
Leveraging Parallel Architectures in AI Search Algorithms for Games

Nicolas A. Barriga
University of Alberta

Edmonton, AB, Canada
barriga@ualberta.ca

Abstract

This document contains a summary of research performed by
the author on the topic of search algorithms for games. An
outline of the problems being addressed is provided, along
with the progress already made, and planned future work.
The specific subjects studied are: parallelizing UCT search
on GPUs, the development of a hierarchical search frame-
work for Real-Time Strategy (RTS) games and the building
placement problem in RTS games. We propose to take ad-
vantage of different parallel architectures to help solve these
problems.

Introduction
Since the early beginnings of Artificial Intelligence research,
game playing has been an important source of inspira-
tion. From classical board games like chess or checkers,
to video games like Pac-Man or Unreal Tournament, games
have provided a seemingly endless supply of interesting and
challenging problems. Some of these games have been
solved (checkers), for some, techniques have been devel-
oped to play at or above expert human level (chess), and
others are getting close, but have yet to defeat a professional
human player (go). However, on some game types, such as
Real-Time Strategy (RTS) games, AI techniques have not
even reached amateur level playing strength.

On a wide variety of search algorithms (game tree search
algorithms, local search), more time to search, or faster com-
putation when time is limited, usually leads to better solution
quality. For the last few decades computer scientists and
software engineers have been able to rely on steady proces-
sor clock speed increases to tackle bigger and bigger prob-
lems. This trend is slowly coming to a halt as clock speed
increments stagnate and hardware advances focus instead on
parallelism.

This parallelism comes in many flavours:
Instruction Level Parallelism (ILP): refers to several

complementary techniques designed to execute multiple
instructions from a single stream in parallel. Some
of these techniques include superscalar processors,
instruction pipelining, out-of-order execution, register
renaming, speculative execution and branch prediction.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Vector processing instructions: such as SIMD extensions
in x86 processors (MMX, SSE, 3DNow!). These instruc-
tions perform the same computation on all the elements of
a register vector. Vector lengths in modern desktop com-
puters are commonly two to sixteen elements.

Single Instruction, Multiple Thread (SIMT): the basis
of modern Graphics Processing Units (GPUs), in which
several hundred threads can be executing the same
instruction on independent data (as opposed to data
explicitly packed on vector registers as in SIMD).

Symmetric Multiprocessing (SMP): two or more proces-
sors connected by a system bus, sharing main memory.
They can run multiple processes or threads in parallel.

Multi-Core: found in most modern CPUs and GPUs, each
processor chip contains many processing cores, with in-
dependent level 1 (and sometimes level 2) cache memory.
As the programming techniques for the last two items are
basically the same, these two types of systems are usually
treated interchangeably.

Distributed Computing: multiple computing nodes (usu-
ally each of them an SMP system) each with its own in-
dependent main memory, interconnected by a network.
While communication speeds between nodes are much
slower and with higher latency than the system bus con-
necting SMP processors, these systems scale much more,
both in terms of memory and raw processing power.

Since the hardware takes care of Instruction Level Paral-
lelism, and optimizing compilers are beginning to automati-
cally vectorize code to take advantage of SIMD extensions,
we will focus on the latter techniques.

Application Domain and Research Goals
Real-Time Strategy (RTS) is a genre of video games in
which players gather resources, build structures from which
different types of troops can be trained or upgraded, re-
cruit armies, and command them in battle against opponent
armies. RTS games are an interesting domain for Artifi-
cial Intelligence (AI) research because they represent well-
defined complex adversarial decision problems and can be
divided into many interesting and computationally hard sub-
problems (Buro 2004).

AIIDE 2014 Doctoral Consortium

2



The best AI systems for RTS games still perform poorly
against good human players (Buro and Churchill 2012).
Hence, the research community is focusing on developing
RTS agents to compete against other RTS agents to im-
prove the state-of-the-art. For the purpose of experimen-
tation, the RTS game StarCraft: Brood War (Blizzard En-
tertainment 1998) has become popular because it is consid-
ered well balanced, has a large online community of players,
and has an open-source interface — BWAPI, (Heinermann
2014) — which allows researchers to write programs to play
the full game. Several StarCraft AI competitions are orga-
nized every year (Buro and Churchill 2012). Such contests
have sparked increased interest in RTS game AI research
and many promising agent frameworks and algorithms have
already emerged.

While developing these agents, many sub-problems have
been tackled, such as build order optimization (Churchill
and Buro 2011), combat (Churchill and Buro 2013) and
strategy selection (Synnaeve 2012). There are still problems
that have received little attention, like building placement,
or high level search (searching over strategic macro-actions,
as opposed to the actions of individual units).

However, the ultimate goal is not just to win a compe-
tition (though that is interesting by itself), but to develop
algorithms that can have a wider impact:

• In commercial games, smarter robot enemies and allies
can greatly enhance the gaming experience (Buro 2004).

• Specific algorithms have wider applications, such as
pathfinding in routing and transportation problems.

• RTS research can also be of interest in military applica-
tions.

My proposal is to use parallel algorithms to overcome one
of the main difficulties posed by RTS games: the short time
to compute a solution. As an example, in StarCraft, actions
can be issued at every game frame, which is every 42 ms.
Taking advantage of all the resources at our disposal, such as
multiple cores, one or more GPUs, and even possibly other
networked machines, can give us the computing power we
need to reach expert play in this types of games.

Research Progress
The following subsections give a succinct introduction to the
problems being tackled and are for the most part taken ver-
batim from introductions to (Barriga, Stanescu, and Buro
2014), (Stanescu, Barriga, and Buro 2014) and a paper cur-
rently under review, all of which are authored or co-authored
by the author of this document. These sections also contain
details on the progress made so far by the author during the
first two years in the PhD program, and how parallel com-
puting can help solve these problems.

Hierarchical Adversarial Search
Despite recent advances in RTS game playing programs, no
unified search approach has yet been developed for a full
RTS game such as StarCraft, although the research com-
munity is starting to tackle the problem of global search in
smaller scale RTS games (Chung, Buro, and Schaeffer 2005;

Sailer, Buro, and Lanctot 2007; Ontañón 2013). Exist-
ing StarCraft agents rely on a combination of search and
machine learning for specific sub-problems (build order
(Churchill and Buro 2011), combat (Churchill and Buro
2013), strategy selection (Synnaeve 2012)) and hard-coded
expert behaviour.

Even though the structure of most RTS AI systems is com-
plex and comprised of many modules for unit control and
strategy selection (Wintermute, Joseph Xu, and Laird 2007;
Churchill and Buro 2012; Synnaeve and Bessiere 2012),
none comes close to human abstraction, planning, and rea-
soning abilities. These independent modules implement dif-
ferent AI mechanisms which often interact with each other
in a limited fashion.

In (Stanescu, Barriga, and Buro 2014) we presented a hi-
erarchical adversarial search framework in which each level
implements a different abstraction — from deciding how to
win the game at the top of the hierarchy to individual unit
orders at the bottom. We applied a 3-layer version of our
model to SparCraft — a StarCraft combat simulator — and
show that it outperforms state of the art algorithms such as
Alpha-Beta, UCT, and Portfolio Search in large combat sce-
narios featuring multiple bases and up to 72 mobile units
per player under real-time constraints of 40 ms per search
episode.

Because of these time constraints, during the plan selec-
tion in the middle layer, a heuristic is used to select which
plans are evaluated in the minimax search, while the rest are
discarded. Vast improvements could be made, if more nodes
could be expanded at this level, which could be achieved ei-
ther by parallelizing the current alpha-beta search, or mov-
ing to a parallel Monte Carlo Tree Search. These algorithms
have been successfully parallelized for other domains, both
on SMP and distributed arquitectures (Weill 1996; Chaslot,
Winands, and van Den Herik 2008).

Building Placement
A sub-problem of RTS game AI that has seen little research
is building placement, which is concerned with construct-
ing buildings at strategic locations with the goal of slowing
down potential enemy attacks as much as possible while still
allowing friendly units to move around freely.

Human expert players use optimized base layouts,
whereas current programs do not and therefore become
prone to devastating base attacks.

Finding good building locations is difficult. It involves
both spatial and temporal reasoning, and ranges from block-
ing melee units completely (Certicky 2013) to creating bot-
tlenecks or even maze-like configurations that maximize the
time invading units are exposed to own static and mobile
defenses.

Important factors for particular placements are terrain fea-
tures (such as ramps and the distance to expansion loca-
tions), the cost of constructing static defenses, and the type
of enemy units.

Human expert players are able to optimize building loca-
tions by applying general principles such as creating choke-
points, and then refining placement in the course of playing
the same maps over and over and analyzing how to counter

3



experienced opponent attacks. Methods used in state-of-
the-art RTS bots are far less sophisticated (Ontanón et al.
2013). Some programs utilize the terrain analysis library
BWTA (Perkins 2010) to identify chokepoints and regions
to decide where to place defenses. Others simply execute
pre-defined building placement scripts program authors have
devised for specific maps. Still others use simple-minded
spiral search around main structures to find suitable build-
ing locations.

In a paper currently under review at the Second Workshop
on Artificial Intelligence in Adversarial Real-Time Games
at AIIDE-14 we propose using a Genetic Algorithm to op-
timize the placement of buildings in Real-Time Strategy
games. Candidate solutions are evaluated by running fast
combat simulation for gauging building placement quality
with data gathered from human and bot replays for attack
force estimation and stochastic hill-climbing for improving
placements. The end result is a system that requires little
domain knowledge and is quite flexible because the opti-
mization is driven by an easily adjustable objective func-
tion and simulations rather than depending on hard-coded
domain rules — described for instance in (Certicky 2013).

The current implementation works well for offline op-
timization of the building placement, but using this tech-
nique for online (i.e. during a game) optimization could
prove very valuable, as the solution could be adapted to the
enemy’s army composition as soon as new scouting infor-
mation is available. Solution quality under real-time game
constraints would be greatly improved by parallelization,
and thus faster convergence. Parallel Genetic Algorithms
have been widely studied and successfully applied to a wide
range of problems, on SMP systems, distributed memory
systems and GPUs (Pospı́chal, Jaros, and Schwarz 2010;
Luque and Alba 2011).

Parallel UCT Search on GPUs
Monte-Carlo Tree Search (MCTS) has been very successful
in two player games for which it is difficult to create a good
heuristic evaluation function. It has allowed Go programs
to reach master level for the first time (Coulom 2007; Gelly
2008). Recent results include a 4-stone handicap win by
Crazy Stone against a professional player (Wedd 2013).

MCTS consists of several phases, which for our purposes
can be classified as in-tree and off-tree. During the in-tree
phases, the algorithm needs to select a node, expand it, and
later update it and its ancestors. The off-tree phase consists
of possibly randomized playouts starting from the selected
node, playing the game until a terminal node is reached, and
returning the game value which is then used for updating
node information. For our research we choose UCT (Upper
Confidence bounds applied to Trees, (Kocsis and Szepesvári
2006)) as a policy for node selection and updating because it
has been proven quite successful in computer game playing
(Teytaud and Teytaud 2010).

As with most search algorithms, the more time MCTS
spends on selecting a move, the greater the playing strength.
Naturally, after searching the whole game tree, there are no
further gains. However, games such as Go which are char-
acterized by a very large branching factor have large game

trees that cannot be fully searched in a feasible amount of
time. Parallelizing MCTS has led to stronger game play in
computer programs (Chaslot, Winands, and van Den Herik
2008), and state of the art UCT implementations use dis-
tributed algorithms which scale well on thousands of cores
(Yoshizoe et al. 2011). Unfortunately, the prohibitive cost of
highly parallel machines has limited the full exploration of
the potential of these algorithms.

However, a new type of massively parallel processors ca-
pable of running thousands of threads in Single Instruction
Multiple Thread (SIMT) fashion, with performance in the
Teraflops range, has become mainstream. These processors,
called Graphics Processing Units (GPUs), are widely avail-
able on standard computer systems, ranging from smart-
phones to supercomputers. So far, there have been only a
few attempts of harnessing this computing power for heuris-
tic search.

In (Barriga, Stanescu, and Buro 2014) we proposed a par-
allel UCT search algorithm that takes advantage of modern
GPU hardware. Experiments using the game of Ataxx are
conducted, and the algorithm’s speed and playing strength is
compared to sequential UCT running on the CPU and Block
Parallel (Rocki and Suda 2011) UCT that runs its simula-
tions on a GPU. Empirical results show that the proposed
Multiblock Parallel algorithm outperforms other approaches
and can take advantage of the GPU hardware without the
added complexity of searching multiple trees.

Our plan is to explore in depth the characteristics of the
Block Parallel and Multiblock Parallel algorithms. For this
purpose, we believe that experimenting on artificial game
trees will give us the flexibility to achieve a deeper un-
derstanding of the relationships between the game particu-
lars, the algorithms’ parameters and the specific hardware
on which it is executed.

Research Timeline

Table 1: Timeline
Topic Details Pub./Est.

Date
Parallel UCT
on GPUs

Preliminary research us-
ing the game of Ataxx

CIG ’14

Hierarchical
Adv. Search

Initial implementation
and experiments

AIIDE ’14

Building
Placement

Initial implementation
and experiments

Under Re-
view

Building
Placement

Parallel Online GA Q4 2014

PhD
Candidacy

Examination and thesis
proposal

Jan 2015

Parallel UCT
on GPUs

Artificial game trees Q2 2015

Hierarchical
Adv. Search

Parallel UCT/αβ Q4 2015

Thesis
Defense

Final oral examination Aug 2016

4



Table 1 shows the research already published in grey, on-
going in light grey and planned in white background.

Conclusion
Fully exploiting parallel processors is difficult, but if the cur-
rent hardware trends continue, it may become imperative to
do so. If we want to keep solving bigger problems, paral-
lel seems to be the way to go. This research proposal is an
attempt at expanding our knowledge of the area and to ap-
ply it on novel and promising new hardware and application
domains.

References
Barriga, N. A.; Stanescu, M.; and Buro, M. 2014. Parallel
UCT search on GPUs. In Accepted for presentation at the
IEEE Conference on Computational Intelligence and Games
(CIG).
Blizzard Entertainment. 1998. StarCraft: Brood War.
http://us.blizzard.com/en-us/games/sc/.
Buro, M., and Churchill, D. 2012. Real-time strategy game
competitions. AI Magazine 33(3):106–108.
Buro, M. 2004. Call for AI research in RTS games. In Pro-
ceedings of the AAAI-04 Workshop on Challenges in Game
AI, 139–142.
Certicky, M. 2013. Implementing a wall-in building place-
ment in StarCraft with declarative programming. arXiv
preprint arXiv:1306.4460.
Chaslot, G.; Winands, M.; and van Den Herik, H. 2008.
Parallel Monte-Carlo tree search. Computers and Games
60–71.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo
planning in RTS games. In IEEE Symposium on Computa-
tional Intelligence and Games (CIG).
Churchill, D., and Buro, M. 2011. Build order optimization
in StarCraft. In AI and Interactive Digital Entertainment
Conference, AIIDE (AAAI), 14–19.
Churchill, D., and Buro, M. 2012. Incorporating search al-
gorithms into RTS game agents. In AI and Interactive Digi-
tal Entertainment Conference, AIIDE (AAAI).
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In IEEE
Conference on Computational Intelligence in Games (CIG),
1–8. IEEE.
Coulom, R. 2007. Efficient selectivity and backup operators
in Monte-Carlo tree search. Computers and Games 72–83.
Gelly, S. 2008. A contribution to reinforcement learning;
application to computer-Go. Ph.D. Dissertation, Universite
Paris-Sud.
Heinermann, A. 2014. Broodwar API. http://code.google.
com/p/bwapi/.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Luque, G., and Alba, E. 2011. Parallel Genetic Algorithms:
Theory and Real World Applications, volume 367. Springer.

Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
TCIAIG 5(4):293–311.
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
AIIDE.
Perkins, L. 2010. Terrain analysis in real-time strategy
games: An integrated approach to choke point detection and
region decomposition. Artificial Intelligence 168–173.
Pospı́chal, P.; Jaros, J.; and Schwarz, J. 2010. Parallel Ge-
netic Algorithm on the CUDA architecture. In Applications
of Evolutionary Computation. Springer. 442–451.
Rocki, K., and Suda, R. 2011. Parallel Monte Carlo tree
search on GPU. In Eleventh Scandinavian Conference on
Artificial Intelligence: Scai 2011, volume 227, 80. IOS
Press, Incorporated.
Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversarial
planning through strategy simulation. In Computational In-
telligence and Games, 2007. CIG 2007. IEEE Symposium
on, 80–87. IEEE.
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014. Hierarchi-
cal adversarial search applied to real-time strategy games. In
Accepted for presentation at the Tenth Annual AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE).
Synnaeve, G., and Bessiere, P. 2012. Special tactics: a
Bayesian approach to tactical decision-making. In Compu-
tational Intelligence and Games (CIG), 2012 IEEE Confer-
ence on, 409–416.
Synnaeve, G. 2012. Bayesian programming and learning for
multi-player video games. Ph.D. Dissertation, Université de
Grenoble.
Teytaud, F., and Teytaud, O. 2010. Creating an upper-
confidence-tree program for Havannah. In Advances in
Computer Games. Springer. 65–74.
Wedd, N. 2013. Human-computer go challenges.
http://www.computer-go.info/h-c/index.html#2013.
Weill, J.-C. 1996. The ABDADA distributed minimax
search algorithm. In Proceedings of the 1996 ACM 24th
annual conference on Computer science, 131–138. ACM.
Wintermute, S.; Joseph Xu, J. Z.; and Laird, J. E. 2007.
SORTS: A human-level approach to real-time strategy AI. In
AI and Interactive Digital Entertainment Conference, AIIDE
(AAAI), 55–60.
Yoshizoe, K.; Kishimoto, A.; Kaneko, T.; Yoshimoto, H.;
and Ishikawa, Y. 2011. Scalable distributed monte-carlo
tree search. In Fourth Annual Symposium on Combinatorial
Search.

5




