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Abstract

This paper shows how game analytics can be used to
dynamically adapt a casual, 2-D adventure game named
Sidequest: The Game (SQ:TG) in order to increase
session-level retention. Our technique involves using
game analytics to create an abstracted game analytic
space to make the problem tractable. We then model
player retention in this space and move through this
space in accordance to a target distribution of game
states in order to influence player behavior. Experiments
performed show that the adaptive version of SQ:TG
is able to better fit a target distribution of game states
while also significantly reducing the quitting rate com-
pared to the non-adaptive version of the game.

Introduction
As casual games continue to grow in popularity, the impor-
tance of understanding player retention grows immensely.
The term retention has many definitions, but in games the
retention rate is often used to refer to the percentage of play-
ers that continue to play a game after a certain period of time.
Player retention is important to game designers for several
reasons. It can be used to determine how successful a prod-
uct was or how successful future products may be. It could
be used to determine the health of a community in the case of
multiplayer games. For casual and social games, retention is
especially important because almost all of their revenue off
of a game comes from in-game purchases (often referred to
as microtransactions) or from in-game advertisements.

There has been much work done on predicting player re-
tention and identifying factors that contribute to retention;
however, there has been relatively little work done on ac-
tually using these types of models to influence retention. In
this work, we examine how dynamic game adaption can be
paired with game analytics to increase session-level reten-
tion in a casual game environment. We define session-level
retention rate as the percentage of players that complete a
single game session. Session-level retention is important in
casual game environments as many rely on players complet-
ing all available tasks or levels for a given time period and
offering the player the ability to purchase additional ones.
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Figure 1: A screenshot of Sidequest: The Game

To study how dynamic game adaption can be used to in-
fluence session level-retention, we have created a 2-D ad-
venture game named Sidequest: The Game (SQ:TG), which
serves as a test environment. SQ:TG is a casual, 2-D adven-
ture game where the player must explore the game world and
complete quests for NPCs in order to progress through the
game. This game mimics other casual games in that it does
not take very long to complete (on average a playthrough
takes 25 minutes) and there is no real penalty for quitting
the game (other than losing progress).

In order to influence player retention, our work leverages
the idea that there are game states that are associated with
session-level retention and others that are associated with
players never finishing the game. Using this, our technique
targets a distribution of game states that are predictive of
session-level retention while actively avoiding states that are
likely to lead to the player quitting the game. SQ:TG, how-
ever, is a complex game environment with many possible
game states, which makes the problem of explicitly model-
ing this environment intractable. In the past, we have solved
this problem by using a set of game analytics to abstract the
game state into a smaller game analytic space (Harrison and
Roberts 2013). Using this strategy, it becomes possible adapt
game environments by altering the analytic values that are
used to describe the game analytic space.

Related Work
To date, most of the research done on player retention
in games has focused on long-term retention over several
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months or years. Here, we will review the relevant literature
on player retention.

A great deal of the research on player retention has
targeted retention in massively-multiplayer online role-
playing-games (MMORPGs). This is not unexpected be-
cause most of these games have monthly subscription fees,
which means that player retention has a direct influence
on the total revenue for the game. Also, people can play
these games for several years, making them an ideal en-
vironment to study long-term retention. There have been
several studies that explore the possible factors that con-
tribute to retention in these environments. These factors can
range from in-game actions (Tarng, Chen, and Huang 2008;
2009), demographic information (Debeauvais et al. 2011;
2014), or even player motivation (Borbora et al. 2011). Re-
cently, there has been work that uses a player’s social net-
work as a basis for retention prediction (Kawale, Pal, and
Srivastava 2009).

There has also been work done on modeling player-
retention in other types of game environments. Weber,
Mateas, and Jhala used regression to determine what fea-
tures most contribute to retention in both Madden ’11 (2011)
and Infinite Mario (2011).

In the realm of social and casual games, Lin et al. (2013)
studied players’ motivations for play in social games and
found that progression, not social interaction, was often the
most important factor in players continuing to play. Contrary
to this finding, there has been work done that shows that
the existence of a well-defined game community can have
a noticeable influence on player retention (Kuo et al. 2009).
There has also been work documenting how secondary ob-
jectives in casual games could lead to a drop in player reten-
tion (Andersen et al. 2011), contrary to popular wisdom.

There has also been much research done on creating adap-
tive games and game personalization. Zook et al. (2012) use
tensor factorization to predict player performance in order
to recommend missions to players. Spronck et al. (2004)
use dynamic scripting to adjust difculty by affecting how
AI chooses rules to follow. Shaker et al. (2010) use neural
networks to automatically generate levels for Infinite Mario.

In this work we focus on how an adaptive system can be
used to influence retention. In previous work (Harrison and
Roberts 2013), we found that dynamic game adaptions can
be used to influence session-level retention in a game envi-
ronment designed to mimic Scrabble. In this work, we build
on our previous work and see how a similar technique per-
forms in a much more complex game environment.

Sidequest: The Game
Sidequest: The Game (see Figure 1), is a 2-dimensional ad-
venture game coded in Flash in which the player takes con-
trol of a hero with the goal of becoming an adventurer. The
hero is free to explore the world and is able to talk to friendly
non-player characters (NPCs) to receive quests. The goal of
the game is to complete three game stages by completing 3
quests in each stage. During each stage of the game, different
quests are made available to the player. Each stage contains
10 unique quests which are randomly distributed to NPCs
throughout the world. In total, there are 30 possible quests

for the player to complete. Once the player has finished the 3
quests that are required to advance to the next stage, it is not
possible to accept any other quests. This means that a player
that completes the game will finish a total of 9 quests.

Although there are 30 unique quests in the game, there are
only limited number of quest types to complete. These quest
types included quests that involved killing some number of
enemy NPCs, quests that involved talking to certain NPCs
in other areas of the world, and quests that involved solving
puzzles or riddles in the game.

Throughout the course of the game, the player can accept
any number of possible quests, but they can only have one
active quest at a time. If a player wants to change quests,
they need only abandon their current one by accepting a dif-
ferent one from a different quest-giver. Players are also free
to reject any quests that do not sound appealing based on the
description. This was done to give the player the freedom to
perform the types of tasks that they enjoyed and still give us
an idea of what specific goal they are working toward.

The game logs several low-level and high-level features
about gameplay. These features include information on the
quests that a player accepts/rejects/completes/abandons, the
number of enemies defeated, the NPCs that the player inter-
acted with, and how close a each quest-giving NPC is to the
player at any given time.

Methodology
In previous work (Harrison and Roberts 2013), we outlined
a process for increasing session-level retention involving
game analytics. The first step in this process is abstracting
the full space of possible game states into a manageable set
of states described by a set game analytics and then model-
ing session-level retention in this space. In practice, this is
done by defining a set of vanity analytics with which to de-
scribe the game state. Vanity analytics are analytics that typ-
ically have a great deal of descriptive and predictive power
but are difficult to directly manipulate. In games, this is often
due to the fact that these analytics directly describe player
behavior, and player behavior is difficult to directly manip-
ulate. An example of vanity analytics include the number of
enemies a player has killed or the specific quests a player
has completed. Since it is difficult to directly control these
values, they are vanity analytics. The reason that the game
analytic space is usually defined in terms of vanity analytics
is because the session-level retention models are constructed
in this space, meaning that vanity analytics are often used to
increase the accuracy of these models.

The second step involves dynamically adapting the game
world by moving through this space in accordance to a tar-
get distribution of game states by altering the values of a
set of actionable analytics. Actionable analytics are diffi-
cult to use in creating predictive models, but it is possible to
directly control their value. They are often not used in mod-
eling because they can take on several possible values, thus
increasing the number of observations needed to describe
them exponentially. Actionable analytics also do not gener-
ally consider player actions, which makes them especially
unappealing for modeling any type of player behavior. That
being said, their ability to be directly manipulated makes
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them ideal for implementing dynamic game adaptions since
it is clear how to affect actionable analytics. An example of
an actionable analytic is the location of health packs in a
first-person shooter. Since it is easy to control exactly where
health packs are located, it is an actioanble analytic. This
difference between vanity and actionable analytics indicates
that a gap exists between actionable and vanity analytics that
must be bridged in order to create dynamic game adaptions.
In the following sections, we will describe how we perform
each of these steps in SQ:TG in greater detail.

Game State Abstraction
The first step of our dynamic game adaption scheme is
to abstract the game state using a set of vanity analytics.
Since accepting and completing quests is the primary game
mechanic in SQ:TG, we only use analytics that describe
how players interact with quests to create the game analytic
space. In this work, we use the following 4 possible quest
interactions to describe the game analytic space: accepting
a quest, rejecting a quest, abandoning a quest, and complet-
ing a quest. For this work, we chose only to consider how
a player interacts with a quest rather than including infor-
mation on which quest the player was interacting with. The
reason for this is that we wanted to mitigate the effects of
the curse of dimensionality by reducing the number of an-
alytics that we consider. As this number grows, the number
of observations we need to sufficiently describe the space of
analytic value combinations grows exponentially. By only
considering a small number of analytics, we reduce the num-
ber of observations needed to describe the space. Using this
scheme, the entire game state can be described as the current
player’s sequence of quest interactions.

n-Gram Models of Retention
As with previous work (Harrison and Roberts 2013), we
choose to use n-grams to model session-level retention in
the game analytic space. n-gram modeling consists of mak-
ing a Markov assumption that the event only depends on the
previous n − 1 events. This means that we do not need to
consider the player’s entire event history when predicting
session-level retention, which is ideal since the amount of
observations required to model the full space of event his-
tories would grow exponentially as their length increased.
Using this, it is possible to calculate the probability that a
player will quit the game by calculating:

P (c|i, sn) =
P (i|c)P (sn|c)P (c)

P (i, sn)
(1)

This equation is used to calculate the probability that a
player quits the game (c is the player’s class describing
whether they quit the game or not) given their most recent
n events, sn, on turn i. As mentioned earlier, the movement
through the game analytic space that results in game adap-
tion occurs in accordance to a target distribution of game
states. This is generated using a set of analytic sequences
that are predictive of the player quitting the game. To find
these sequences, we use Equation 1 to calculate that proba-
bility for every observed n-event sequence on each turn of

Table 1: The percentage of the game spent in a warning state
for event sequences of length 2 and 3.

Length Complete Incomplete Difference
2-Events 22.2% 47.0% 24.8%
3-Events 20.3% 43.2% 22.9%

Table 2: Goal transition matrix for the second stage of
SQ:TG. Acc refers to accepting a quest, Rej refers to reject-
ing a quest, Aba refers to abandoning a quest, and Com refers
to completing a quest.

Action 2
Acc Rej Aba Com

Action 1

Acc 0.03 0.33 0.0 0.64
Rej 0.0 0.0 0.0 1.0
Aba 0.0 0.0 0.0 0.0
Com 1.0 0.0 0.0 0.0

the game. In SQ:TG, we consider a turn to start when the
player accepts their first quest of a stage and end when the
player completes the final quest necessary to advance to the
next stage. If P (c|i, sn) is greater than the a priori proba-
bility of correctly predicting that a player will quit, then we
consider that sequence predictive of players quitting on that
turn.

This model contains one free parameter: the number of
events, n, that are contained in a sequence. To select this
value, we performed a user study in which we deployed
SQ:TG online and asked people to play through the game.
When data collection was complete, we had collected 266
game traces, of which 141 were completed games and 125
were incomplete. We used this data to calculate P (c|i, sn)
for n = 2 and n = 3 to determine which one has more dis-
criminative power. We only consider these values because
they both provide a balance between accurately describing
the player’s event history (defined by how many events we
consider) and mitigating the effects of the curse of dimen-
sionality by reducing the number of observations required
to fully model the space of possible sequences. We define
discriminative power based on the percentage of game time
that players spend in a warning state. A player is said to be
in warning state if their last n observed events are predictive
of them quitting the game. Ideally, we want to observe play-
ers that finish the game spending less time in a warning state
than those who do not finish the game. As such, we define
discriminative power as follows:

dn = wi − wc (2)
In other words, we calculate the discriminative power asso-
ciated with a sequence length, dn, by subtracting the per-
centage of time that players who completed the game spent
in a warning state, wc, from the percentage of time that play-
ers who did not complete the game spent in a warning state,
wi. The results of this study are shown in Table 1. As seen in
the table, players who did not finish the game spent a greater
percentage of the game in a warning state than those who did
complete the game. This difference was statistically signif-
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icant (p < 0.05) for both values of n according to a two-
tailed, independent samples T-test. As such, we a bigram
(n = 2) model of player actions to model player retention.

Once this was done, we extracted the list of predictive
sequences for each turn and used them to generate a set
of 3 target distributions using Markov chain Monte-Carlo
(MCMC) sampling. We then turned these dsitributions into
transition matrices in order to easily generate goal action se-
quences. An example transition matrix is shown in Table 2.
According to this transition matrix, a player that accepts
a quest should complete it most of the time (64%); how-
ever, there is a chance that the player should reject a quest
or accept a different quest instead of completing their ac-
tive quest (33% for rejecting a quest and 3% for accepting
another quest). Once a transition matrix has been made for
each stage of the game, it can be used to create goal states
necessary to dynamically adapt the game environment.

Dynamic Game Adaption
In order to move through the analytic game space, we have to
first find a way to express game states in terms of actionable
analytics. Since the game analytic space and the retention
models are defined using vanity analytics, it is impossible to
directly control them. This means that in order to dynami-
cally adapt SQ:TG, we must first bridge the gap between the
vanity analytics used describe session-level retention, and
the actionable analytics that the game will alter to make the
adaptions.

In SQ:TG, we use quest proximity to the player as the
actionable analytic that will be altered to create game adap-
tions. In SQ:TG, the AI does not have control over the po-
sition of quest-giving NPCs; however, it does have control
over the quests that NPCs can give out. Whenever the player
enters a screen that contains quest-giving NPCs, the AI
will probabilistically assign quests to all visible quest-giving
NPCs. By altering how the AI distributes these quests, we
can control the proximity of a quest to the player relative to
other quests on the screen. Using this strategy, our adaptive
system can move through the game analytic space in order
to bring about the desired game state.

At a high level, our technique for dynamic game adaption
in SQ:TG contains the following steps:

1. Generate a goal analytic state using the transition matrix
for the current stage

2. Return the set of example game states that most resemble
the current game state

3. Determine a candidate set of quests to place based on the
goal analytic state

4. Assign quests to quest-givers such that quests that are
likely to move the current state closer to the goal state
are closer to the player

Each of these steps will be discussed in greater detail be-
low using an informative example.

Generate Goal State Before any adaptions can be made, a
goal must be generated from the target distribution of game
states. This involves using the transition matrices that were

Figure 2: A screenshot of characters in Sidequest: The
Game. Characters circled in yellow are quest-giving NPCs.
Quest-giving NPCs are also numbered 1 through 5. The
character circled in blue is the player’s character.

generated using our target distributions to generate a se-
quence of events that we will target. Our system uses the
transition matrix to generate a sequence of actions that be-
gins with the player accepting a quest and ends with them
completing a quest. The resulting sequence is the target
game sequence. In our example, let’s consider the target
game sequence of Accept, Reject, Complete generated by the
transition matrix described in Table 2.

Retrieve Example Game States In our example, our tar-
get game sequence is Accept, Reject, Complete. This means
our system needs to distribute quests to NPCs such that it
is likely that this event sequence will occur. As mentioned
previously, the gap between actionable and vanity analytics
must be bridged before any dynamic game adaptions can be
made. For modeling retention, we only used events such as a
player accepting or rejecting a quest. For creating the adap-
tions to SQ:TG, we must alter how close specific quests are
to the player at any given time. In order to bridge the gap
between these two types of analytics, we must first deter-
mine which quests that a player is likely to accept, complete,
reject, or abandon so that they can be intelligently placed
around the game world.

This is done by extracting game states similar to the cur-
rent one from a corpus of observed games. Specifically, our
system finds the k-nearest neighbors (with k = 5, chosen
arbitrarily) to the player’s current game state and uses those
to extract the set of quests that the current player is likely
to accept, complete, abandon, and reject. Similarity is calcu-
lated by summing the number of common quest interactions
between game states. For example, if game state 1 and game
state 2 only shared one quest interaction, such as accepting
quest 1, then their similarity value would be 1. The higher
the similarity value, the more similar two game states are.
For the remainder of this example, we will refer to these
game states as candidate game states.
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Determine Candidate Quests to Place After extracting
this set of similar game states, they must be used to deter-
mine how to assign quests to quest-givers in the game world
in order to bring about the target sequence of events. For
this example, let’s assume that the player enters the screen
in Figure 2. In this figure, there are 5 quest-givers (circled
in yellow and numbered from 1-5). The player’s character
is circled in blue. Since this screen contains 5 quest-givers,
the system needs to place 5 quests. The types of quests
that the system places completely depends on the goal se-
quence. Since the target game sequence in this example is
Accept, Reject, Complete the system needs to place quests
that the player will likely accept and eventually complete
(since they do not abandon the quest or accept another quest
before completing their active quest) as well as quests that
the player will reject. The set of candidate quests to place
are generated by examining the candidate game states gath-
ered earlier. In this case, the set of candidate quests to place
would be each valid quest that was either completed or re-
jected in the candidate game states. A valid quest is a quest
that the player has not interacted with in the current game.
This is because quests that the player has interacted with are
locked to the current quest-giving NPC and cannot be as-
signed to a different NPC.

Assign Quests to Quest-Givers Once our system has gen-
erated the set of candidate quests, it only needs to determine
the best action to take. This means that our system has to
select quests and assign them to quest-givers such that it is
likely that the player will transition into the goal state (as is
defined by the target game sequence generated earlier). The
action that moves the current game state closer to the goal
state can be thought of as placing a quest in the world such
that it is likely that it is accepted, rejected, abandoned, or
completed based on what is needed. In our example, we need
the player to accept a quest that they will eventually com-
plete after first rejecting a second quest. As such, the system
would place a quest that the player is likely to complete such
that the proximity in terms of Euclidean distance between its
quest-giver and the player at the time of placement is mini-
mized. In this case that would mean giving quest-giver 1 pic-
tured in Figure 2 a quest that the player is likely to complete.
The exact quest given is the valid quest that was completed
most often in the candidate game states retrieved earlier. The
next step is to give the next most proximal quest-giver (quest
giver 2 in Figure 2) a quest that the player is likely to reject
(since the next action to be completed in the goal sequence
is to reject a quest). This process is performed just as it was
for placing a quest that the player is likely to complete. This
process repeats until all quest-giving NPCs on the screen
have a quest associated with them.

Evaluation
To validate our technique for increasing session-level reten-
tion in SQ:TG through dynamic game adaption, we ran a
set of experiments and tested how well our system was able
to accomplish two goals: fit a target distribution of analytic
game states and reduce the quitting rate in SQ:TG. As such,
we use two metrics to determine how successful our sys-

tem was at accomplishing these goals. First, we measure
the Jensen-Shannon divergence (Lin 1991) between the tar-
get distribution and the observed distribution of player ac-
tions. Second, we measure the quitting rate, the percentage
of players that did not finish the game. For these experi-
ments, we compare the adaptive version of SQ:TG with a
non-adaptive version to determine how effective our system
is at increasing session-level retention as well as influencing
player behavior.

Data Collection
For these analyses, we performed two separate data collec-
tions. During the first one (which was briefly discussed in
previously), players could only play the non-adaptive ver-
sion of the game. As mentioned previously, we collected 266
game traces from 263 players (constituting a 1.1% replay
rate) during this data collection. Of these, 141 were com-
plete games and 125 were incomplete. This data was used
to generate the n-gram models of session-level retention that
are used to generate the target distributions. This data is used
as our baseline for evaluation and will be referred to as the
baseline data for the rest of the paper.

Once this data collection was complete, we used it to cre-
ate an adaptive version of SQ:TG and performed a second
data collection. During this round of data collection, all play-
ers played the adaptive version of SQ:TG. By the end of this
round of data collection, we had gathered 138 game traces
from 138 unique players (constituting a 0% replay rate).
This data will be referred to as the adaptive data for the
remainder of the paper.

Distribution Analysis
The first analysis that we performed was to determine if
our adaptive version of SQ:TG was able to better fit a tar-
geted distribution of player behavior than the non-adaptive
version. Figure 3 shows a visual comparison of the analytic
distributions produced by the adaptive and non-adaptive ver-
sions of SQ:TG to the target behavior distribution. Visual
inspection indicates that the adaptive version of SQ:TG was
able to better fit the target distribution for Stages 1 and 3
(as evidenced by how well the peaks of the dsitribution are
fit), whereas it is unclear which version of SQ:TG performs
better in Stage 2 of the game.

To provide more definitive evidence, we calculated the
Jensen-Shannon divergence between the target distribution
of game analytics and the observed distributions of game
analytics produced by both the adaptive and non-adaptive
versions of SQ:TG. Jensen-Shannon divergence is a popular
method of measuring the similarity between two probabil-
ity distributions. At a high level, it measures how much of
the entropy present in the target distribution is unexplained
by the test distribution. As such, the Jensen-Shannon diver-
gence between two distributions will be zero only when the
two distributions are identical.

The results of this analysis are summarized in Table 3.
As hinted at by the visual inspection, the adaptive version
of SQ:TG is able to outperform the non-adaptive version in
Stages 1 and 3; however, the non-adaptive version of SQ:TG
was able to outperform the adaptive version during Stage 2
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(a) Distribution Comparison for Stage 1 of Sidequest: The Game

(b) Distribution Comparison for Stage 2 of Sidequest: The Game

(c) Distribution Comparison for Stage 3 of Sidequest: The Game

Figure 3: Comparing the target distribution to the distribu-
tions created by the adaptive and non-adaptive versions of
Sidequest: The Game in each stage. Sequence ID refers to
number associated with a particular 2-event sequence. Prob-
ability refers to the probability that a specific 2-event se-
quence was observed.

of the game. This indicates that our our adaptions were able
to influence behavior in 2 out of the 3 stages of the game.

Quitting Rate Analysis
To determine how well the adaptive version of SQ:TG was
able to retain players, we analyzed the quitting rate of both
versions of the game. Table 4 summarizes the result of this
analysis. As seen in the table, the adaptive version of SQ:TG
achieved a quitting rate of 34.1%, which is much lower than
the 47.0% quitting rate achieved by the non-adaptive ver-
sion of the game. We used Fisher’s exact test to measure the
significance of this difference and found that this difference
was significant with p = 0.015.

To give these results some context, we also analyzed what
percentage of players quit during each stage of the game.
Those results are shown in Table 5. As the table shows, a

Table 3: Jensen-Shannon divergence values comparing the
distributions created by the adaptive/non-adaptive version of
Sidequest: The Game and the target distribution.

Stage 1 Stage 2 Stage 3
Adaptive 0.12 0.11 0.03

Non-Adaptive 0.19 0.09 0.09

Table 4: Comparison between the non-adaptive and adaptive
versions of Sidequest: The Game in terms of finished and un-
finished games. Also given is the percentage of total games
that were unfinished.

Finished Unfinished Percentage
Adaptive 91 47 34.1%

Non-Adaptive 141 125 47.0%

smaller percentage of players quit the adaptive version of
SQ:TG than the non-adaptive version during each stage of
the game. What is interesting to note, however, is how sim-
ilar the quit rates were during Stage 2 for both versions of
the game. This difference will be discussed in greater detail
in the next section.

Discussion
First, it is important to note that in terms of Jensen-Shannon
divergence, the adaptive version of SQ:TG better fits the tar-
get distribution in 2 out of the 3 stages of the game. This
leads us to believe that this technique is fully capable of af-
fecting player behavior in this environment under the right
circumstances. It is interesting to note, however, that our sys-
tem was not able to perform this task during the second stage
of the game. This was shown to be true during the distri-
bution analysis as well as the analysis of players that quit
during each stage of the game. One possible explanation for
this is that the target distribution for Stage 2 was much more
complicated than the target distributions for Stages 1 and 3.
If you examine the visual representation of the target distri-
butions in Figure 3 you’ll see that the target distributions for
Stages 1 and 3 have 2 peaks whereas the target distribution
for Stage 2 has 4 peaks.

Despite this, we still feel that there is enough evidence
to say that this technique for implementing dynamic game
adaptions to increase session-level retention is effective in
this environment. We showed that we could bridge the gap
between vanity and actionable analytics to create dynamic
game adaptions that could influence player behavior. We
also showed that this shift in behavior coincided with a sig-
nificant drop in the quitting rate, which, while not definitive,

Table 5: The percentage of players that quit at each stage of
Sidequest: The Game

Stage 1 Stage 2 Stage 3
Adaptive 27.5% 6.6% 0.0%

Non-Adaptive 35.3% 7.2% 3.7%
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certainly gives evidence to the notion that this change in be-
havior influenced the drop in the quitting rate.

Future Work
The most important avenue of future work is to explore the
limitations of this technique. It is not clear how the complex-
ity of the target distribution affects this technique’s perfor-
mance. The ability to identify what properties a target dis-
tribution needs to exhibit for this technique to be successful
would be useful for others that wish to use this technique.

This technique has, to this point, been tested only in ca-
sual game environments. It would be worthwhile to see how
this technique generalized to other game types. One possi-
ble line of research involves seeing how this technique per-
forms in larger, more complex games where game sessions
are not clearly defined. This would require the use of analyt-
ics that are powerful enough to incorporate more informa-
tion about a player’s history while still retaining the ability
to sufficiently simplify the representation of the game state.

Conclusion
In this paper we show how an adaptive system can lever-
age the descriptive and prescriptive power of game analytics
to improve session-level retention in Sidequest: The game.
This system uses n-gram models of session-level retention
to identify game states in the game analytic space that are
predictive of players quitting the game. The system then in-
telligently places quests throughout the world in order to in-
duce a target distribution of analytic states that are predictive
of player retention. Our results show that the adaptive ver-
sion of SQ:TG is able to better fit a target distribution of
game states than its non-adaptive counterpart. We also pro-
vide evidence that this shift in behavior results in a reduction
in the quitting rate, thus increasing session-level rate.

This work serves as evidence to the power that game an-
alytics have for more than just being purely descriptive or
predictive tools in games. We have shown that they can be
used to dynamically make changes to game environments in
order to influence player behavior. We hope that this work
will encourage others to discover new ways that game ana-
lytics can be used not just to describe or predict behaviors,
but to dynamically create and shape new player experiences.
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