
Unsupervised Learning of HTNs
in Complex Adversarial Domains

Michael Leece
Computational Cinematics Studio

UC Santa Cruz
mleece [at] ucsc.edu

Abstract

While Hierarchical Task Networks are frequently cited
as flexible and powerful planning models, they are of-
ten ignored due to the intensive labor cost for ex-
perts/programmers, due to the need to create and refine
the model by hand. While recent work has begun to ad-
dress this issue by working towards learning aspects of
an HTN model from demonstration, or even the whole
framework, the focus so far has been on simple toy do-
mains, which lack many of the challenges faced in the
real world such as imperfect information and continu-
ous environments. I plan to extend this work using the
domain of real-time strategy (RTS) games, which have
gained recent popularity as a challenging and complex
domain for AI research.

Introduction
Using games to push the limits of Artificial Intelligence
has a long history. From computer chess and Kasparov
vs. Deep Blue in the 80’s and 90’s, to the uncertain and
partner-dependent environment of bridge in the later 90’s, to
the still-challenging complexity of Go, these domains have
served well as controlled environments where AI techniques
and models can be developed and refined for practical use
in the real world. And while computer Go programs are on
the brink of defeating the top humans, another domain has
emerged where artificial agents are woefully far from com-
peting with humans–real-time strategy (RTS) games.

There are a wide variety of RTS games, but the general
characteristics of the genre involve a contest between players
that is based around both economic and militaristic manage-
ment. Players generally start with a small economy, which
they must grow in order to produce an army with which
to fight their opponent. Interactions between players include
harassment to slow down the opponent’s economy, surprise
attacks to circumvent static defenses, head-on assaults, and
more. As the game proceeds, players must balance invest-
ing into their economy, which will help them later down the
road, and investing in their military, which will help defend
them or allow them to pressure the opponent.

RTS games are challenging for artificial agents for a num-
ber of reasons. First, they are imperfect information games.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Knowledge of what your opponent is doing must be actively
sought, in order to make the correct trade-off decisions that
will allow a player to punish the opponent. Second, they
are real-time. Rather than being divided up into alternat-
ing turns, each player is making decisions and performing
actions asynchronously, which greatly limits the amount of
search that can be done in time-sensitive situations. Third,
they are adversarial (a property more inherent to games).
Many AI tasks involve simply accomplishing some goal, but
in these games there is an agent actively opposing your ac-
tions, and able to react to your plans. Additionally, planning
is required at multiple levels of abstraction, from high-level
resource division between economy and military, to low-
level individual unit control.

Fortunately, RTS games are also popular in and of them-
selves with human players. This provides us with a large
amount of human expertise that can be drawn on. In addi-
tion, some games have reached the level where professional
leagues of players exist, who train extensively to compete
with each other. This gives us confidence that the expertise
of these players is truly meaningful, and that the signal:noise
ratio in their games is high. In addition, replays of these ex-
pert players are posted online, for other players to study and
learn from, which we also can take advantage of.

Due to these attractive characteristics, research in the field
of RTS AI has been growing steadily in recent years. An an-
nual tournament has even begun, where AI developers can
enter their state-of-the-art agents to be tested against others
over thousands of games, with a match against a high-level
human player for the winning agent. While the AIs have
made incremental improvements over the years, they remain
unable to defeat human players reliably.

However, the overall trend of the work so far has been to-
wards a compartmentalized view of AI, developing individ-
ual competencies and attempting to tie them together into
a complete agent. As one small example, there has been a
good deal of work in the field of “micro”, the term for in-
dividual unit control within fights. And in reality, when it
comes to fights with units without special abilities, the AIs
developed surpass human ability. However, fights are not in-
dependent of the rest of the agent. An AI committing to a
“rush” strategy has different fight priorities than one that is
playing for a longer game, and this needs to be reflected in
the micro decisions that are made. Currently, this informa-

AIIDE 2014 Doctoral Consortium

6



tion flow between components is either lacking or nonexis-
tent.

A more attractive option would be to use a single high-
level planner, obviating the need for communication proto-
cols between components that use completely different mod-
els to perform their tasks, and therefore may not be well-
suited for conveying their goals to each other. We choose to
use Hierarchical Task Networks for this goal. This choice
is chiefly driven by the hierarchical nature of plans in RTS
games when expressed by humans, and also by the flexibil-
ity and expressivity of HTNs, important for reasoning at the
multiple levels required.

HTNs are a very popular planning framework, and have
been used in many real-world domains, from manufactur-
ing to medical care (Fernández, Aler, and Borrajo 2005)
(Musen 1989). However, there is one great drawback tradi-
tionally cited to them whenever they are considered, and this
is the cost of expert labor involved in creating a useful HTN.
Some work has been done in the learning of HTN method
pre/postconditions, and even of learning the full method de-
composition structure from scratch. However, these have fo-
cused on extremely simplistic domains such as the classi-
cal Blocks World or logistics transportation proglem. At the
same time, work from Google Brain and on Deep Neural
Networks (Lee et al. 2009) is demonstrating that with suffi-
cient data, meaningful patterns can be learned even for in-
creasingly complex problems. The question then becomes,
can we do the same for HTN models?

Beyond simply developing an agent that can play RTS
games using an HTN planning approach, the greater focus of
my research is to develop a more general method for learn-
ing an HTN model from unlabeled expert demonstrations in
an unsupervised manner, which can then be applied to other
domains sharing similar characteristics to RTS games.

Related Work
Many of the different individual aspects of this proposal
have seen work already, which gives us a number of start-
ing points to work from.
On the more theoretical side, algorithms for learning HTN
models have been developed and analyzed rigorously. In
both (Garland, Ryall, and Rich 2001) and (Garland and Lesh
2003), the authors discuss the challenges and possible ex-
tensions for learning an HTN model based on annotated
replays, and provide an algorithm that returns a provably
sound and complete model that is consistent with the data (if
possible). However, a key drawback is the annotation limita-
tion, which requires each sequence of primitive actions to be
clustered according to the higher level task that it is attempt-
ing to perform. In a similar vein, (Ilghami et al. 2002) and
(Ilghami et al. 2005) present work on learning HTN method
preconditions, given the task structure decomposition, and
succeed in some simple domains.

More recent work has moved toward the issue of attempt-
ing to learn the entire HTN model from traces, including the
task structures. HTN-MAKER, proposed in (Hogg, Munoz-
Avila, and Kuter 2008), presents an approach to deduc-
ing methods based on goal annotations that indicate when
a goal has been achieved, and learning methods based on

state/action matchings that move from a given state into the
desired state. (Zhuo et al. 2009) presents HTN-learner, an
extension of HTN-MAKER, which learns both an action
model and preconditions based on partial state observabil-
ity, by deducing the effects of actions from changes in the
state. However, it still requires demonstrations to be pro-
vided as decomposition trees, divided by which higher-level
goal is being pursued at any given point. (Hogg, Kuter, and
Munoz-Avila 2010) integrates reinforcement learning into
the HTN-MAKER framework, in order to ascertain values
for the learned methods to decide which are more likely to
be useful in any given situation. Using this setup, the authors
manage to improve the rate at which the HTN model learns
from demonstration, requiring less examples before achiev-
ing competency. Additionally, in the tech support domain,
some work has been done on using HMMs to align traces
for better learning (Lau et al. 2004).

However, all of these papers work in very simple domains.
Blocks World is the most common, with logistics manage-
ment being the second. RTS games are significantly more
complex, and it is unproven that these approaches will work
in an environment where expert demonstration only show-
cases a miniscule fraction of the available space. This is the
main goal of my research, extending the HTN learning work
into more meaningful domains; in particular, RTS games.

We have reason to believe this is possible, given that
hand-crafted HTNs have succeeded in the past in these com-
plex domains. Historically, Bridge Baron (Smith, Nau, and
Throop 1998) used HTNs to become the world champion
computer bridge program, dealing particularly well with the
imperfect information scenario that arises during bidding.
Additionally, before the rise of MCTS, HTNs were one of
the leading approaches for dealing with the increased com-
plexity of Go as compared to chess (Meijer and Koppelaar
2001) (Willmott et al. 1999).

Additionally, a number of systems with similar ap-
proaches have been developed for RTS games already. We-
ber et al. (Weber, Mateas, and Jhala 2012) (Weber 2012)
have developed a goal-driven autonomy system for SC:BW
itself that uses a hand-crafted HTN-like planning compo-
nent to achieve its goals, although it is more reactive than an
HTN planner. Ontanón et al. have created Darmok (Ontañón
et al. 2010), a case-based planning system that has been
trained both by human demonstration with annotations and
also from pure observation of human play (Ontanón et al.
2009). Outside of the RTS genre, (Hoang, Lee-Urban, and
Muñoz-Avila 2005) developed a system for playing a first-
person shooter game that used an HTN for strategic and tac-
tical decision making, with a reactive system integrated to
provide actual in-fight control.

Completed Work
Sequence Mining for Common Action Patterns
Our initial work is in a similar vein as the trace alignment
from (Lau et al. 2004), though we use a completely dif-
ferent technical approach. Namely, in order to learn from
a large database of unlabeled demonstrations, one approach
is to find the commonalities that exist in your data set, and

7



assume that these common occurrences are meaningful. In
our case, we look for common sequences of actions and be-
lieve that these represent the first level of abstract tasks in
an HTN model for the domain (we use StarCraft:Brood War
(SC:BW), a popular RTS game).

We used the Generalized Sequential Pattern (GSP) algo-
rithm developed by (Srikant and Agrawal 1996), which takes
as input a database of sequences, and outputs a list of pat-
terns that occur frequently within that database. In our case,
each sequence consisted of a trace of actions performed by a
player in a game of SC:BW, abstracted to a level where pat-
terns could be identified (i.e. exact location information was
removed). In addition, the GSP algorithm includes capabili-
ties for defining a maximum gap allowed between elements
of a pattern. That is, two elements can only be considered
part of the same pattern if they occur within some fixed time
of each other.

With this approach, we were able to extract low-level ac-
tion patterns such as army movement and army production
cycles that correspond with how human players describe
their gameplay. Additionally, with a much greater gap, we
were able to identify larger patterns that correspond to spe-
cific opening strategies and economic management tradi-
tions later in the game. Both of these results are encour-
aging for the approach, and we plan to continue on to see
if these patterns can be translated into abstract tasks in an
HTN model.

These results have been accepted to the AIIDE ’14 work-
shop for AI in Adversarial Real-Time Games.

Opponent Modeling

In an adversarial imperfect information domain, it is nec-
essary to have a model of one’s opponent in order to make
accurate decisions. In addition, having an accurate model is
critical to learning algorithms, as the players that they learn
from are working from the imperfect information, rather
than the full state information. For example, if we wish to
learn the precondition for an attacking task as occurring
when the player believes he has more troops than the op-
ponent, we need a model for this belief. While only tangen-
tially related to HTN learning itself, we have also completed
some work in this area, as the existing work did not align
exactly with the modeling we would like.

While there is not room here for great detail, we used a
factorizable Markov Random Field with a fairly straightfor-
ward construction to model the dependencies between unit
counts in SC:BW. Given this construction, we learned the
clique potential tables via training on expert replays down-
loaded from the fan website TeamLiquid 1. When tested on
unseen replays, we achieved relatively strong performance
(better than prior work), but a more dedicated modeling ap-
proach with more expertise could almost certainly improve
on this even more.

These results have been accepted to CIG ’14, and are
awaiting publication.

1www.teamliquid.net

Proposed Work
While this is still under advisement, there are two main ap-
proaches that I am hoping to explore for this project, which
can be classified as top-down and bottom-up.

Top-down
This approach is in line with most of the prior work in HTN
learning, as listed above. As such, it will mostly require ex-
tending the existing work to be able to deal with the sig-
nificantly increased complexity, uncertain information, and
adversarial nature of the environment. All of these have been
addressed with HTNs in the past, but not from the learning
standpoint.

When we say significantly increased complexity, consider
this example. In the logistics environment, the final goal for
a plan may be something of the form “(at package1 loc1)”,
from which it may backtrack to realize that it needed to
achieve the abstract goals of getting the package in a truck,
moving the truck to loc1, and unloading it, each of which
may decompose into primitive actions. By contrast, the only
hard-and-fast goal in a game of SC:BW is “Win Game”.
Backtracing the abstract goals that lead to this accomplish-
ment will be significantly more complicated than the exam-
ples that systems like HTN-MAKER learn to solve.

The most straightforward way to solve this issue is to
receive annotation from human players, providing us with
goals and their associated states. While we plan to test this,
the final goal is a fully-automated system, and so we are
looking for ways to deduce possible goal states based on re-
plays, possibly by looking for commonalities in states that
consistently lead to victories.

Bottom-up
This approach is less well-formed, but is an extension of our
current work looking for common action patterns. We plan
to continue the work by attempting to build up from the first
level of action sequences to a full tree of frequent action pat-
terns, and attempt to use these as HTN methods for which
we must learn the preconditions. While prior HTN learning
approaches have focused on speed of learning, we instead
would like to take advantage of the wealth of replays avail-
able to us, in the belief that, with enough data, meaningful
patterns will emerge.

Evaluation
There are a few different evaluation metrics that I plan to use
for this project. The first is simple strength of gameplay. If
we are learning meaningful methods and goals, this should
correspond to an increase in gameplay ability, which can be
concretely measured against other artificial agents, as well
as against human players via online ladder rankings. The
second, more human-expensive method, is to have a domain
expert analyze the generated methods to determine whether
or not they correspond with true goals that human players
work towards within a game. The final method would be to
use annotated replays, where humans have specified what
goals they were following with each action, in order to learn
our methods and goals. We can then compare our goals to

8



the human annotations, and analyze the differences or simi-
larities. Some of these databases already exist in use in other
systems, such as Darmok as mentioned above.

Conclusion
In conclusion, I hope to extend research on learning HTN
models from demonstration into new and more complex
domains, which have qualitatively different characteristics
and challenges than the existing work. These complications
are similar in nature to the ones we would encounter in at-
tempting to apply HTN learning to real-world environments,
and as such this is an important problem. In addition, the
strengths on which I hope to base my approaches (in par-
ticular, large amounts of expert demonstrations) align with
the general direction of the field, with more and more data-
driven approaches being found to be useful in practical en-
vironments. As a result, I feel that progress in this area is
both possible and useful to the general public, and as such
am excited to be working on it going forward.

References
Fernández, S.; Aler, R.; and Borrajo, D. 2005. Machine
learning in hybrid hierarchical and partial-order planners
for manufacturing domains. Applied Artificial Intelligence
19(8):783–809.
Garland, A., and Lesh, N. 2003. Learning hierarchical
task models by demonstration. Mitsubishi Electric Research
Laboratory (MERL), USA–(January 2002).
Garland, A.; Ryall, K.; and Rich, C. 2001. Learning hier-
archical task models by defining and refining examples. In
Proceedings of the 1st international conference on Knowl-
edge capture, 44–51. ACM.
Hoang, H.; Lee-Urban, S.; and Muñoz-Avila, H. 2005. Hi-
erarchical plan representations for encoding strategic game
ai. In AIIDE, 63–68.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2010. Learning
methods to generate good plans: Integrating htn learning and
reinforcement learning. In AAAI.
Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. Htn-maker:
Learning htns with minimal additional knowledge engineer-
ing required. In AAAI, 950–956.
Ilghami, O.; Nau, D. S.; Munoz-Avila, H.; and Aha, D. W.
2002. Camel: Learning method preconditions for htn plan-
ning. In AIPS, 131–142.
Ilghami, O.; Munoz-Avila, H.; Nau, D. S.; and Aha, D. W.
2005. Learning approximate preconditions for methods in
hierarchical plans. In Proceedings of the 22nd international
conference on Machine learning, 337–344. ACM.
Lau, T.; Bergman, L.; Castelli, V.; and Oblinger, D. 2004.
Sheepdog: learning procedures for technical support. In Pro-
ceedings of the 9th international conference on Intelligent
user interfaces, 109–116. ACM.
Lee, H.; Grosse, R.; Ranganath, R.; and Ng, A. Y. 2009.
Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations. In Proceed-
ings of the 26th Annual International Conference on Ma-
chine Learning, 609–616. ACM.

Meijer, A., and Koppelaar, H. 2001. Pursuing abstract goals
in the game of go. BNAIC01 Sponsors.
Musen, M. A. 1989. Automated support for building and ex-
tending expert models. Machine Learning 4(3-4):347–375.
Ontanón, S.; Bonnette, K.; Mahindrakar, P.; Gómez-Martı́n,
M. A.; Long, K.; Radhakrishnan, J.; Shah, R.; and Ram, A.
2009. Learning from human demonstrations for real-time
case-based planning.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010.
On-line case-based planning. Computational Intelligence
26(1):84–119.
Smith, S. J.; Nau, D.; and Throop, T. 1998. Computer
bridge: A big win for ai planning. Ai magazine 19(2):93.
Srikant, R., and Agrawal, R. 1996. Mining sequential
patterns: Generalizations and performance improvements.
Springer.
Weber, B. G.; Mateas, M.; and Jhala, A. 2012. Learning
from demonstration for goal-driven autonomy. In AAAI.
Weber, B. 2012. Integrating learning in a multi-scale agent.
Ph.D. Dissertation, UC Santa Cruz.
Willmott, S.; Richardson, J.; Bundy, A.; and Levine, J. 1999.
An adversarial planning approach to go. In Computers and
Games. Springer. 93–112.
Zhuo, H. H.; Hu, D. H.; Hogg, C.; Yang, Q.; and Munoz-
Avila, H. 2009. Learning htn method preconditions and
action models from partial observations. In IJCAI, 1804–
1810.

9




