
Evolving Playable Content for Cut the Rope
through a Simulation-Based Approach

Mohammad Shaker1, Noor Shaker2 and Julian Togelius2
1Faculty of Information Technology Engineering, Damascus, Syria

2Center of Computer Game Research, IT University of Copenhagen, Copenhagen, Denmark
{mohammadshakergtr}@gmail.com, {nosh, juto}@itu.dk

Abstract

In order to automatically generate high-quality game levels,
one needs to be able to automatically verify that the levels
are playable. The simulation-based approach to playability
testing uses an artificial agent to play through the level, but
building such an agent is not always an easy task and such an
agent is not always readily available. We discuss this prob-
lem in the context of the physics-based puzzle game Cut the
Rope, which features continuous time and state space, mak-
ing several approaches such as exhaustive search and reactive
agents inefficient. We show that a deliberative Prolog-based
agent can be used to suggest all sensible moves at each state,
which allows us to restrict the search space so that depth-first
search for solutions become viable. This agent is successfully
used to test playability in Ropossum, a level generator based
on grammatical evolution. The method proposed in this paper
is likely to be useful for a large variety of games with similar
characteristics.

1 Introduction
Procedural generation of game content, such as maps, levels,
items and quests, is currently one of the most active fields of
research within CI/AI in games research, motivated by a real
need within the games industry as well as by scientific cu-
riosity regarding what types of content can be generated and
what we can do with this technology (Togelius et al. 2010b;
Yannakakis 2012). One of the key challenges when generat-
ing game content is to evaluate the quality of the generated
artefacts. One particular kind of quality assurance that is es-
sential for generation of “necessary” game content such as
levels is playability control, i.e. ascertaining that the level
can be successfully played through by a human player. Un-
playable levels could be such things as StarCraft maps where
there are no paths between bases, or Super Mario Bros levels
which contain gaps that are too wide to jump over. In many
games, a boring level is undesirable but acceptable, whereas
a level that cannot be passed breaks the game completely.

While it is possible to build constructive (single-pass)
level generators for some games that always produce
playable levels without playability checking, this is typically
done at great expense of the expressive range of the genera-
tor. Search-based procedural level generators, that use some

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

kind of optimisation algorithm to search the space of possi-
ble game levels, rely either on the representation to preclude
unplayable levels (again, reducing the expressive range of
the generator), or on the evaluation function to check the
playability of the level. Therefore, several recent search-
based level generators have included playability checks in
their evaluation functions.

Playability checking could be done in different ways.
There are more or less direct approaches, based on e.g. ver-
ifying the existence of paths between different points (To-
gelius et al. 2010a), measuring gap widths and drop
heights (Smith, Whitehead, and Mateas 2010) or proving
the existence of solutions when the game mechanics or
some approximation thereof can be encoded as first-order
logic (Smith and Mateas 2011). However, in many cases
you need to actually play the level in order to show that it
is playable, and thus requires us to build an agent capable
of playing the game (Ortega et al. 2012; Jaffe et al. 2012).
(Note that for any interesting games this can only ever be a
negative proof; if an agent is not able to play a level, this
does not necessarily mean that it is unplayable.) Building an
agent capable of proficiently playing a given game is rarely
straightforward.

The most straightforward approach to building a game-
playing agent is to handcode it – however, this approach is
very labour intensive, non-portable, and introduces biases
towards play-proofing levels that fits with that agent’s play-
ing style. Another approach is to use some form of rein-
forcement learning algorithm to learn to play the game, but
this approach suffers from that it’s typically hard for an al-
gorithm to quickly learn to play a game well (Togelius and
Schmidhuber 2008). One can use some form of tree search
algorithm to play the game – this works well for testing con-
tent such as board game rules (Browne and Maire 2010),
but is more problematic when testing content such as lev-
els for continuous-time games, with large branching factors
and huge state spaces such as the one we are dealing with.
Exhaustive search and most varieties of tree search are un-
feasible in such games due to the huge state space (the num-
ber of states that would need to be evaluated for an average
length level in our testbed game is 430 ∗ 1098). Reactive
planing approaches can also be applied but they suffer from
their limited planning ability and training them is not obvi-
ous due to the nature of the game which requires informed

Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

72

(a) (b)

Figure 1: Two snapshots from the original Cut The Rope
game (c) and our clone version of it (d) showing Om Nom
waiting for the candy which is attached to ropes.

choice of actions and precise timing when performing them.
In this paper, we consider the problem of automatically

generating playable levels for the popular physics puzzle
game Cut the Rope1. In a previous paper, we described Ro-
possum, a program that generates levels for this game us-
ing grammatical evolution and a heuristic evaluation func-
tion (Shaker et al. 2013). While that approach generated
interesting levels, it did not strictly guarantee that they were
solvable, and concerns of solvability in the heuristic func-
tion limited the range of levels that could be generated. In
this paper, we describe a method for automatically play-
ing Cut the Rope levels and the integration of that method
into our level generator. The method is based on depth-first
search in state space using simulations of the game by the
original physics engine. As it would be computationally
intractable to simulate the game at a fine granularity using
this method, we have restricted the search to only investigate
sensible search paths by: (1) encoding core components of
the game rules into a Prolog-based agent; (2) incorporating
as much information about the context by introducing the
set of reachable components and (3) defining the branching
points of the state tree by only the possible actions returned
by this agent.

2 Cut The Rope
The testbed game chosen is a clone of Cut The Rope (CTR),
a popular commercial physics-based puzzle video game re-
leased in 2010 by ZeptoLab for iOS and Android devices.
The game was a huge success when released and, at the time
of writing, it has been downloaded more than 100 million
times. There is no open source code available for the game
so we had to implement our own clone using a heavily modi-
fied version of the CRUST engine (Millington 2007) and the
original game art assets. The modifications include adapting
the engine to work in a 2D environment and implementing
the spring constraint. Our clone of the game, called Cut The
Rope: Play Forever, features most of the fundamental char-
acteristics of the original games. Figure 1.(c) shows one of
the level in the original game while Figure 1.(d) presents a
level from Cut The Rope: Play Forever.

The gameplay in CTR revolves around feeding candy to

1Copyright 2010 ZeptoLab

(a)
Om
Nom

(b)
Candy

(c)
Rocket

(d) Air-
cushion

(e)
Bumper

Figure 2: The various components presented in the original
Cut the Rope game and considered in our clone.

a little green monster named Om Nom. The candy is usu-
ally attached to one or more ropes which has to be cut
with a swipe of the finger in order to set it free. All game
objects obey Newtonian physics and are affected by grav-
ity. The player looses the game by letting the candy es-
cape (e.g. fall) outside the level boundaries. The game
features a puzzle component by the presence of obstacles
and other physics-based components that help redirecting
the candy. The set of components included in the origi-
nal game includes air-cushions, constrained pins, bubbles,
shooting-buttons, rockets, spikes, spiders among others (see
Figure 2). The player interacts with the game by cutting a
rope, tapping an air-cushion, a bubble or a button trigger-
ing a sequence of physics-based consequences. Solving the
level puzzle depends to a great extent on timing. Specific
actions should be taken in certain game states, otherwise the
player looses the game.

3 Game Design and Grammar
When developing a Design Grammar (DG) for Cut the Rope
levels, we chose to focus on a design pattern of the levels
that consists of ropes, air-cushions, bumpers, bubbles and
rockets. These are the most of the basic components that
could be presented in a level and therefore this pattern allows
generating interesting combinations and permits meaningful
exploration of the content space. Detailed information about
these (and some other) components and their properties can
be found in (Shaker et al. 2013).

Evolving the design of the levels is done using grammat-
ical evolution.The structure of the levels is represented in a
design grammar used by GE to evolve the levels. For more
information about how GE works in the context of level gen-
eration and more through analysis of the DG specified for
CTR, the reader may refer to (Shaker et al. 2013).

Design Contraints
According to the design grammar defined, the different com-
ponents can be placed at any position in the level map. Al-
though this allows for exploring a wide space of possible
combinations, not all of these configurations are interesting
in terms of playability and aesthetics considerations. There-
fore, we define a set of conditions that should be satisfied
in the final design. A penalty is associated with each viola-
tion of these conditions according to their importance and a
score is assigned for the level design as a linear combination
of the conditions according to the equation:

score = 25∗Pcandy+10∗POmNom+10∗Nair−cushion∗
Pair−cushion+20∗Nrocket∗Orocket+10∗Nbubble∗Pbubble+
25 ∗ Coverlap

73

where Nx represents the number of objects of type x pre-
sented in the level, Pcandy , POmNom, Pair−cushion, Pbubble

define a set of constraints on the placement of the candy, Om
Nom, air-cushions, and bubbles, respectively, Orocket con-
trols the direction of rockets, Cplac defines a constraint of a
predefined distance preserved between the components and
Coverlap is the number of overlapped components. More
information about each of these conditions can be found
in (Shaker et al. 2013). The final score is assigned as part of
the fitness for each level design evolved while the other part
concerns the result of cheating for playability as discussed
in the following sections.

4 Constrained Search with Rule-based Agent
The main contribution in this paper is simulation-based
playability testing for a physics-based game using an artifi-
cial agent. In this section we present the design of this agent.
Since CTR is a physics-base game, all the components ad-
here to basic physics such as gravity, collision, bumping, air
blowing and floating. To solve the game, the player should
make informed decisions about what action to perform and
when. The possible actions that can be performed each time
step are the following:

1. Rope cut: this action can be performed on any rope in the
level. Only one rope can be cut at a given timestep.

2. Air-cushion press: the air-cushion can be pressed at any
time, however, the candy will be affected only when it is
close enough to the opening of the air-cushion.

3. Bubble burst: a bubble can be burst only when containing
the candy.

4. Rocket press: when the candy becomes within a close dis-
tance to a rocket, they become attached and the rocket
starts moving. To detach them, a press action should be
performed on the rocket. This results in setting the candy
free in a direction depending on the rocket’s direction and
speed and the gravity force.

5. Void: the player can chose not to perform any action for
a number of timesteps waiting for the candy to reach a
specific position.

Several different approaches to developing a proficient
game-playing agent for Cut the Rope were attempted during
this work, including evolving action sequences and reactive
agents, but with unsatisfactory results due to their limitations
presented previously.

The approach we settled for, and which we are presenting
in this paper, is to use a Prolog-based agent doing simple
inference to identify sensible actions, and do a depth-first
search for a strategy that can solve the level using only those
actions generated by the agent. The search process unfolds
as follows: the physics engine starts the simulation. At each
time step, a description of the game state represented as facts
(see figure 3 for an example) is passed to the Prolog-based
agent. The agent returns all sensible actions at that state – in
many cases, the only sensible action is “void”, but in other
states two or more actions are sensible. If more than one
action is returned, the search branches and all actions are

candy(527, 140). velocity_up. velocity_to_right.

frog(390, 330). rope(550, 50, 105).

rope(440, 50, 195). air_cush(507, 195, 4).

reachable(rocket).

Figure 3: Example of the facts representing a game state.

explored. This process diminishes the search space consid-
erably and allows us to search through all sensible strategies
to solve the level in an acceptably short time. However, it re-
quires that the agent identifies a good set of actions at each
step, a challenge which we solve by encoding key game me-
chanics and micro-strategy as Prolog clauses (rules). Below,
we describe two different rule sets and highlight the limita-
tions and advantages of each.

Ruleset 1: Properties and Placement
In our first attempt to specify the agent’s ruleset we focused
of the components’ properties and their relative placement
in the level map as indicators of the next action to perform.
The ruleset is included as figure 4. According to the figure,
cutting a rope can be performed when the candy, attached to
the rope, is within a predefined distance from Om Nom or
when it is inside a bubble that is below Om Nom. The sec-
ond clause specifies when to press an air-cushion. This can
be done whenever the candy and the air-cushion are within
a small distance and the candy is in the airflow direction.
The bubble burst action can be performed according to the
third rule which states that the candy should be inside a bub-
ble, the bubble is in a higher position than Om Nom, both
are located within a small distance and the candy is moving
towards Om Nom. The fourth clause handles the action of
firing a rocket. This is done when the candy is attached to
the rocket and the rocket is above and close enough to Om
Nom. The void action is always added to the set of sensible
actions. The remaining clauses do necessary distance and
direction calculations.

When an action is applied it is applied to all components
of the specified type which it can be applied to; remember
that bubbles must contain the candy to be poppable, ropes
connected to the candy to be cuttable etc.

Action Priority Since it is possible that more than one ac-
tion can be applied at a given timestep, a priority value is as-
signed for each of them. The values are defined based on the
importance of the action and the component and are based
on extensive play testing. The highest priority is given to
(1) cutting a rope followed by (2) tapping an air-cushion, (3)
firing a rocket, (4) bursting a bubble and (5) the void action.

The defined ruleset is intuitive, relatively simple to in-
terpret and easy to implement. It has, however, a number
of clear limitations. The decision about performing an ac-
tion depends to a great extend on the thresholds specifying
when two components are close enough. Although the val-
ues of the thresholds were assigned experimentally, the re-
sults showed that many potentially playable levels are mis-
classified because of violating these thresholds with small
margins. Moreover, the rules defined consider only the po-
sitions, distances and directions of the components. It does

74

[1]rope_cut :- rope(_,_), Om_Nom(Xo,Yo)(
(candy(Xc,Yc), distance(Xo,Yo,Xc,Yc,50))
| (active_bubble(_,Yb),(Yf<Yb)))

[2]air-cush_press :- air_cush(X,Y,Dir),
candy(Xc, Yc), distance(X, Y, Xc, Yc, 80),
candy_in_direction_of_air_cush(X,Y)

[3]bubble_burst :- active_bubble(X,Y),
OmNom(Xo, Yo), (Yo > Y), distance(X, Y, 50),
((velocity_to_right, OmNom_to_right(X, Y))
|(velocity_to_left, OmNom_to_left(X, Y)))

[4]rocket_press :- active_rocket(X,Y,_),Yo < Y,
OmNom(Xo, Yo), distance(Xo,Yo,X,Y,100)

[5]void_action
[6]candy_in_direction_of_air_cush(X,Y) :-

candy(Xc,Yc), air_cushion(X,Y,Dir),
((Xc < X , dir_to_left(Dir))
|(Xc > X, dir_to_right(Dir)))

Figure 4: The first rulesets defined to build an AI agent based
on component placement and properties.

not take into account, for example, the overall structure of
the level and the possible consequences of performing an ac-
tion on winning or losing the game. An action, according to
this ruleset, is performed when the game state allows taking
this action accounting only for the minimum context infor-
mation required. Testing also showed long processing time
(an average of 79.6 seconds per level for 20 levels tested).

After testing the first ruleset on several designs, it became
clear that, although being simple and clear and showing abil-
ity to solve some cases, the construction of more context-
dependent approach would be more appropriate and could
potentially solve the problems arise in our first design.

Ruleset 2: Physics-based Reasoning Agent
The main idea behind the design of the second ruleset is to
consider as much as possible of the context information yet
keep the processing time to a minimum. To allow this, we
define the set of Reachable Components, RC, which con-
tains the components the candy can reach while in a given
position, direction and velocity. The next action to perform
is calculated based on this set; if an action to perform leads
to an empty set, the action is simply discarded because this
means that the candy will fall outside the boundary of the
canvas and the game will be over. The level is obviously
playable when, at any timestep, the RC contains Om Nom.
The result will be a smaller set of actions guaranteed to initi-
ate a sequence of interactions with the other components. By
using the RC set, the process of evaluating whether a level
is playable becomes much faster since the search space is
smaller containing only promising actions. Figure 5 presents
different states while playing a level with the set of RC high-
lighted.

Figure 6 presents the second ruleset defined to deal with
the physics properties of the components and handle the RC
set. As in the first ruleset, the first five clauses define when
to perform each action, but in this case, the action is taken
based on the RC set. For example, a rope can be cut if free-
ing the candy will result in interactions with other compo-

(a) (b) (c)

Figure 5: A level while being played. The set of reachable
components is highlighted.

nents. The same principle applies to the bubble burst action.
The conditions for pressing an air-cushion are similar to the
ones in the first ruleset since it is hard to calculate the pos-
sible trajectory of the candy because this depends on several
factors including its initial direction and speed and whether
it is in a bubble and/or attached to a rope. A rocket is fired if
it is carrying the candy and there is an intersection between
the rocket trajectory and another component. Finally, the
void action is always added to the set of possible actions as
long as there exist at least one reachable component.

The detection of whether the candy can reach a certain po-
sition in the map is handled by the physics engine given the
candy’s current position, velocity and direction. If a compo-
nent is placed within the range that the candy can reach, a
fact is added in the game state indicating that the component
is reachable in the form, reachable(comp).

The same priority values of the actions described in the
previous section are also considered in this ruleset.

The initial results obtained by applying this ruleset
showed very promising results and the comparison between
the average processing time required showed that a level can
be solved in only 29 sec compared to 79 sec required to solve
a level following ruleset 1. More discussion and analysis of
the results obtained are presented in Section 6.

[1]rope_cut :- rope(_,_), reachable(_)
[2]air-cush_press :- air-cush(X,Y,Dir),

candy_in_direction_of_air-cush(X,Y),
distance(X, Y, 80)

[3]bubble_pinch :- active_bubble(_,_),
reachable(_)
[4]rocket_press :- active_rocket(X,Y,Dir),
reachable(_)
[5]void :- rope_cut | bubble_pinch

| air-cush_press | rocket_press |
reachable(_)

Figure 6: The second ruleset defined to describe the be-
haviour of the AI agent. The main advantages of this ruleset
is the inclusion of the concept of reachable components.

5 Evolving Playable Content
Now that we have a method for representing level design
and a procedure to assess whether a given design is playable,

75

(a) (b)

Figure 7: Example level design and its corresponding game
state tree. The actions taken are presented in different color.
The sequence of actions that solve the game is highlighted
in red.

we present a framework where these two methods are com-
bined to evolve playable content. The next sections present
a detailed description of the framework implemented. For
the rest of the paper, we only present experiments and dis-
cussion based on the second ruleset since it demonstrated
efficient exploring and handling for various cases.

Checking for Playability
The playability evaluation module consists of two parts: the
physics engine (PE) and the inference engine (IE). These
two communicate at each timestep through the following
process: (1) the PE initiates the process by building a state
tree of one root node corresponding to the current game state
and (2) sending the game state to the IE as facts (see Figure 3
for an example), (3) given the information about game state,
the IE infers the next possible action(s) to perform and send
the set to the PE, (4) the PE orders the actions according to
their priorities and for each action creates a new node in the
tree corresponding to the state of the game after performing
that action, (5) the PE starts traversing the tree in a depth-
first approach exploring the subtree of each action by re-
peating the process starting form step 2. The depth-first ap-
proach is preferable because we are only interested in check-
ing whether the level is playable rather than investigating all
possible ways in which the level can be solved. The process
is repeated until the game is found playable/unplayable or a
maximum tree depth is reached.

Figure 7 presents a simple level structure and its corre-
sponding state tree. Each node in the tree corresponds to
a game state and the action taken at that state is presented.
Different actions are presented in different colors and the
sequence of actions that solve the level is highlighted. Note
that some of the branches (marked with an x) are not fully
explored because they lead to an empty RC set and therefore
losing the game.

The Overall Framework
Grammatical Evolution is used to evolve level designed ac-
cording to the design grammar defined. A score value is

then assigned to each individual based on the design con-
strained presented in Section 3. The levels of high scores
(higher than 75%) are then evaluated for playability through
a simulation-based approach. For each acceptable level de-
sign evolved, the PE is initiated and several calls are made
to the IE to detect whether the design is playable. If the level
is playable, the evolution process is terminated. Otherwise,
the fitness is calculated according to the equation:

fitness = 0.25 ∗ score+ 0.75 ∗ dis
where score is calculated as presented in Section 3 and dis
is the smallest distance between the final position of the
candy and Om Nom. These two values are normalized to
the range [0,1] using min-max normalization.

Performance Improvement
The use of the RC in the second ruleset has a significant
effect on improving the processing speed by completely dis-
carding the branches in the tree that eventually lead to losing
the game. We also investigated another method for improv-
ing the performance by applying an adaptive time step.

Adaptive Time Step The game state in the physics en-
gine is updated 60 times per second which corresponds to 60
calls to the inference engine. However, most of these states
should not be evaluated if we are to imitate human reason-
ing. One way to handle this is to use different time steps for
the PE and IE. Several smaller values were tested with fewer
calls to the IE. The results showed that there is no optimal
value that is compatible with all actions. Small time steps
are required to deal with some of the actions such as cutting
ropes, while others, such as bursting a bubble, can be equally
efficiently handled with longer time step. The alternative,
and computationally more efficient, approach is to imple-
ment an adaptive time step. In this method, the PE state is
still updated 60 times/sec, however fewer calls are made to
the IE based on the action performed in the previous state.
For example, a large time step is used after pressing an air-
cushion since this action is mostly performed to change the
direction of the candy and will be mostly followed by a free
candy movement without any interaction with the player for
a few time step. Cutting a rope on the other hand required
a smaller time step since this action usually initiates another
consequence actions such as cutting another rope. As a re-
sult from several game testing experiments, cutting a rope is
given the lowest time step of 10, meaning that the IE will
be inquired about the next actions after each 10 PE updates
(6 times/sec). The void action comes next with 12 PE time
steps before the next inquiry. Fifteen time steps delay is
assigned for pressing an air-cushion and bursting a bubble.
while rocket press is given the highest value of 17 time steps.

Implementation Details
Prolog was chosen as the first-order logic programming and
reasoning engine to infer the next action to perform. A
Java based implementation of the engine was used, namely
JTrolog. The physics engine is implemented in C# with
XNA for managing runtime environment and the two en-
gines communicate by writing to files.

76

(a) (b)

(c) (d)

Figure 8: Selected samples of the playable levels evolved.

Experimental Setup The GE experimental parameters
used are the following: 100 run of 100 generations with a
population size of 20 individuals. The ramped half-and-half
initialization method was used and the maximum derivation
tree depth was set at 100, tournament selection of size 2, int-
flip mutation with probability 0.1, one-point crossover with
probability 0.7, and 3 maximum wraps were allowed.

The evolution process is terminated when a playable level
is found or when the maximum number of generation is
reached. The maximum depth of the state tree is limited
to 80, allowing a maximum of 80 actions to be executed to
test the playability of a level. This threshold corresponds to
about 15 seconds of playing and was chosen after testing the
model on several level structures.

6 Results and Analysis
An experiment has been conducted to evolve playable lev-
els using the framework proposed. Evolution is repeated for
100 times starting from a random population each time. The
results showed that a large number of the levels evolved did
not pass the threshold defined on the design constrained pre-
sented in Section 3 (only 335 levels survived out of 4500
levels evolved). Those levels were further evolved and eval-
uated for playability resulting in a total of 123 playable lev-
els. Some sample levels are presented in Figure 8.

The results showed that detecting a single playable level
required an average of 29.8 ± 58.3 sec while a larger time
(210.6 ± 167.6 sec) is required for detecting non-playable
levels. This is because, for non-playable levels, we have to
do more exploration in the state tree. The analysis of the
total number of nodes explored showed that an average of
638 nodes were evaluated for non-playable levels compared
to only 115 for playable designs. In order to check for the
efficiency of the strategy followed by the agent, we inves-
tigated the number of branch cuts performed. The results
showed that no branch cut was done in 35% of the playable
levels. This means that the agent was able to solve the level
by exploring the minimum number of nodes (the number of
nodes explored in this case is equal to the number of actions
performed to solve the level).

Analyzing the actions performed to solve the levels
showed that the void action is applied in 72.3% of the game
states compared to the other actions combined. This is ex-
pected since an action can be performed only once on one
component (except for pressing an air-cushion) while most
of the gameplay time is usually spent waiting for the candy
to reach a certain position.

In order to investigate whether all components presented
are actually necessary to solve the level, we calculated the
number of times a component is used versus the number of
time it is presented in the level for each type. Unsurpris-
ingly, the results showed that most of ropes generates are
used (note that all ropes will be attached to the candy when
the game starts and they should be cut to free the candy).
Most of the other components, on the other hand, were not
necessary for solving the level. The results show that of all
components presented in all playable levels, only 36% were
used. This observation indicates that alternative approaches
for evaluating the levels which might lead to more interest-
ing level design can be considered. For example, one could
design a fitness function that maximizes the number of com-
ponents used. This is useful since it does not only minimize
the number of unused components, but it also enhance the
puzzle aspect of the design because it allows a longer, more
sophisticated path to win the game.

7 Conclusions
In this paper we present an evolutionary framework for gen-
erating playable content. We combine design constraints
with simulation-based playability check to evaluate each de-
sign evolved. A reasoning agent is constructed to playtest
the levels following a set of rules defined in a first-order
logic format imitating the reasoning approach followed by
human players. Two set of rules are investigated; one
that only considers components placement and information
about their properties and a more advanced set that incapsu-
lates more context knowledge in form of physics properties
and trajectories. An experiment was conducted to evolve
100 playable levels. The results showed that the AI agent
can efficiently detect whether a level is playable and that
the overall framework can be effectively used to generate
playable content.

This study opens the door for many interesting future di-
rections in physics-based games which is a genre that has
not been much explored yet in the field of procedural con-
tent generation. We are planing on investigating a number
of future directions including the use of multi-objective op-
timization methods to generate playable yet hard to win lev-
els. Furthermore, we are currently in an ongoing effort to
make the tool accessible for human designers and players.
We are working on building an authoring tool by incorporat-
ing the framework with an easy to use and to navigate user
interface. The interface will provide features such as evolv-
ing complete playable levels from scratch or starting for an
initial design provided by the player. It will also be pos-
sible to check if a given design is playable and to provide
assistants to improve the design, by making it, for example,
harder/easier to solve or give hints about the best action to
perform.

77

References
Browne, C., and Maire, F. 2010. Evolutionary game design. IEEE
Transactions on Computational Intelligence and AI in Games,
2(1):1–16.
Jaffe, A.; Miller, A.; Andersen, E.; Liu, Y.-E.; Karlin, A.; and
Popovic, Z. 2012. Evaluating competitive game balance with re-
stricted play. In Proceedings 8th Artificial Intelligence and Inter-
active Digital Entertainment Conference, 26–31.
Millington, I. 2007. Game physics engine development. Morgan
Kaufmann Pub.
Ortega, J.; Shaker, N.; Togelius, J.; and Yannakakis, G. 2012.
Imitating human playing styles in super mario bros. Entertainment
Computing.
Shaker, M.; Sarhan, M.; Al Naameh, O.; Shaker, N.; and Togelius,
J. 2013. Automatic generation and analysis of physics-based puz-
zle games. In Proceedings of the IEEE Conference on Computa-
tional Intelligence and Games (CIG).
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space approach.
IEEE Transactions on Computational Intelligence and AI in Games
3(3):187–200.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra: A mixed-
initiative level design tool. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games, 209–216. ACM.
Togelius, J., and Schmidhuber, J. 2008. An experiment in auto-
matic game design. In IEEE Symposium On Computational Intel-
ligence and Games. CIG’08, 111–118. IEEE.
Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.; Hagelbäck, J.;
and Yannakakis, G. 2010a. Multiobjective exploration of the star-
craft map space. In Proceedings of the IEEE Conference on Com-
putational Intelligence and Games (CIG), 265–272. Citeseer.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne, C.
2010b. Search-based procedural content generation. In Proceed-
ings of EvoApplications, volume 6024. Springer LNCS.
Yannakakis, G. 2012. Game ai revisited. In Proceedings of the 9th
conference on Computing Frontiers, 285–292. ACM.

78

