
Playable Experiences at AIIDE 2014

Nathan R. Sturtevant
University of Denver
sturtevant@cs.du.edu

Jeff Orkin
Giant Otter Technologies

jorkin@media.mit.edu

Robert Zubek
SomaSim LLC

robert.zubek@gmail.com

Michael Cook
Goldsmiths, University of London
michael.cook06@imperial.ac.uk

Stephen G. Ware
University of New Orleans

sgware@uno.edu

Christian Stith
Clemson University

cstith@g.clemson.edu

R. Michael Young, Phillip Wright
North Carolina State University
{young,pcwright}@csc.ncsu.edu

Squirrel Eiserloh
SMU Guildhall

squirrel@eiserloh.net

Alejandro Ramirez-Sanabria, Vadim Bulitko
University of Alberta

{ramirezs,bulitko}@ualberta.ca

Kieran Lord
Strange Loop Games

cratesmith@cratesmith.com

Abstract

AIIDE 2014 is the second AIIDE event that has fea-
tured a playable experience track. This paper describes
the seven entries that were accepted in the 2014 track, as
well as the motivation behind the track and the criteria
used to evaluate and accept entries.

Introduction
In his 2010 AIIDE Keynote, Chris Hecker concluded with
a slide stating: “You are hosed. By ‘you’, I mean anyone
who tries to do work in game AI without doing the game
design part. By ‘doing the game design part’, I mean actually
making compelling games.”1

In 2013 the AIIDE community recognized this challenge
and the need to highlight not only research being performed
on AI in games, but also the products that are being created
as part of this research. As a result, a new track was begun
for playable experiences.

The 2014 Playable Experience track, chaired by Jeff
Orkin and Nathan Sturtevant, includes seven entries. This
paper highlights the work that appears in the 2014 track as
well as the evaluation criteria used for accepting entries.

Evaluation Criteria
The definition of a playable experience is intentionally
broad; it has been used both for developers in industry to
show off the AI they are doing with their games and also for

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://chrishecker.com/My AIIDE 2010 Lecture on Game AI

researchers to show their work. This necessarily results in
experiences with a range of polish, which we believe is both
necessary and acceptable.

Evaluation criteria for the track has focused on (1) artic-
ulable innovation in the use of AI, and (2) that the expe-
riences are sufficiently complete and polished enough for
naive users to play them. The first criteria is the most im-
portant; submissions were rejected primarily because the au-
thors did not sufficiently articulate the AI innovation in their
playable experiences. Under this criterion we could accept
To That Sect, an experience that would never be accepted
on its own merits. This experience was accepted because of
the novel AI process used to create the playable experience
itself.

The experiences accepted this year include:
• 1849, a commercial game which uses an AI-based

production-rule system, by Robert Zubek and Matthew
Viglione

• To That Sect, a game created by ANGELINA – an auto-
mated game-creation program written by Michael Cook

• The Best Laid Plans, a research prototype that uses an au-
tomated planner to drive gameplay, created by Stephen
Ware, R. Michael Young, Christian Stith, and Phillip
Wright

• Everyday Genius: SquareLogic, a commercial puzzle
game with smart content generation, created by Ken Har-
ward and Squirrel Eiserloh

• PAST: Player-Specific Automated Storytelling, an adap-
tive text-based game by Alejandro Ramirez-Sanabria and
Vadim Bulitko

Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

203



• Penguin Push, a puzzle game with automated content gen-
eration by Nathan Sturtevant2

• Vessel, a commercial game featuring many AI technolo-
gies by Kieran Lord, John Krajewski, Martin Farren,
Mark Filippelli, and Milenko Tjunic.

The following sections are written by the authors of each
experience and highlight the unique aspects of what they
have created.

1849
1849 is a simulation game set during the California Gold
Rush, released in May 2014 for PC/Mac computers, and iOS
and Android tablets.

Figure 1: A screen shot of the game 1849.

The game is a city builder simulation. As the mayor, your
task is to build towns, populate them with workers, and keep
your citizens housed, fed, and entertained. You’ll have to
manage and coordinate extensive manufacturing and trade
networks to make sure your towns thrive.

At the core of the game is a production rules engine: the
economic and logistics simulation is written as sets of rules
in this engine that get evaluated periodically and change the
game state over time.

We can talk about the rules engine in terms of layers:
• A simple data model for representing knowledge about

each unit and about the world
• Rules of the simulation expressed in a succinct domain-

specific language
• Rules engine itself to match and execute the rules

Simulation in 1849 is focused on resources: production,
conversion, and consumption, by a variety of actors such
as the player, buildings (eg. wheat farm produces wheat),
natural elements (eg. trees produce lumber), and even the
board tiles themselves (eg. gold stored in the ground, wait-
ing to be mined). Rules of the simulation are most often con-
cerned with checking if some conditions have been met, then
consuming and/or producing resources, and executing side-
effects. Three blog posts contain some examples:

• Intro: http://tiny.cc/1849-rules-1
2As this author was also a chair of the Playable Experience

track, it was evaluated independently and subject to a higher bar
for acceptance.

• Details: http://tiny.cc/1849-rules-2
• Performance: http://tiny.cc/1849-rules-3

To make the system efficient, we adopted two drastic con-
straints. First, we required that each rule element (precondi-
tion and post-condition) must be possible to evaluate in con-
stant or near-constant time. In order to support this, we don’t
allow for any free variables in the rules, to eliminate the need
for potentially expensive unification. Instead, we use deic-
tic variables that get bound ahead of evaluation time. Sec-
ond, we’ve chosen a succinct and efficient data model, using
mostly flat pre-allocated vectors and avoiding runtime mem-
ory allocation. This allows for query and update operations
with O(1) time complexity. These two constraints limit the
expressiveness of our rule set, but result in an efficient rule
system that runs the entire game on a fraction of the avail-
able processor time, and doesn’t affect frame rate even on
underpowered mobile devices.

Performance was clearly a high point of the system, which
can run cities with hundreds of active entities without break-
ing a sweat, even on comparatively underpowered tablet de-
vices. We could probably push production rules even further,
if the rendering subsystem had not claimed all available pro-
cessor cycles already.

Finally, the last piece of the puzzle was expressing these
rules in a domain specific language built on top of JSON.
Having major parts of gameplay be defined in external files,
which get loaded up at runtime and are not subject to com-
pilation, greatly improved our iteration speed and authorial
control.

ANGELINA - To That Sect
To That Sect is a game jam entry to Ludum Dare 28, made
by ANGELINA - a piece of software being developed as
part of research into computational creativity. ANGELINA
has been through many iterations in the past, in which it de-
signed arcade games (Cook and Colton 2011), news-inspired
platforming games (Cook, Colton, and Pease 2012), as well
as generating mechanics and levels for puzzle-platformers
(Cook et al. 2013). All versions of ANGELINA have been
built using co-operative co-evolution (Potter and De Jong
2000), a kind of evolutionary computation that uses multiple
evolving systems working in tandem. Each system evaluates
the content it produces in the context of what the other sys-
tems are producing, and in doing so a form of co-operation
arises between the content generated by each individual sys-
tem. This means that a system for evolving levels will try to
design levels which work well with the rules being evolved
by the rest of the system, for example.

The latest version of ANGELINA is being developed to
investigate two new objectives: the generation of program
code during game design, and the integration of creative
software within creative communities. The former objec-
tive is still being worked on, however the latter has been
a concern since the start of the project. A major objective
for us in developing the new version of ANGELINA was to
ensure that it could engage with communities of game de-
velopers in natural ways. One way in which we’ve begun
to work towards this goal is by having the software enter

204



game jams, time-limited competitions in which people make
games based around a certain theme. ANGELINA can now
be given a natural-language phrase and will use this phrase
to start a process of media acquisition and linguistic analysis
(to assess any emotions commonly associated with the input
phrase, for example). This provides a palette of 3D models,
sound effects, music and text to use during the evolutionary
design process.

ANGELINA came 500th out of 780 entries in the ’Over-
all’ score category, after a peer review process by other en-
trants to the contest. Alongside To That Sect we also en-
tered a second game, Stretch Bouquet Point. This game
was entered to the jam without any public mention of AN-
GELINA or of the game being designed by software. This
game ranked lower than To That Sect in every category ex-
cept humour (which we believe was an unintentional win
for Stretch Bouquet Point, since the game was met with an
incredulous reaction from many reviewers). By considering
the relative scores of the two games, and the language used
in comments written alongside the scores, we believe there
is currently considerable positive bias towards software like
ANGELINA in both the player and developer communities.
We explore this in more detail in (icc 2014).

The Best Laid Plans
The Best Laid Plans is an interactive narrative point-and-
click adventure game that uses narrative planning techniques
to generate its story at run time. As a research prototype and
proof-of-concept, it demonstrates how fast planning algo-
rithms can create interactive stories by leveraging computa-
tional models of narrative like character intentionality and
conflict.

The player takes on the role of a hapless goblin minion
who has been ordered by the Dark Overlord to go to town
and fetch a bottle of hair tonic. The game tells the story
of how that quest goes horribly wrong by alternating be-
tween two modes. In Make Your Plan mode, the player acts
out how the goblin will fetch the hair tonic while the NPCs
do nothing. Play then changes to Watch Your Story Unfold
mode, and the player watches that plan happen. NPCs will
now act to thwart the goblin’s plan. At any time (or if the
goblin dies) the player can return to Make Your Plan mode to
change the goblin’s plan. Play continues in this fashion, with
the player acting out plans and seeing those plans thwarted,
until the goblin successfully reaches the Dark Tower with
the hair tonic in hand.

For example, the player can act out a plan to walk to town,
purchase the tonic, and walk back to the Dark Tower. When
watching this plan unfold, a bandit will intercept the goblin
on the road and kill him to steal the tonic. The player must
now find some way around the bandit, and so might chooses
to return to town, steal a sword, and fight his way past the
bandit. When watching that plan unfold, the bandit chases
the goblin into town. The town guard attacks the bandit, but
then proceeds to also attack the goblin for stealing the sword.
Now the player must find some way to avoid the town guard,
and so on.

Neither the game’s story nor the NPC behaviors are pre-
scripted at design time. The story is constructed by the

Figure 2: The interface for The Best Laid Plans. The cur-
rent game mode of Make Your Plan is displayed at the top of
the screen. The Dark Overlord (top left) watches telepathi-
cally and occasionally offers information and guidance. The
player’s current plan is displayed under the portrait of the
Dark Overlord. The player’s inventory, mana, and score are
shown at the bottom of the screen. The location pictured here
is the town. The characters in the scene are, from left to right,
the town guard, the goblin, and the weapons merchant. The
player can interact with the other characters and items with
a simple point-and-click interface. Yellow arrows allow the
goblin to walk to other locations, such as the tavern (west),
the alley (north), the junction (south), and the potion shop
(east).

Glaive narrative planner (Ware 2014) from a set of 10 atomic
action building blocks (e.g. “Character x picks up item y at
location z.”) at run time.

A planner is an algorithm which finds a sequence of these
atomic actions that achieve some goal (Russell and Norvig
2003). The planner’s goal is the opposite of the player’s goal:
that the goblin not have the hair tonic or that the goblin be
dead. Glaive extends classical planning by also reasoning
about narrative phenomena. It uses Riedl and Young’s in-
tentional planning framework (2010) to ensure that every
action taken by a character is clearly motivated and goal-
oriented for that character. It also uses Ware and Young’s
model (2014) of narrative conflict to represent plans which
fail or are thwarted by other characters.

Unlike the original narrative planning algorithms de-
scribed by Riedl and Young (2010) and Ware and Young
(2011), Glaive is fast enough to be used at run time for
this game. Glaive is based on Hoffmann and Nebel’s Fast-
Forward planner (Hoffmann and Nebel 2011). It uses ad-
vances from state-space heuristic search planning as well
as additional reasoning about the structure of goal-oriented
plans to quickly discover stories where NPCs act believably
and create conflict with the protagonist to make the game
more challenging. This game serves as a proof-of-concept
for how advanced AI techniques can be used to create stories
intelligently from atomic building blocks. It can be down-
loaded from http://liquidnarrative.csc.ncsu.edu/blp.

Everyday Genius: SquareLogic
Everyday Genius: SquareLogic (SquareLogic for short) is an

205



Figure 3: A 7x7 double-board, hidden-cage puzzle from
Everyday Genius: SquareLogic. This puzzle is one of 200
found in the game’s 23rd location (Summit) of 42 locations
included in the PC version.

award-winning puzzle game created by Ken Harward and
Squirrel Eiserloh at TrueThought LLC, released for Win-
dows/PC in 2009, and subsequently ported (third-party) to
iPad. The game received very positive reviews (“sublime”,
“a phenomenal game”, “hauntingly beautiful”, “quite inge-
nious”), was named Best of 2009 by GameZebo, and has
been used in numerous classrooms. Players have logged
thousands of hours in the game, making it one of the “sticki-
est” games on Steam (where the game has currently received
92 positive and 0 negative reviews).

SquareLogic’s gameplay is a combination and exten-
sion of concepts from numerous Latin-squares-based math
games, and involves the selection of single-digit numbers in
cells in a square grid adhering to all of the rules imposed by
a given puzzle. One cell might be required to be less than an-
other cell, while another “cage” of cells are required to add
up to 7 or form a sequence (e.g. 3,4,5,6).

The game provides 20,000+ procedurally-generated puz-
zles in 42 categories. With each category, a new rule (or rule
combination) is introduced; for example, double-board puz-
zles (in which two different boards share a set of parallel
answers) or hidden-cage puzzles (in which cage topography
must be deduced, Figure 3). Puzzles increase in complexity,
initially starting with two rules and a 4x4 grid, and culminat-
ing with 9x9 puzzles which use all 12 rules and require 400+
steps. Puzzles are presented in order of increasing difficulty,
and each is guaranteed to be deductively solvable (without
guessing) regardless of the solution approach chosen.

AI was employed heavily throughout SquareLogic’s de-
velopment in order to assist with puzzle creation, puzzle ver-
ification, difficulty balancing, player instruction, and hints.
A number of different AI entities/systems were created:

The PuzzleGenerator takes a random seed and a set of
mechanics and generates a puzzle employing those mechan-
ics. Puzzles generated in this fashion are guaranteed to be
filled and Latin-squares compliant, and to make use of all
required mechanics (only).

The PuzzleSolver plays each generated puzzle: first, to
validate its integrity (exactly one solution, obtainable deduc-
tively); and second, to estimate its difficulty. 25 solving in-

ferences of varying difficulty were identified and tuned by
expert human players; the solver attempts each puzzle us-
ing the simplest inferences possible. If solvable, the puzzle
is assigned a difficulty rating based on the variety, number,
and complexity of inferences used. A “puzzle recipe” – the
random seed, rule set, and difficulty – is then saved.

The PuzzleChef reads in the puzzle recipes for each of
the game’s 42 locations, sorts them by difficulty, and di-
vides the list into thirds (Easy, Medium, and Hard). A set
of 12 “practice puzzles” are chosen from Easy and Medium.
Players may play any or none of these practice puzzles, but
must at least solve a “challenge puzzle” before unlocking
the next location, revealing puzzles of a new variety. Hun-
dreds of puzzles like the one just solved are also presented,
by difficulty, should the player wish to return and experience
more.

The Instructor monitors player progress throughout the
game, noting rules she has encountered and techniques she
has exercised. Since player progression through the game
is non-deterministic (players may skip or play practice puz-
zles in any order), the instructor watches for opportunities to
teach new concepts as needed. If a new puzzle introduces the
Comparison rule for the first time, the Instructor will select a
Comparison cage in that puzzle and explain its use within the
puzzle’s context. If the player has not yet used cage-painting
or candidate elimination by the time they are needed, the In-
structor will seize the opportunity to instruct the player in
their use. The Instructor does not offer tips about techniques
already demonstrated by the player.

Finally, a dynamic Hint System provides context-specific
hints to players when requested, starting vague (“Look at
this addition cage”) and becoming more specific as re-
quested. The Hint System uses the PuzzleSolver to recom-
mend the next simplest move (which depends on the solu-
tion approach the player has taken to this point), or offers
other options if the player has committed faulty assumptions
(in which case it offers to do nothing, or provide contextual
hints about where the player went wrong, or to rewind the
player’s moves to the moment before the mistake was made).

PAST: Player-Specific Automated Storytelling
Storytelling is an important facet of human life: from en-
tertainment to everyday communication, we are constantly
telling and immersing in stories. Understanding how to
make these more aesthetically pleasing is of interest to ar-
tificial intelligence (AI) research and can be used to im-
prove video games. Specifically, research in interactive
storytelling—responding to player actions while unfolding a
narrative according to a model of experience quality—must
tackle several challenges. One key challenge is to strike a
balance between player agency (i.e., allowing the player to
meaningfully influence the story) and authorial control (i.e.,
guiding the player’s experience through a desired story tra-
jectory). Increasing the player’s agency can allow the player
to take ownership of the story but is resource-demanding on
the part of the developers. Additionally, it may be difficult
to guarantee that the player will have a particular experience
when they are given the freedom to change to the story.

206



Figure 4: The text-based command line in PAST. In the left frame, a story state description; in the right, a series of player actions
available.

Player-specific Automated Storytelling (PAST) (Ramirez
and Bulitko 2012; Ramirez, Bulitko, and Spetch 2013;
Ramirez 2013) is an interactive storytelling system that em-
ploys AI to tackle the aforementioned problem. In doing so,
PAST relies on player modelling and automated planning. In
line with previous work, PAST requires that the story devel-
oper describe the story world in a formal, computer-readable
format. Subsequently, whenever the player exercises narra-
tive freedom and deviates from the original story (e.g., the
player as the Little Red Riding Hood kills the wolf on sight),
PAST uses automated planning to shape the story on the fly
so that it still meets authorial goals (e.g., another wolf ap-
pears to deceive and eat the Granny). Second, PAST shapes
the story not only to satisfy authorial goals but also to ac-
commodate the player’s play-style inclinations. In the ex-
ample above, a player who has shown a tendency to play
as a fighter will see another mean wolf replacing the former
whereas a storytelling inclined player may witness a magic
fairy resurrecting the original wolf. These inclinations are
learned automatically from the player’s previous actions, us-
ing player modeling techniques.

To evaluate the efficacy of our approach towards improv-
ing perceived agency, we created an interactive version the
Little Red Riding Hood story. The results of these user stud-
ies indicated that PAST’s approach to storytelling is more
likely to increase the perception of player agency (Ramirez,
Bulitko, and Spetch 2013). The playable interactive narra-
tive experience developed for those user studies is hereby
presented (Figure 4). A player can advance through the in-
teractive narrative world by making narrative choices via a
text-based interface and reading resulting narrative off the
screen. The length of the experience depends on the players
choices and reading speed, with 10-30 minutes being typi-
cal.

Technically, the program is a self-contained Windows
executable—a Lisp code base running on Steel Bank Com-
mon Lisp—and can be executed on any modern computer
running either a 32 or 64-bit version of Windows XP, Vista,
7 or 8.

Penguin Push
Penguin Push was built around the hypothesis that when
constraints exist that will help someone solve a puzzle, the
puzzles should be selected to maximize the gain acquired by
the user from understanding the constraints. We use search
tools to build levels for a game which maximizes this gain.

Background
There is wide interest in the general idea of procedural con-
tent generation, particularly for generation of maps and nat-
ural structures. We are interested in a slightly different prob-
lem of procedurally assisted design – tools that will help
designers create interesting experiences, but where the de-
signer still has a strong role in the creation process. The de-
sign role is just assisted by the strengths of the computer -
the ability to efficiently perform significant brute-force com-
putations.

Designer Jonathan Blow has often talked about his pro-
cess of discovering the puzzles that exist when a set of me-
chanics are created for a game. In a sense, our goal is to
automate parts of this process so that the mechanics can be
explored and understood more quickly and thoroughly.

Project Goals
This specific project arose from an analysis of the game
Fling!3, a popular mobile game. In our previous analysis
(Sturtevant 2013) we looked at this game from the perspec-
tive of the number of reachable states in each puzzle (we
refer to a single puzzle as a “board”). There are 35 levels of
difficulty in the game which are presumably of increasing
difficulty. While brute-force analysis reveals that there is a
loose correlation between reachable states and the level of a
board, there is also over an order of magnitude of variation
between boards in the same level.

The game also has constraints – in particular that there is
only one solution for every board. This means that there is
exactly one move in each board configuration that will lead

3http://www.candycaneapps.com/fling/

207



to a solution. Looking at the reachable states in the reduced
state space (eliminating moves that would require the solu-
tion to violate the above constraint) we still found the same
trends. In particular, that there wasn’t a strong correlation
between the size of the search space and the difficulty of a
level.

We hypothesize that there is a correlation between the size
of the search tree and the difficulty of a problem - this is one
possible measure of the difficulty of a problem. (Although
it isn’t difficult to design puzzles for which this rule will
not hold, such problems often contain many unnecessary el-
ements which can easily be abstracted away.) Furthermore,
we believe that one mark of a good puzzle is that it is rel-
atively easy for experts, but difficult for novices. This sug-
gests further than an expert that deeply understands the con-
straints in a puzzle should be able to solve it quickly (a small
search tree), where a novice that doesn’t understand these
constraints should have a difficult time (a large search tree).
So, the ratio of the brute-force tree size to the constraint-
reduced tree size is a second measure that we believe is in-
teresting for level design.

Penguin Push is a re-design of Fling! which has levels se-
lected to maximize the ratio of the brute-force search tree
to the constraint-reduced tree. An introductory set of levels
teaches the mechanics of the game using the small set of
levels for which all moves lead to a solution. 50 boards each
with 7, 8, or 11 initial pieces respectively were chosen to
demonstrate the levels chosen by this metric. An additional
31 boards with 8 pieces were selected that minimize the ra-
tio; these levels provide a contrast in that knowing that only
a single solution is possible does not make the level any eas-
ier.

Vessel
Vessel is a puzzle platformer by Strange Loop Games that
uses fluid physics and AI creatures as the core mechanics in
an adventure though an intricately detailed world.

The player takes the lonely role of Arkwright, the inven-
tor of liquid automotons called fluros which provide a near
limitless supply of “just add water” labour that has revo-
lutionized the world. When new mysterious types of fluros
appear and run amok, Arkwright must investigate using his
creations and the mutated fluros he discovers to unearth the
greater mystery of where these new creatures came from.

Puzzles in Vessel are as much the clockwork interaction
of the liquid fluro characters as they are the buttons, pipes
and other level elements. Every aspect of the world is phys-
ically simulated, and all puzzles and characters besides the
player are based in the liquid simulation. Often the player
will need to lure a fluro to press a button they can’t reach us-
ing a light source, or set them moving on a path that will trig-
ger a switch. These creatures and the ability to create them
from any source of liquid become the players tools. Progres-
sion through the game relies on learning and understanding
how they interact with one another and their environment.

Instead of being separate, aesthetic elements even the
background machinery, sounds, and music are driven by the
state of the game’s puzzles, AI and physics simulation. In-
tricate gears and pumps deliver force and liquids about the

levels in the background, steam is a liquid and can lift ob-
jects up rather than just be a particle effect. Even subtle hints
are given to the player without their knowing, supplied by an
adaptive music system which gently creates and transitions
between variations of the soundtrack by Jon Hopkins.

By far Vessel’s greatest innovation is its optimized liquid
simulation and rendering engine; capable of simulating large
quantities of flowing water, scalding lava and steam, reac-
tant chemicals, glowing goo, the mysterious protoplasm, and
more. Each liquid can have unique properties on its own and
and mix with other liquids for dramatic effects. This is di-
rectly linked to its skeletal animation system allowing char-
acters made of these liquids to inhabit the environment in
large numbers.

Vessel is available on Steam and PS3 and was written by
Kieran Lord, John Krajewski, Martin Farren, Mark Filip-
pelli, and Milenko Tjunic.

Conclusions
Playable experiences are an integral part of creating game
AI. The 2014 AIIDE Playable Experience track recognizes
this need and features seven playable experiences. These ex-
periences use a broad range of AI approaches to create com-
pelling play. We hope that future playable experiences will
build on what has been created here and further push the
bounds of the use of AI in games.

References
Cook, M., and Colton, S. 2011. Multi-faceted evolution of
simple arcade games. In Proceedings of the IEEE Confer-
ence on Computational Intelligence and Games.
Cook, M.; Colton, S.; Raad, A.; and Gow, J. 2013. Mechanic
miner: Reflection-driven game mechanic discovery and level
design. In Proceedings of 16th European Conference on the
Applications of Evolutionary Computation.
Cook, M.; Colton, S.; and Pease, A. 2012. Aesthetic consid-
erations for automated platformer design. In Proceedings of
the Artificial Intelligence and Interactive Digital Entertain-
ment Conference.
Hoffmann, J., and Nebel, B. 2011. The ff planning sys-
tem: Fast plan generation through heuristic search. Journal
Artificial Intelligence Research 14:253–302.
2014. Ludus ex machina: Building a 3D game designer that
competes alongside humans. In Proceedings of the Third
International Conference on Computational Creativity.
Potter, M. A., and De Jong, K. A. 2000. Cooperative co-
evolution: An architecture for evolving coadapted subcom-
ponents. Evol. Comput. 8(1).
Ramirez, A., and Bulitko, V. 2012. Telling interactive
player-specific stories and planning for it: ASD + PaSSAGE
= PAST. In Proceedings of the Eight AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
173–178.
Ramirez, A.; Bulitko, V.; and Spetch, M. 2013. Evaluating
planning-based experience managers for agency and fun in
text-based interactive narrative. In Proceedings of the Ninth

208



AAAI Conference on AI and Interactive Digital Entertain-
ment, 65–71.
Ramirez, A. 2013. Automated Planning and Player Mod-
elling for Interactive Storytelling. M.Sc. dissertation, Uni-
versity of Alberta.
Riedl, M. O., and Young, R. M. 2010. Narrative planning:
balancing plot and character. Journal of Artificial Intelli-
gence Research 39:217–268.
Russell, S., and Norvig, P. 2003. Artificial intelligence: a
modern approach. Pearson.
Sturtevant, N. 2013. An argument for large-scale breadth-
first search for game design and content generation via a
case study of fling! In AI in the Game Design Process (AI-
IDE workshop).
Ware, S. G., and Young, R. M. 2011. Cpocl: A narrative
planner supporting conflict. In Proceedings of the 7th AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 97–102.
Ware, S. G.; Young, R. M.; Harrison, B.; and Roberts, D. L.
2014. A Computational Model of Narrative Conflict at the
Fabula Level. IEEE Transactions on Computational Intelli-
gence and Artificial Intelligence in Games.
Ware, S. G. 2014. Glaive: A State-Space Narrative Planner
Supporting Intentionality and Conflict. In Proceedings of
the 10th International Conference on Artificial Intelligence
and Interactive Digital Entertainment.

209




