
A Hierarchical Approach to Generating Maps Using Markov Chains

Sam Snodgrass and Santiago Ontañón
Drexel University, Department of Computer Science

Philadelphia, PA, USA
sps74@drexel.edu, santi@cs.drexel.edu

Abstract

In this paper we describe a hierarchical method for pro-
cedurally generating maps using Markov chains. Our
method takes as input a collection of human-authored
two-dimensional maps, and splits them into high-level
tiles which capture large structures. Markov chains are
then learned from those maps to capture the structure of
both the high-level tiles, as well as the low-level tiles.
Then, the learned Markov chains are used to generate
new maps by first generating the high-level structure of
the map using high-level tiles, and then generating the
low-level layout of the map. We validate our approach
using the game Super Mario Bros., by evaluating the
quality of maps produced using different configurations
for training and generation.

Introduction
Delegating map generation to an algorithmic process can
save developers time and money (Togelius et al. 2010), or
even allow novel forms of gameplay. Using such algorithmic
processes is called procedural content generation (PCG),
which generally refers to methods for generating all types
of content, such as maps or quests.

In this paper we present a hierarchical approach to gener-
ating maps using Markov chains. We chose Markov chains
because they can easily represent two-dimensional models,
which is how maps are represented in many game genres.
Our method learns a statistical model from known high-
quality maps, then generates new maps using those models.
In our experiments we focus on generating two-dimensional
levels for the platformer game Super Mario Bros.

This paper focuses on a hierarchical extension of our
previous work in map generation (Snodgrass and Ontañón
2014). In this paper we introduce a hierarchical model,
which represents maps in two levels: the low-level map is
the tile-by-tile representation of the map; the high-level map
uses a set of high-level tiles which encompass a larger sec-
tion of the map in order to capture some large structures
and long range tile dependencies. Our method breaks a map
into high-level tiles then learns the statistical model of both
the high-level map and the low-level map. Once we have

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the models, we generate new high-level maps, then gener-
ate low-level maps using both the high-level maps and the
statistical models.

The remainder of the paper is organized as follows. First,
we give some background on procedural content generation
as well as Markov chains. After that, we describe our map
representation, our approach for training Markov chains, and
our hierarchical Markov chain map generation technique.
Then, we present an experimental evaluation. The paper
closes with conclusions and directions for future work.

Background
In this section we provide background on procedural content
generation, focusing on map generation, and Markov chains.

Procedural Map Generation

Procedural content generation (PCG) refers to methods for
creating content algorithmically instead of manually (To-
gelius et al. 2011). Such methods can be used in games to
generate components like maps (Togelius et al. 2010), quests
(Bakkes and Dormans 2010), animations (Park, Shin, and
Shin 2002), and textures (Lefebvre and Neyret 2003), among
others. For a survey of procedural content generation tech-
niques the reader is referred to Hendrikx et. al. (2013).

Most PCG approaches can be classified into three broad
categories: Search-based, learning-based, and tiling. Search-
based techniques generate content by exploring a defined
space using a search technique paired with an evaluation
function. Learning-based approaches extract models from
player or designer data, or known quality content, then gen-
erate novel content using those learned models. Tiling ap-
proaches build content algorithmically from smaller parts
called “tiles,” using different tile sizes and assembly tech-
niques. For more information on search, learning, and tiling
techniques, the reader is referred to Togelius et al. (2011),
Shaker et al. (2011), and Compton et al. (2006), respectively.

These categories, however, are not mutually exclusive
or complete, since there are hybrid methods and meth-
ods which do not fit any of these categories. For example,
Smith et. al. (2009) developed an approach that generates
platformer maps based on the rhythm that the map should
achieve and the player’s available actions.

Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

59



Figure 1: A two-dimensional representation of a higher or-
der Markov chain.

Markov Chains
Markov chains (Markov 1971) are a method for modeling
probabilistic transitions between states. Formally, a Markov
chain is defined as a set of states S = {s1, s2, ..., sn} and
the conditional probability distribution (CPD) P (St|St−1),
representing the probability of transitioning to a state St ∈
S given that the previous state was St−1 ∈ S. Notice that
Markov chains can be seen as a particular case of Dynamic
Bayesian Networks (DBN)(Murphy 2002).

Standard Markov chains restrict the probability distribu-
tion to only take into account the previous state. Higher or-
der Markov chains relax this condition by taking into ac-
count k previous states, where k is a finite natural number
(Ching et al. 2013). In certain applications, using higher or-
ders allows Markov chains to model state transitions more
accurately. The CPD defining a Markov chain of order k can
be written as: P (St|St−1, ..., St−k). That is, P is the con-
ditional probability of transitioning to a state St, given the
states of the Markov chain in the past k instants of time.

In our application domain, we structure the variables in
the Markov chain in a two-dimensional array, in order to
suit the map generation application. Figure 1 shows an illus-
tration of this, showing dependencies between the different
state variables in an example Markov chain of order 3 (each
state variable depends on 3 previous state variables).

Methods
The key idea we explore in this paper is using Markov chains
for hierarchical map generation. A low-level Markov model
is used to generate the low-level details of the map (the tiles
used to render the map, such as ground, blocks, etc.), and
a high-level Markov model is used to generate high-level
structures of the map (such as slopes, platforms, etc.). In this
section, we discuss how we represent maps, how we catego-
rize sections of those maps into high level tiles, how our
model learns from those maps, and finally how our model
generates new maps after learning.

Map Representation
We represent a map as an h× w two-dimensional array M ,
where h is the height of the map, and w is the width. Each
cell M(i, j) corresponds to a tile in the map, and can take
one of a finite number of values S, which represent the tile

Figure 2: A section from a map used in our experiments
(left), and how we represent that map (center) in an array
of low-level tiles (we added one row underneath for Markov
chain training purposes), and as an array of 6× 6 high-level
tiles (right). Color has been added for clarity.

types. When modeling maps using Markov chains, the dif-
ferent tile types correspond to the states of the Markov chain.

Figure 2 shows a section of a map we use in our experi-
ments from the Super Mario Bros. game (left), and the rep-
resentation of the map as an array (center), where each letter
represents a different tile type. Currently, we only consider
the map layout, without taking enemies into account. We
add an additional row of tiles at the bottom of the map for
learning purposes (as described later).

Hierarchical Map Conversion
Our method converts a given map into high-level tiles that
capture larger structures of maps. These high-level tiles are
designer-defined. For example, if we use high-level tiles of
size 6× 6, we would divide the map into 6× 6 chunks, and
assign a high-level tile type to each chunk. The procedure to
determine which high-level tiles corresponds to each 6 × 6
chunk is domain-specific. If a map is not evenly divisible
by the dimensions given, the remaining tiles can either be
ignored or categorized as a full section. Thus, the high-level
representation of a map is a two dimensional array H of size
(h/T )× (w/T ) (where T is the size of the high-level tiles).
The set of high-level tiles types used in our experiments is
reported in the experimental results section, below.

Figure 2 shows a section of a map used in our experiments
(left) from Super Mario Bros., and the high-level tile repre-
sentation using a 6× 6 section for categorization (right).

Learning
Our method learns a high-level model for capturing the dis-
tribution of high-level tiles, and a set of low-level models
for capturing the distribution of low-level tiles within each
high-level tile. Low-level models can only capture relations
between tiles that are one or two spaces away. The high-level
model is able to capture longer range relations, because of
the compression of low-level tiles into fewer high-level tiles.

60



D0 =

(
0 0 2
0 0 0
0 0 0

)
D1 =

(
0 1 2
0 0 0
0 0 0

)

D2 =

(
0 1 2
0 0 1
0 0 0

)
D3 =

(
1 1 2
0 0 0
0 0 0

)

D5 =

(
0 1 2
0 1 1
0 0 0

)

Figure 3: The dependency matrices used in our experiments.
Note that matrix D4 was used in our previous work (Snod-
grass and Ontañón 2014), but was not used in the experi-
ments reported in this paper.

For both levels our method employs higher order Markov
chains in order to learn the probabilistic distribution of tiles.

In order to learn a Markov chain, we need to specify
which previous states the current state depends on, i.e. the
Bayesian network structure. For example, we could learn a
Markov chain defined by the probability of one tile in the
map given the previous horizontal tile, or we could learn an-
other defined by the probability of a tile given the previous
tile horizontally and the tile immediately below, etc. Auto-
matically learning the structure of a Bayesian network is a
well known hard problem (Lam and Bacchus 1994), thus, in
our approach, we configure the dependencies by hand. Our
learning method takes as input an n × n dependency ma-
trix D, defined as follows: the top right cell is set to 2 and
represents the tile we are going to generate. The rest of the
tiles are set to 1 or 0 depending on which tiles to consider
as dependencies. Figure 3 shows the different dependency
matrices used in our experiments. For example, matrix D2

generates tiles considering the tile immediately to the left,
and the one immediately below, while matrix D3 generates
tiles considering the two tiles immediately to the left.

In order to learn both the high-level model and the low-
level models, in addition to the dependency matrix, we need
to specify the following information:

• When learning the high-level tile distribution: a set of
high-level maps Mh

1 , ...M
h
m, represented as arrays.

• When learning the low-level tile distribution: for a given
high-level tile s, the size of the section to be represented
by each high-level tile, a set of hierarchical maps repre-
sented by the arrays Mh

1 , ...M
h
m, and a set of low-level

maps represented by the arrays M1, ...Mm. The model
will be generated using only the low-level tiles from
M1, ...Mm that correspond to high-level tiles of type s.

A Markov chain is learned in two stages:

1. Absolute Counts: let k be the number of 1’s in the matrix
D (i.e., how many past states the model accounts for, cor-
responding to the order of the Markov chain), and n be the
number of different tile types. There are nk different pre-
vious tile configurations. For each previous tile configura-
tion, our method counts the number of times that each tile

Figure 4: Example of a section of a low-level map (right)
being generated using a high-level map (left) as a template.
X represents tiles not yet generated and C represents the tile
currently being generated

type si appears in the input maps: T (si|Si−1, ..., Si−k).
When learning a low-level model for a particular high-
level tile type s, only the tiles in the low-level maps cor-
responding to high-level tiles of type s are used.

2. Probability Estimation: once the totals are computed, we
can estimate from them the probability distribution that
defines the Markov chain. In our experiments, we used a
simple frequency count:

P (si|Si−1, ..., Si−k) =
T (si|Si−1, ..., Si−k)∑

j=1...n T (sj |Sj−1, ..., Sj−k)

Other approaches, such as a Laplace smoothing (Man-
ning, Raghavan, and Schutze 2009, p. 226) can be used if
there is not enough data to have an accurate estimation.

In our previous work (Snodgrass and Ontañón 2014),
we observed that different parts of the maps have different
statistical properties. For example, when looking at Super
Mario Bros. maps, it is impossible to have ground towards
the top of the map. For that reason, we allow our method to
learn separate probability distributions for different parts of
the map, by splitting the map using horizontal row splits.

Map Generation
Our method generates a map in two stages: first the high-
level map, and then the low-level map. For both stages, our
method generates one tile at a time starting in the bottom left
and generating row by row. To generate a tile, our method se-
lects a tile probabilistically, based on the probability distri-
bution learned before. When generating the high-level map,
we use the probability distribution provided by the high-
level model. When generating the low-level map, the low-
level Markov chain to use is determined by the high-level
tile we are generating within. Figure 4 shows a low-level
map being generated from a high-level map.

During generation, it is possible to encounter a combina-
tion of previous tiles that was never seen during training,
and for which we have no probability estimations. We call
this an unseen state. We assume unseen states correspond
to ill-formed structures, and are, thus, undesirable. To avoid
unseen states, we build upon our previous work (Snodgrass
and Ontañón 2014) and incorporate two strategies:
• Look-ahead: Given a fixed number of tiles to look-ahead

d ≥ 0, when our method generates a tile, it tries to gener-
ate the following d tiles after that. If during that process, it

61



Table 1: Best results from our previous work only using
a low-level Markov Chain, learned using matrix D5, and
falling back to D2. The columns %D5 and %D2 show the
percentage of tiles generated using D5 and the percentage of
tiles generated with the fallback, D2.

% D5 % D2 % Completed Bad Pipes
98.71% 1.29% 44.00% 0.00

encounters an unseen state, our method backtracks to the
previous level and tries with a different tile type. If the d
following tiles are generated successfully without reach-
ing an unseen state, then the search process stops, and the
tile that was selected at the top level is accepted.

• Fallback Strategies: When the look-ahead process fails,
our system falls back to a Markov chain trained with a
simpler dependency matrix Dfb . Because Dfb is a sim-
pler configuration than D, it results in a Markov chain of
lower order, and has a smaller chance of reaching unseen
states. Thus, a Markov chain trained using Dfb may be
able to generate a tile when a Markov chain trained with
D cannot. In our previous work (Snodgrass and Ontañón
2014) we used a single fallback matrix. In this work, we
use a sequence of fallback matrices. If we cannot gener-
ate a tile with D, we fallback to a simpler matrix. If that
matrix still cannot generate a tile, we fall back to an even
simpler matrix, and so on, until we reach D0, which is the
raw tile distribution (i.e. a Markov chain or order 0). We
use the same look-ahead depth for each matrix.

Note that the goal of these strategies is to guide the map
generation. Other techniques exist in the literature for simi-
lar purposes, such as (Pachet et al. 2001).

Experiments
We chose to use the classic two-dimensional platformer
game Super Mario Bros. as our application domain. To rep-
resent the Super Mario Bros. maps we chose to use eight
low-level tile types. The first two types are special tiles. S
represents the start and underneath of the map, and D signi-
fies the end of the map. The remaining six tiles correspond
to components of the maps: G are ground tiles, B are break-
able blocks, ? are power-up blocks, p are left pipe pieces, P
are right pipe pieces, and E is empty space.

We devised ten high-level tiles, which represent larger
structures in the maps: We have a special tile that represents
the start and underneath of the map called S. The remaining
nine tiles are as follows: G is solid ground, A is ground with
gaps, U is an uphill slope, D is a downhill slope, I is a stack
of low-level ground tiles which is taller than it is wide, L is a
stack of low-level ground tiles which is wider than it is tall,
P is a pipe, T is a platform of low-level breakable or power-
up tiles, and E are empty space. We also provided a method
that can transform a low-level map into a high-level map.

Experimental Setup
For our experiments, we used 12 maps from Super Mario
Bros. to train our models. We excluded indoor and underwa-
ter maps, because they are structurally different. We ran our

Figure 5: Section of a map generated with T = 4, R = 4,
Dh = D2, Dl = D2, showing a playable and nice looking
section of a map.

Figure 6: Section of a map generated with T = 6, R = 3,
Dh = D2, Dl = D2, showing a pipe that is too tall to pass.

method using several configurations. Specifically, we exper-
imented with the effect of the following variables:

• Tile Size (T ): When T = k, our method categorizes each
k × k chunk of the map into a high-level tile type. We
experimented with T ∈ {3, 4, 6}. We chose these values
because the maps we learn from are 13 low-level tiles tall.

• Row Splits (R): When R = 1, the entire map is used to
train the high-level Markov chain. When R = h, where
h is the height of the map, we divide each high-level map
into individual rows.

• High-Level Dependency Matrix (Dh): We experimented
with three different dependency matrices in our experi-
ments. Dh ∈ {D1, D2, D3}, as shown in Figure 3.

• Low-Level Dependency Matrix (Dl): We experimented
with four different dependency matrices in our experi-
ments. Dl ∈ {D1, D2, D3, D5}, as shown in Figure 3.

As for the Fallback Strategy, in our experiments, we used
the following fallback matrices. D5 falls back to D2. D3 and
D2 both fall back to D1. D1 falls back to D0, which does not
depend on any previous tiles.

To test these configurations, we generated 50 maps of
width 320 with each possible configuration, and evaluated
them using three metrics:

62



Table 2: Experimental results using Dh = D1, showing the percentage of tiles generated with the main matrix, and the percent-
age of tiles generated with each of the fallbacks.

High Level: D1 → D0 Low Level: D1 → D0

T R % D1 % D0 % D1 % D0 % Completed Bad Pipes Misplaced Ground
3 1 100.00% 0.00% 99.99% 0.01% 52.00% 24.00 46.00%
3 4 100.00% 0.00% 99.99% 0.01% 48.00% 23.24 0.00%
4 1 100.00% 0.00% 99.99% 0.01% 28.00% 23.72 48.00%
4 4 100.00% 0.00% 99.99% 0.01% 56.00% 21.34 0.00%
6 1 100.00% 0.00% 99.99% 0.01% 48.00% 24.02 50.00%
6 5 100.00% 0.00% 99.99% 0.01% 22.00% 28.74 0.00%

Average 42.33% 24.18 24.00%
High Level: D1 → D0 Low Level: D2 → D1 → D0

T R % D1 % D0 % D2 % D1 % D0 % Completed Bad Pipes Misplaced Ground
3 1 100.00% 0.00% 80.60% 19.40% 0.00% 84.00% 0.00 60.00%
3 5 100.00% 0.00% 99.94% 0.06% 0.00% 56.00% 0.10 0.00%
4 1 100.00% 0.00% 70.11% 29.89% 0.00% 42.00% 0.08 56.00%
4 4 100.00% 0.00% 99.95% 0.05% 0.00% 66.00% 0.36 0.00%
6 1 100.00% 0.00% 72.29% 27.20% 0.51% 64.00% 0.02 52.00%
6 3 100.00% 0.00% 99.98% 0.02% 0.00% 28.00% 0.08 0.00%

Average 56.67% 0.11 28.00%
High Level: D1 → D0 Low Level: D3 → D1 → D0

T R % D1 % D0 % D3 % D1 % D0 % Completed Bad Pipes Misplaced Ground
3 1 100.00% 0.00% 99.98% 0.02% 0.00% 58.00% 22.40 56.00%
3 5 100.00% 0.00% 99.97% 0.02% 0.01% 62.00% 21.88 0.00%
4 1 100.00% 0.00% 99.99% 0.01% 0.00% 30.00% 21.58 62.00%
4 4 100.00% 0.00% 99.98% 0.01% 0.00% 48.00% 27.86 0.00%
6 1 100.00% 0.00% 99.99% 0.01% 0.00% 48.00% 21.28 56.00%
6 3 100.00% 0.00% 99.99% 0.01% 0.00% 32.00% 29.10 0.00%

Average 46.33% 24.02 29.00%

• % Completable: We loaded all the maps generated by our
system into the 2009 Mario AI competition software (To-
gelius, Karakovskiy, and Baumgarten 2010), and made
Robin Baumgarten’s A∗ controller play through them.
Given an upper limit of 70 seconds, we recorded the per-
centage of maps that this controller was able to complete.
However, this agent occasionally fails to complete maps
that are completable, skewing the results.

• Bad Pipes: We counted how many incorrectly formed
pipes appeared in our maps. Notice that it is trivial to write
a simple rule to prevent incorrectly formed pipes, but we
are interested in methods that can automatically learn how
to generate maps with minimal additional human input.

• Misplaced Ground: Some configurations generated a high
percent of playable maps, but the maps were playable be-
cause of a row of high-level ground tiles being placed
above where the ground should be placed, allowing the
agent to avoid most obstacles by starting on the higher
ground. We computed the percentage of maps for each
configuration that had a misplaced row of ground tiles.

Results
Table 1 shows the most promising results from our previous
work, where we only used low-level Markov chain models to
generate maps, and provides a baseline with which to com-
pare our new results. Tables 2, 3, and 4 show the results of
the different configurations when the high-level dependency
matrix is locked to D1, D2, and D3, respectively.

We can see from the tables that when Dh = D1 or
Dh = D3, and R = 1 a large percentage (around 50%)
of maps with misplaced ground rows results. This is to be
expected because D1 and D3 do not account for what is be-
low the current tile, therefore they cannot reliably predict
where the ground should go without assistance. No high-
level maps generated with D2 had any misplaced ground
rows. It is obvious from the tables that having R = h is
necessary if the high-level dependency matrix does not take
into account tiles below the current one.

Similarly, when Dl = D1 or Dl = D3, we see a very
high average number of bad pipes per level, over 20, whereas
when Dl = D2 or Dl = D5, the average number of bad
pipes per level has a maximum of 0.36 (this means only 0.36
bad pipes generated in 320 × 13 = 4160 tiles, which is the
size of the maps being generated).

Looking at the effects of T , we see that configurations
with T = 4 have a higher percentage of playable maps.
When T = 6, the maps generated tend to have structures
that are too tall for the agent to cross. Similarly, when T = 3,
some structures get split into two separate tiles, which pro-
duces stacked structures, having the same effect. Figure 6
shows a section of a map generated with T = 6, R = 3,
Dh = D2, and Dl = D2 with a pipe that is too tall to pass.

Comparing our current results to those of our previous
work in Table 1, it can be seen that a large number of config-
urations are able to generate a higher percentage of playable
maps, and still a low number of bad pipes. For example, the
configuration with T = 4, R = 4, Dh = D2, and Dl = D2

63



Table 3: Experimental results using Dh = D2, showing the percentage of tiles generated with the main matrix, and the percent-
age of tiles generated with each of the fallbacks.

High Level: D2 → D1 → D0 Low Level: D2 → D1 → D0

T R % D2 % D1 % D0 % D2 % D1 % D0 % Completed Bad Pipes Misplaced Ground
3 1 100.00% 0.00% 0.00% 99.97% 0.03% 0.00% 46.00% 0.04 0.00%
3 5 100.00% 0.00% 0.00% 99.97% 0.03% 0.00% 52.00% 0.10 0.00%
4 1 100.00% 0.00% 0.00% 99.98% 0.01% 0.00% 52.00% 0.04 0.00%
4 4 100.00% 0.00% 0.00% 99.97% 0.03% 0.00% 76.00% 0.18 0.00%
6 1 100.00% 0.00% 0.00% 99.98% 0.02% 0.00% 52.00% 0.12 0.00%
6 3 100.00% 0.00% 0.00% 99.98% 0.02% 0.00% 28.00% 0.12 0.00%

Average 52.67% 0.10 0.00%
High Level: D2 → D1 → D0 Low Level: D5 → D2 → D1 → D0

T R % D2 % D1 % D0 % D5 % D2 % D1 % D0 % Completed Bad Pipes Misplaced Ground
3 1 100.00% 0.00% 0.00% 99.89% 0.10% 0.01% 0.00% 38.00% 0.12 0.00%
3 5 99.99% 0.01% 0.00% 99.88% 0.10% 0.02% 0.00% 42.00% 0.14 0.00%
4 1 100.00% 0.00% 0.00% 99.94% 0.03% 0.03% 0.00% 60.00% 0.22 0.00%
4 4 100.00% 0.00% 0.00% 99.92% 0.05% 0.03% 0.00% 62.00% 0.24 0.00%
6 1 100.00% 0.00% 0.00% 99.95% 0.03% 0.03% 0.00% 42.00% 0.20 0.00%
6 3 100.00% 0.00% 0.00% 99.96% 0.02% 0.02% 0.00% 30.00% 0.12 0.00%

Average 45.67% 0.17 0.00%

Table 4: Experimental results using Dh = D3, showing the percentage of tiles generated with the main matrix, and the percent-
age of tiles generated with each of the fallbacks.

High Level: D3 → D1 → D0 Low Level: D3 → D1 → D0

T R % D3 % D1 % D0 % D3 % D1 % D0 % Completed Bad Pipes Misplaced Ground
3 1 100.00% 0.00% 0.00% 99.97% 0.02% 0.01% 24.00% 20.84 42.00%
3 5 100.00% 0.00% 0.00% 99.98% 0.02% 0.00% 46.00% 22.50 0.00%
4 1 100.00% 0.00% 0.00% 99.99% 0.01% 0.00% 26.00% 22.14 58.00%
4 4 100.00% 0.00% 0.00% 99.99% 0.01% 0.00% 48.00% 21.18 0.00%
6 1 100.00% 0.00% 0.00% 99.98% 0.01% 0.01% 34.00% 25.60 52.00%
6 3 100.00% 0.00% 0.00% 99.99% 0.01% 0.01% 36.00% 28.90 0.00%

Average 35.67% 23.53 28.67%
High Level: D3 → D1 → D0 Low Level: D5 → D2 → D1 → D0

T R % D3 % D1 % D0 % D5 % D2 % D1 % D0 % Completed Bad Pipes Misplaced Ground
3 1 100.00% 0.00% 0.00% 70.94% 0.09% 28.97 0.00% 58.00% 0.14 70.00%
3 5 99.99% 0.01% 0.00% 99.82% 0.13% 0.05% 0.00% 62.00% 0.10 0.00%
4 1 100.00% 0.00% 0.00% 82.08% 0.03% 17.89% 0.00% 80.00% 0.30 52.00%
4 4 99.99% 0.01% 0.00% 99.90% 0.05% 0.04% 0.01% 68.00% 0.18 0.00%
6 1 100.00% 0.00% 0.00% 61.78% 0.04% 38.17% 0.01% 38.00% 0.08 56.00%
6 3 99.99% 0.00% 0.01% 99.94% 0.05% 0.00% 0.01% 38.00% 0.22 0.00%

Average 57.33% 0.17 29.67%

yields 76% completable maps with only 0.18 bad pipes per
level. Figure 5 shows a section of a map generated using this
configuration.

Conclusions
This paper presented a hierarchical approach to generating
two-dimensional maps using Markov Chains. We improved
upon our previous results by adding an additional layer of
abstraction to the learning and generation processes, as well
as employing multiple fallback strategies. By representing
the maps as high-level tiles we were able to capture more
of the structure of the map, and by using multiple fallback
strategies we avoided more unseen states. This helped re-
duce the number of ill-formed structures and increase the
number of playable maps (up to 76% of maps playable,
which is a lower bound, because the A∗ agent was unable

to complete some playable maps).

In the future, we want to automate the detection of high-
level tile types. Currently, our approach requires domain
knowledge from the designer in order to categorize the high-
level tiles. Automating the detection of high-level tile types
would remove the need for domain knowledge and possi-
bly create high-level tiles that the designer may not have.
We also want to find a more reliable method for testing the
playability and quality of our generated maps. Once we can
accurately evaluate our maps, our system can generate sev-
eral maps at run-time and choose the best one to show to
the player. Additionally, though we tested our approach with
Super Mario Bros., it is applicable to any game with linear
maps. One area of future work for our method is to expand
it to be able to handle non-linear maps, such as Metroid or
Megaman, where the concept of paths is very important.

64



References
Bakkes, S., and Dormans, J. 2010. Involving player expe-
rience in dynamically generated missions and game spaces.
In Eleventh International Conference on Intelligent Games
and Simulation (Game-On’2010), 72–79.
Ching, W.-K.; Huang, X.; Ng, M. K.; and Siu, T.-K. 2013.
Higher-order markov chains. In Markov Chains. Springer.
141–176.
Compton, K., and Mateas, M. 2006. Procedural level design
for platform games. In Proceedings of the Artificial Intel-
ligence and Interactive Digital Entertainment International
Conference (AIIDE).
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: a survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMCCAP) 9(1):1.
Lam, W., and Bacchus, F. 1994. Learning bayesian belief
networks: An approach based on the mdl principle. Compu-
tational intelligence 10(3):269–293.
Lefebvre, S., and Neyret, F. 2003. Pattern based procedural
textures. In Proceedings of the 2003 symposium on Interac-
tive 3D graphics, 203–212. ACM.
Manning, C.; Raghavan, P.; and Schutze, M. 2009. Proba-
bilistic information retrieval. Cambridge University Press.
Markov, A. 1971. Extension of the limit theorems of prob-
ability theory to a sum of variables connected in a chain.
Murphy, K. P. 2002. Dynamic bayesian networks: represen-
tation, inference and learning. Ph.D. Dissertation, Univer-
sity of California.
Pachet, F.; Roy, P.; Barbieri, G.; and Paris, S. C. 2001.
Finite-length markov processes with constraints. transition
6(1/3).
Park, S. I.; Shin, H. J.; and Shin, S. Y. 2002. On-line locomo-
tion generation based on motion blending. In Proceedings
of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, 105–111. ACM.
Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P.; Takahashi, G.; et al. 2011. The 2010 mario
AI championship: Level generation track. TCIAIG, IEEE
Transactions on 3(4):332–347.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2D platformers. In Pro-
ceedings of the 4th International Conference on Foundations
of Digital Games, 175–182. ACM.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using markov chains.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2010. Search-based procedural content generation. In
Applications of Evolutionary Comp. Springer. 141–150.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. Computational Intelligence and AI in
Games, IEEE Transactions on 3(3):172–186.

Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 mario AI competition. In Evolutionary Computation
(CEC), 2010 IEEE Congress on, 1–8. IEEE.

65




