistical significance we compute 95% con-
fidence intervals (Clopper and Pearson 1934). To reduce the
variance of the results, each combination is tested with the
same 1000 random seeds, i.e. the same 1000 sets of deals.

Figure 1 (a) shows the results of this experiment. For all
tested numbers of iterations the MCTS AI is significantly
stronger than the default level of the knowledge-based AI.
For 2600 iterations and above MCTS is on a par with the
hardest level. The benefit of performing more MCTS iter-
ations is small but statistically significant: increasing from
1200 to 5000 iterations increases the win rate by 7–8%. In-
tegrating heuristic knowledge has no statistically significant
impact, but appears slightly beneficial for small numbers of
iterations against the hardest opponent.

Strong play in the presence of nil bids requires different
tactics from normal play, both for the nil bidder and for
their partner. However nil bids are rare in normal play, so
the influence of weak nil bid play cannot be assessed from
overall win rates. Instead we test on an artificial variant of
Spades designed to ensure that every round has at least one
nil bid. At the start of the round, players bid as normal. If
no player bids nil, the hands are redealt. Once a nil bid has
been made, the round proceeds. This process continues until
the score limit is reached as normal. We repeated the pre-
vious experiment on this variant of the game, with results
shown in Figure 1 (b). Here the benefit of MCTS over the
default knowledge-based AI is much larger than for the stan-
dard game, and MCTS is significantly better than the hardest
opponent level. Note that the knowledge-based AI incorpo-
rates many heuristics for the special case of nil bids, whereas
MCTS uses exactly the same evaluation as in the non-nil
game (Equation 1), yet still the latter outperforms the former.
Again there is no statistically significant difference between
the ISMCTS players with and without heuristic knowledge,
although the overall trend suggests that the knowledge may
be slightly detrimental against the hardest opponent.

Playing style
In creating enjoyable AI for a commercial game, playing
strength is secondary to player perception of intelligence.
This is particularly true for Spades, where the majority of
complaints regarding playing style are to do with perceived
weak plays. In its aheuristic form, MCTS is more prone to
occasional “oddball” plays than knowledge-based AI, par-
ticularly if the expected reward from the oddball play is
close to that from the more sensible play. For example if
a player is short of tricks and can choose to discard 8♦ or
10♦ (with 9♦ unseen), then the discard of 8♦ is the obvi-
ous choice as 10♦ has marginally more chance of taking a
trick later in the round. In reality the advantage delivered in
this choice is actually very small, too small for MCTS to
make a guaranteed distinction between these two choices.
Even in situations where the choice of card has no influence
on the game whatsoever, for example if neither 8♦ nor 10♦
can possibly take a trick, a human observer still has certain
expectations regarding what constitutes a plausible play.

103



(a) (b)

30%

35%

40%

45%

50%

55%

60%

65%

70%

1000 1500 2000 2500 3000 3500 4000 4500 5000

M
C

T
S

 w
in

 r
at

e

MCTS iterations

ISMCTSpwithoutpknowledgepvspdefaultpopponent

ISMCTSpwithpknowledgepvspdefaultpopponent

ISMCTSpwithoutpknowledgepvsphardestpopponent

ISMCTSpwithpknowledgepvsphardestpopponent

40%

45%

50%

55%

60%

65%

70%

75%

80%

1000 1500 2000 2500 3000 3500 4000 4500 5000

M
C

T
S

 w
in

 r
at

e

MCTS iterations

ISMCTSawithoutaknowledgeavsadefaultaopponent

ISMCTSawithaknowledgeavsadefaultaopponent

ISMCTSawithoutaknowledgeavsahardestaopponent

ISMCTSawithaknowledgeavsahardestaopponent

Figure 1: Playing strength of MCTS AI versus knowledge-based AI, for (a) the standard game of Spades; (b) the modified game
where every round features a nil bid. Error bars show 95% confidence intervals.

A beta version of AI Factory Spades with the MCTS
AI, but without the integrated heuristic knowledge, was dis-
tributed to a number of testers. An in-game menu option al-
lowed the tester to send bug reports, comprising user com-
ments and information about the AI settings, current game
state and move history. We received a total of 18 beta test
reports which highlighted perceived instances of poor play.
It is worth emphasising that all of these reports were high-
lighting specific instances of perceived incorrect play, and
not for example making more general comments regarding
the AI’s overall playing style. Of these, three were situations
in which the AI player was forced to play an apparently poor
move: for example, a tester complains that leading a ♥ was
a bad play, but the AI player had only ♥ cards in their hand
at that point. The remaining 15 reports highlight poor deci-
sions by the AI player. These fall into two main categories,
with roughly half of the reports in each:

1. The AI partner fails to cover the human player’s nil bid.
For example, North leads with 3♥, East plays 4♥, and
South (the human player) is forced to follow suit with 5♥.
West plays 2♥, so South wins the trick and loses the nil
bid. North held higher cards in ♥, any of which would
have been a safer leading play.

2. An AI player (partner or opponent) wastes a high value
card. For example, North leads with K♦ when A♦ has
not yet been seen, or North plays K♣ in a trick where
A♣ is already the highest card. (This is not always a bad
play, but is often perceived as such.)

The majority of the reports in both categories related to
the player’s partner rather than an opponent. This does not
necessarily mean that the partner AI is weaker or less plau-
sible than the opponent AI, just that any unusual moves are
more likely to be noticed (especially if, from the human
player’s point of view, a mistake by the AI partner results
in a loss). Mistakes by the AI opponents generally lead to
wins for the human player, and thus are less frustrating.

A plausible explanation for the first category of problem
is that random simulations tend to fail nil bids. Thus the AI

player will effectively assume the nil bid will fail and in-
stead aim for other objectives (making its own bid, causing
the opponents to fail theirs) to minimise the loss in score dif-
ference. Preliminary experiments with a simple rule-based
simulation policy (instead of playing randomly, the nil bid-
der plays the highest card that avoids taking the current trick)
show promise for mitigating this, but are not employed in the
currently released version of the game as knowledge embed-
ding is also effective in these cases.

For the second category of problem, the AI player may
be unable to see the value of the high card, as the trick that
could be won by that card is beyond the horizon of the tree.
The ISMCTS tree for a decision near the start of a round
usually has a maximum node depth of 4 or 5, so the tree
generally includes only the current trick and part of the next
trick. We observed a similar effect in the board game Lord of
the Rings: The Confrontation, where an MCTS player tends
to waste high-value combat cards early in the game (Cowl-
ing, Powley, and Whitehouse 2012).

With any method based on random simulation, it is in-
evitable that poor quality moves will be chosen with nonzero
probability, due to a particularly lucky run of simulations
making the move appear better than it is. For each poor deci-
sion, we ran MCTS 1000 times and counted how many times
each move was chosen. In six of the reports, we found that
MCTS chose the incorrect move in fewer than 5% of trials.
Performing more MCTS iterations, or performing several in-
dependent searches and combining the results in the style
of ensemble MCTS (Fern and Lewis 2011), would mitigate
these problems, but would be costly in terms of computation
time and thus are not currently implemented.

At least three of the incorrect decisions in the beta re-
ports are a result of incorrect biases introduced by the deter-
minization sampling algorithm. If a player has bid high, the
algorithm will tend to fill that player’s hand with♠ cards and
high cards, so that when the low cards are dealt that player’s
hand is already full. Conversely a player who has bid low
will be dealt disproportionately many low cards. In one situ-
ation for example, the inferred probability of South holding

104



4♦ is 1
3 , and South does not actually hold this card. How-

ever South has bid nil whilst the other players have bid high,
so 87% of determinizations have 4♦ in South’s hand. This
leads North to assume that 5♦ is a safe leading play to cover
South’s nil bid, when in fact it is not. We tested an alter-
native determinization algorithm which respects hard con-
straints (i.e. unfollowed suits) but otherwise distributes cards
uniformly at random. This leads to correct decisions in the
situations where this type of bias occurs, but leads to many
more unusual or incorrect plays in other situations. A com-
bination of the two algorithms could work, as could a more
probabilistically sound sampling method which does not in-
troduce these erroneous biases. This is a subject for future
work; currently the game uses only biased determinizations.

The remainder of the test reports highlight poor deci-
sions which are not attributable to bad luck or bad deter-
minizations. The knowledge injection method described in
the previous section was introduced and tuned to avoid these
problems. This also produces more plausible plays in sit-
uations where ensemble methods or unbiased determiniza-
tions proved effective, and any problem situations identi-
fied by players in future can be addressed easily by modi-
fying the heuristic. The heuristic knowledge embedding was
tuned carefully to address these problem decisions without
negatively affecting playing strength, but it is worth point-
ing out that this tuning took days, rather than the weeks or
months often required to tune a purely heuristic move se-
lection method. Although the heuristic knowledge has very
little effect on objective playing strength, and may even be
detrimental in some cases, it has a significant positive impact
on the player’s subjective impressions of the AI’s strength.

Conclusion
This paper demonstrates MCTS as an AI technique that
is general purpose and easy to integrate into an existing
game product, while also being efficient enough to run on
current mobile devices. Developing a strong AI based on
MCTS requires less effort and time than developing one
based purely on knowledge-based approaches. However if
such a knowledge-based AI has already been developed, its
heuristics can be repurposed within the MCTS framework to
produce an even stronger AI, which retains the personality
and plausibility of the knowledge-based AI. Constructing a
plausibility measure to skew the choices made by MCTS is
much easier than creating an evaluation to choose the actual
move, since is it not necessary to ensure a plausibility mea-
sure is always accurate. Designing a heuristic to recommend
several moves to avoid is often easier than designing one
to recommend a single move to play. Knowledge-based ap-
proaches alone are vulnerable in situations that were not an-
ticipated by the AI designer. However, MCTS can “fill in the
gaps” of included knowledge whatever the situation, either
by evaluating situations that the knowledge does not cover
or by overruling the knowledge when it is flawed.

The existing knowledge-based AI for Spades was already
a market leader, and generally recognised as strong. The
MCTS-based player performs better by a statistically sig-
nificant margin, playing at or above a level for the previ-
ous AI which consumed over 8 times as much computation

time. MCTS play is particularly strong in the challenging
case of nil bid play. The Spades-specific parts of the MCTS
implementation are the determinization method (linked with
the inference engine), the end-of-round evaluation function,
and the initial biasing of the search by heuristic knowledge.
None of these components is essential to the basic oper-
ation of MCTS, and without these the implementation is
highly generic. The MCTS implementation now constitutes
a ready-made AI module that can simply be dropped into
future projects and produce a strong level of play with al-
most no modification. Indeed, AI Factory are already using
the same code for new games currently in development. The
MCTS framework also provides extensive hooks for game-
specific knowledge injection to improve both objective play-
ing strength and subjective playing style.

To ensure a high quality AI opponent in a commercial
game, search based methods require some tweaking in or-
der to ensure the AI behaves plausibly in all situations. It
is not enough for the AI to be strong empirically, it must
be perceived as strong by the player. For example in situa-
tions where the outcome of the round is already decided, the
choices made by MCTS are essentially random. However
a human player would still prefer some moves over others,
due to their intuition for which moves are sensible and which
are not. There are also situations where the optimal move (in
the game theoretic sense) is correctly chosen by MCTS but
looks highly counterintuitive to a human player. For exam-
ple the AI player can count cards perfectly, so potentially
has access to information that even an expert human player
would not. We have demonstrated that an MCTS based AI
can be modified to behave more plausibly without compro-
mising playing strength.

AI Factory Spades uses MCTS only for the highest AI
difficulty levels, as the knowledge-based AI is adequate for
lower levels. An MCTS based AI allows difficulty to be ad-
justed by altering the number of iterations used. It is ongo-
ing work to study how the playing style of MCTS changes
when tuning difficulty in this way. When using a low num-
ber of iterations it is likely that moves which naı̈vely appear
strong without much analysis will be chosen, which poten-
tially makes these mistakes more “human-like” than those
which might be obtained through approaches such as ran-
domly perturbing an evaluation function.

Since its invention in 2006, MCTS has been established
as a strong general-purpose technique in game AI. We be-
lieve that MCTS will rapidly gain traction in AI for com-
mercial games, due to its flexibility, ease of implementation
and out-of-the-box playing strength. Coupled with more tra-
ditional knowledge-based approaches, MCTS has the poten-
tial to deliver AI that provides not only a strong challenge
for expert players but also a wide variety of playing styles
and behaviours for interesting, immersive and fun player ex-
periences.

Acknowledgements
We thank the anonymous reviewers for their useful com-
ments. This work is funded by grant EP/H049061/1 of the
UK Engineering and Physical Sciences Research Council
(EPSRC).

105



References
Audibert, J.-Y.; Munos, R.; and Szepesvári, C. 2009. Explo-
rationexploitation tradeoff using variance estimates in multi-
armed bandits. Theor. Comput. Sci. 410(19):1876–1902.
Björnsson, Y., and Finnsson, H. 2009. CadiaPlayer:
A Simulation-Based General Game Player. IEEE Trans.
Comp. Intell. AI Games 1(1):4–15.
Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Trans. Comp. Intell. AI
Games 4(1):1–43.
Chaslot, G. M. J.-B.; Winands, M. H. M.; van den Herik,
H. J.; Uiterwijk, J. W. H. M.; and Bouzy, B. 2008. Progres-
sive Strategies for Monte-Carlo Tree Search. New Math.
Nat. Comput. 4(3):343–357.
Clopper, C. J., and Pearson, E. S. 1934. The use of confi-
dence or fiducial limits illustrated in the case of the binomial.
Biometrika 26(4):404–413.
Cowling, P. I.; Powley, E. J.; and Whitehouse, D. 2012. In-
formation Set Monte Carlo Tree Search. IEEE Trans. Comp.
Intell. AI Games 4(2):120–143.
Enzenberger, M.; Müller, M.; Arneson, B.; and Segal, R. B.
2010. Fuego - An Open-Source Framework for Board
Games and Go Engine Based on Monte Carlo Tree Search.
IEEE Trans. Comp. Intell. AI Games 2(4):259–270.
Fern, A., and Lewis, P. 2011. Ensemble Monte-Carlo Plan-
ning: An Empirical Study. In Proc. 21st Int. Conf. Automat.
Plan. Sched., 58–65.
Ginsberg, M. L. 2001. GIB: Imperfect Information in a
Computationally Challenging Game. J. Artif. Intell. Res.
14:303–358.
Lee, C.-S.; Müller, M.; and Teytaud, O. 2010. Guest Edi-
torial: Special Issue on Monte Carlo Techniques and Com-
puter Go. IEEE Trans. Comp. Intell. AI Games 2(4):225–
228.
Pagat. 2013. Spades. http://www.pagat.com/boston/spades.
html.
Rollason, J. 2011. Mixing MCTS with conventional static
evaluation. http://www.aifactory.co.uk/newsletter/2011 02
mcts static.htm.
Rollason, J. 2012. Tuning Spades. http://www.aifactory.co.
uk/newsletter/2012 01 tuning spades.htm.

106




