AIIDE 2014 Doctoral Consortium

Probabilistic Foundations for Procedural Level Generation

Sam Snodgrass
Drexel University, Department of Computer Science
Philadelphia, PA, USA
Sam.PSnodgrass @gmail.com

Abstract

Procedural content generation (PCG) has become a
popular research topic in recent years, but not much
work has been done in terms of generalized content gen-
erators, that is, methods that can generate content for
a wide variety of games without requiring hand-tuning.
Probabilistic approaches are a promising avenue for cre-
ating more general content generators, and specificially
map generators. [am interested in exploring probabilis-
tic techniques that could lead to generalized procedural
level generators.

Introduction

Games have been gaining a wider and wider audience in re-
cent years. With the rise of independent developers, there
are more people creating games than ever before. However,
not all developers have the time or money to create the enor-
mous games that the big companies can provide. Procedural
content generation (PCG) allows for the creation of large
amounts of content, while avoiding the overhead of man-
ual authoring. PCG is the automatic generation of content
through the use of algorithms (Togelius et al. 2011). Pro-
cedural content generation provides replayability to games,
can save developers time and money, by allowing them to
partially rely on generated content instead of on hand au-
thored content, can allow the creation of new game genres,
and can also contribute to the design of adaptive games.

I want to explore probabilistic approaches in order to de-
velop generalized PCG techniques, or PCG techniques that
are applicable to a wide range of domains. There has been a
lot of work done in the field of PCG (Togelius et al. 2011).
However, many of the procedural content generation tech-
niques have been developed with specific domains (partic-
ular genres or games) in mind. I would like to develop a
generator that is able to create levels or maps for any genre
of game (e.g., puzzle, strategy, shooter, etc.). I believe that
probabilistic approaches, such as Markov chains (Markov
1971), open a path towards generalized map generators.

Procedural Level Generation
Procedural level generation can be used to add replayability
and unpredictability to a game, or to avoid hand authoring

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

18

a large amount of content. There is a large corpus of work
in the field of procedural map generation. In particular, the
platformer game genre has received a lot of attention from
researchers, to the point that there is even a map genera-
tion competition which uses a platformer game as its testbed
(Shaker et al. 2011). It is not within the scope of this pa-
per to outline all the map generation techniques developed,
but I will cover two different examples. First, an interest-
ing technique, related to platformer games, is proposed by
Smith et al. (Smith et al. 2009). Smith’s approach generates
platformer levels that enforce a certain rhythm for the player.
This approach relies on the set of available player actions as
well as a set of designer defined metrics in order to achieve
the desired rhythm for the map. A different approach, from
the 2010 Mario AI Championship: Level Generation Track
(Shaker et al. 2011), Takahashi and Smith generate maps
for Super Mario Bros. that are tailored to player’s playstyle
and skill. The levels are generated stochastically, using hand
tuned probabilities based on the player’s style and skill.
In addition to generators for platformer games, generation
techniques for real-time stategy games have been developed
(Togelius et al. 2010) (Uriarte and Ontandén 2013), as well as
for dungeon crawlers (e.g., Spelunky and Diablo 3). Those
are just a few examples. For a more broad view of PCG the
reader is referred to surveys by Hendrikx et al. (Hendrikx et
al. 2013) and Togelius et al. (Togelius et al. 2011). More-
over, but for a few exceptions (Sorenson and Pasquier 2010;
Sorenson, Pasquier, and DiPaola 2011), there has not been
much work towards generalized content generators. As part
of my research I plan to explore the possibility of using prob-
abilistic approaches and machine learning for this purpose.

Evaluation

There are two major groups of evaluation techniques:
human-based techniques, and metric-based techniques
(Hoeft and Nieznaniska). Human-based techniques typ-
ically refer to play testing, but also include techniques
such as forced rank evaluations (Shaker, Smith, and Yan-
nakakis 2014) and physiological measures during gameplay
(Mandryk and Inkpen 2004; Drachen et al. 2010). These
techniques need to be done offline, because the content
needs to already be generated in order for a player to give
feedback on it. Intuitively, humans are good judges of en-
joyable content, but special care must be taken when using

self reporting techniques as biases may be introduced into
the data, depending on how the content is presented to the
testers, the size of the group of people used for evaluation,
etc. Metric-based techniques refer to automatic methods that
evaluate content based on a set of given parameters. Metric-
based techniques can be online or offline. For instance, evo-
lutionary algorithms rely on a fitness function (online) (To-
gelius et al. 2011), which measures the quality of a generated
member of the population in order to guide the algorithm to-
wards a better solution. Alternatively, Shaker et al. (Shaker,
Smith, and Yannakakis 2014) propose using a metric-based
technique involving heatmaps in order to measure the ex-
pressive range of the content generator (offline). Care must
be taken when using metric-based approaches as well. Using
metrics that are similar to the input parameters of the genera-
tor can lead to skewed results, and also cannot provide much
insight into the quality of the generator. At best, the evalua-
tion would reveal that the generator behaves as intended, but
would not pick up on unexpected behavior (Shaker, Smith,
and Yannakakis 2014).

The aforementioned evaluation techniques evaluate the
content generated by a system. However, it is important to
evaluate the quality of the generator as well. For instance,
two systems may be able to generate the same content, but
one system may be preferable over the other, based on other
metrics (e.g., running time, memory usage, etc.). I would
like to devise evaluation techniques for the generators them-
selves, instead of the content being generated, and see what
kind of guarantees different systems can offer.

Research Plan

I have applied simple machine learning techniques to the
problem of procedural map generation (Snodgrass and
Ontaiién 2014). I believe that machine learning techniques
are a promising approach to a generalized procedural map
generator. In order to achieve the goal of a generalized gen-
erator, I need to accomplish the following:

1. Identification of Techniques: I need to determine which
techniques (in addition to Markov chains) are applicable
to PCG, and techniques which are ill suited to PCG. Ad-
ditionally, I need to decide which of the applicable tech-
niques will further my goal of generalization.

2. Testing: Once I have decided on a set of technique I need
to apply the techniques to a few different domains, in or-
der to ascertain whether my belief in the applicability and
generality of the technique is well founded.

3. Abstraction: Maps from different genres (or even dif-
ferent games within the same genre) can have radically
different representations. For example, Spelunky and Dia-
blo III are both dungeon exploration games, but Spelunky
uses a two-dimensional, retro-style, side view map using
(relatively low resolution) squares as the primary building
blocks, whereas Diablo III uses a 3-dimensional, semi-
realistic, top-down view map with a high resolution. In
order to learn from and generate maps in these two games,
I will need to be able to automatically abstract the maps
into some uniform representation. As an alternative to ab-
stracting the maps, the system itself could be abstracted

19

a) Order 1 Markov Chain

PSS,

b) Order 2 Markov Chain

OO OE O
P(Sl | S/-]’ S/—Z)

Figure 1: Visual representation of a standard Markov chain
(top) and an order two Markov chain (bottom).

so that it learns and generates at a very high level or is
able to automatically determine the important qualities of
a given set of maps.

4. Evaluation: If I am able to abstract the input, then the sys-
tem can generate the maps in the same abstracted format.
Therefore, a generalized evaluation technique would be a
technique that is able to accurately and reliably determine
the quality of the generated abstracted maps. However, if
instead, I abstract the generation technique and not the
data, I would need to devise a set of measurements that
are general enough to apply to any kind of map, or a way
to automatically determine which type of map is being
evaluated, and evaluate that map based on a set of met-
rics specific to that type of map. In addition, I will need
to devise evaluation techniques for the generators them-
selves, independent of the content being generated. Note
that some work has been done in creating more general
content evaluation techniques. For example, Liapis et al.
(Liapis, Yannakakis, and Togelius 2013) propose a gen-
eral map evaluator based on the properties of balance, area
control, and exploration.

Regardless of the path taken, abstraction is going to be an
important part of this process.

Progess

In my current research I have made progress in the Identi-
fication, Testing, and Abstraction steps outlined in the pre-
vious section. I have not explored the Evaluation step much
yet.

Identification

I have identified Markov chains (Markov 1971) as a viable
approach to learning map structures. Markov chains are a
method of modeling probabilistic transitions between dif-
ferent states. A Markov chain consists of a set of states
S = (s1, 82, ...,53), and a conditional probability distribu-
tion (CPD) P(S|S¢—1). This corresponds to the probabil-
ity of moving to the state represented by S; given that the
previous state was equal to the value of S;_;. Additionally,
more previous states can be accounted for in a higher-order
Markov chain. In this case, the set of states is the same but

Figure 3: A section of a map generated using our Markov chain technique.

E|E|E|E|E|E|E|E|E|E|E|E
E|E|E|E|E|E|E|E|E|E|E|E
E|E|E|E|E|E|E|E|E|E|E|E

e ‘VE|e|E|E|E|E|E|E|E|E|E|E

~il £ | E|E|E|E|E|E|E| E| E|E|E
i E|E|E|E|?|E|E|E|E|E|E|E
E|E|E|E|E|E|E|E|E|E|E|E
E|E|E|E|E|E|E|E|E|E|E|E
(¥ E|E|E|E|E|E|E|E|E|E|E|E
=k
E|E|E|E|E|E|E|E|E|E|E|E
E|E|E|E|E|E|E|E|E|E
& E|E|E|E|E|E|E|E|E|E
e EEEEEEEEEE

Figure 2: A sample encoding of a section from a Super
Mario Bros. map. Color has been added for clarity.

el

i
i -

RN

=TT
I I W R

Figure 4: A section of a map generated using our hierarchi-
cal Markov chain technique.

the CPD is defined as P(S¢|S;—1, St—2, ..., St—k), where k
is the number of previous states taken into account. Figure 1
shows a visual representation of a standard and an order two
Markov chain. With relation to learning maps, if the maps
are generated as a set of tiles, then each different tile would
correspond to a state, and we would learn the probability of
generating some tile given the previous tile. This approach
is promising because all maps contain some form of depen-
dencies between local sections. These dependencies could
be learned using Markov chains. Though my current work
has been with Markov chains, I am still looking for other
probabilistic approaches to apply and test.

20

Testing

I decided to use Super Mario Bros. as the inital testbed for
my technique. Maps in Super Mario Bros. are easily encoded
as tiles, because it is a 16-bit game. Figure 2 shows a sample
encoding of a section from a Super Mario Bros. map. We
tested our Markov chain technique using a set of maps from
the original Super Mario Bros. and have had some success
(Snodgrass and Ontafién 2014). Figure 3 shows a section of
a map generated using our Markov chain approach. In the fu-
ture, I plan on applying my method (and future methods) on
games with varying levels of complexity, and varying game-
play styles, such as puzzles games, strategy games, etc.

Abstraction

We have expanded on our Markov chain technique by im-
plemented a hierarchical Markov chain approach. That is,
after encoding the maps as a set of tiles, we further encode
the tilized maps as a set of high-level tiles corresponding to
different structures within the maps (e.g., pipes, slopes, plat-
forms, etc.). This abstraction technique should be applicable
to a large class of maps. Though the paper I am presenting at
this conference shows a technique using hand coded abstrac-
tion rules, I am working on an extension that will automati-
cally detect the high-level structures by employing unsuper-
vised machine learning techniques, further automating and
adding to the generalizability of the system. Figure 4 shows
a section of a level generated using this hierarchical tech-
nique (from our paper being presented at this conference).

Evaluation

In my previous work, I have used metric based approaches
to evaluate the quality, and I have used character agents in
order to test playability of the maps generated by our system.
Howeyver, the metrics I used have been tailored to the domain
(Super Mario Bros.). In my future work, I intend to apply
my system to different domains, such as, Lode Runner and
Rainbow Island, as well as different genres of games, such
as puzzle and strategy games, which will force me to devise
more general evaluation metrics and techniques.

Conclusion

Procedural content generation techniques can be useful to
any game company, but small game companies can bene-
fit the most, as they typically have much smaller budgets.
PCG can save developers hours spent on content creation,
and can add replayability and unpredictablity to their games.

More generalized methods are particularly beneficial, be-
cause generalized methods will be applicable between dif-
ferent games and genres. Therefore, the studio can spend
some time creating a strong, generalized content generator,
and then use that generator for a plethora of new games, in
a similar way to how game engines have been used.

References

Drachen, A.; Nacke, L. E.; Yannakakis, G.; and Pedersen,
A. L. 2010. Correlation between heart rate, electrodermal
activity and player experience in first-person shooter games.
In Proceedings of the 5th ACM SIGGRAPH Symposium on
Video Games, 49-54. ACM.

Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: a survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMCCAP) 9(1):1.

Hoeft, R., and Nieznanska, A. Empirical evaluation of pro-
cedural level generators for 2d platform games.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. To-
wards a generic method of evaluating game levels. In Al-
IDE.

Mandryk, R. L., and Inkpen, K. M. 2004. Physiological
indicators for the evaluation of co-located collaborative play.
In Proceedings of the 2004 ACM conference on Computer
supported cooperative work, 102-111. ACM.

Markov, A. 1971. Extension of the limit theorems of prob-
ability theory to a sum of variables connected in a chain.

Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P;
Mawhorter, P.; Takahashi, G.; et al. 2011. The 2010 mario
Al championship: Level generation track. TCIAIG, IEEE
Transactions on 3(4):332-347.

Shaker, N.; Smith, G.; and Yannakakis, G. N. 2014. Evalu-
ating content generators (draft).

Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2D platformers. In Pro-
ceedings of the 4th International Conference on Foundations
of Digital Games, 175-182. ACM.

Snodgrass, S., and Ontafién, S. 2014. Experiments in map
generation using markov chains.

Sorenson, N., and Pasquier, P. 2010. Towards a generic
framework for automated video game level creation. In Ap-
plications of Evolutionary Computation. Springer. 131-140.

Sorenson, N.; Pasquier, P.; and DiPaola, S. 2011. A generic
approach to challenge modeling for the procedural creation
of video game levels. Computational Intelligence and Al in
Games, IEEE Transactions on 3(3):229-244.

Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.; Hagel-
back, J.; and Yannakakis, G. N. 2010. Multiobjective explo-
ration of the starcraft map space. In Computational Intelli-
gence and Games (CIG), 2010 IEEE Symposium on, 265—
272. IEEE.

Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A

21

taxonomy and survey. Computational Intelligence and Al in
Games, IEEE Transactions on 3(3):172—-186.

Uriarte, A., and Ontanén, S. 2013. Psmage: Balanced map

generation for starcraft. In Computational Intelligence in
Games (CIG), 2013 IEEE Conference on, 1-8. IEEE.

