
Alone We Can Do So Little, Together We Can Do So Much∗:
A Combinatorial Approach for Generating Game Content

Noor Shaker1 and Mohamed Abou-Zleikha2

1Center for Computer Games and Interaction Design at the IT University of Copenhagen, Copenhagen, Denmark
2Department of Electronic Systems, Aalborg University, Aalborg, Denmark

nosh@itu.dk, moa@es.aau.dk

Abstract

In this paper we present a procedural content generator us-
ing Non-negative Matrix Factorisation (NMF). We use rep-
resentative levels from five dissimilar content generators to
train NMF models that learn patterns about the various com-
ponents of the game. The constructed models are then used
to automatically generate content that resembles the training
data as well as to generate novel content through exploring
new combinations of patterns. We describe the methodology
followed and we show that the generator proposed has a more
powerful capability than each of generator taken individually.
The generator’s output is compared to the other generators
using a number of expressivity metrics. The results show that
the proposed generator is able to resemble each individual
generator as well as demonstrating ability to cover a wider
and more novel content space.

1 Introduction
Automatic generation of game content is receiving increas-
ing interest among researchers, indie game developers and
in the game industry. Several successful applications are
presented in the literature motivating further investigations
and demonstrating the applicability of this research direc-
tion. The first notable implementation of Procedural Content
Generation (PCG) is in the game Rogue (Toy et al. 1980)
where PCG is used to overcome the storage limitation by al-
lowing the creation of complete levels in runtime. Recently,
different PCG techniques are employed in several commer-
cial games to provide variations, support human designers,
and cut development budget (Shaker, Togelius, and Nelson
2014). Remarkable use-cases include the creature creation
interface in Spore (Maxis 2008) that allows procedural an-
imations of custom designs, and the random map genera-
tion in Civilization IV (Firaxis Games 2005). PCG has also
witnessed increasing interest among indie game developers
mainly for enabling variations (e.g. Spelunky (Yu and Hull
2009) and Tiny Wings (Illiger 2011)) boosting creativity
(e.g. Minecraft (Mojang 2011)) and as assisstive tools used
by game designers for automatic play-testing (e.g. City Con-
quest (Intelligence Engine Design Systems LLC 2012)).

∗A quote by Helen Keller.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A more diverse space of applications is explored by re-
searchers. The focus, however, is mostly given to the au-
tomatic generation of individual aspects of game content
such as weapons in space shooter games (Hastings, Guha,
and Stanley 2009), tracks in car racing games (Cardamone,
Loiacono, and Lanzi 2011), opponents in action role-playing
games (Blizzard North 1997), level design for physics-
based games (Shaker et al. 2013b) and levels in platform
games (Shaker et al. 2012; Sorenson and Pasquier 2010).
Fewer attempts tackled the problem of evolving complete
games, though the successful implementations are still lim-
ited to board games (Togelius and Schmidhuber 2008) or
simple arcade games (Cook, Colton, and Gow 2012).

The automatic generation of 2D game levels has wit-
nessed notable attention and several studies have been con-
ducted towards realising this goal. Many of the studies ex-
amined the popular game Super Mario Bros (SMB). The
availability of an open source clone of the game (Pers-
son 2009) and the organisation of a competition around
this game (Shaker, Togelius, and Yannakakis) have at-
tracted more attention leading to dozens of papers on this
topic ((Sorenson and Pasquier 2010; Shaker et al. 2012;
Dahlskog and Togelius 2013) among many others).

Each of the generators proposed for SMB was developed
independently and has its distinctive characteristics. While
each excels in creating specific types of levels, they are
all limited by the design choices imposed by the design-
ers/creators or by the choice of the method. The grammat-
ical evolution generator (Shaker et al. 2012), for instance,
use a design grammar and a score to formalise its generative
space. Although the use of grammar supports understand-
ability and permits straightforward modifications, once the
evolution process starts, the content explored is confined by
the final grammar specified and exploring a new space is
only possible through a new run after tweaking the gram-
mar. In a recent study (Horn et al. 2014), several dissimilar
generators for this game have been analysed and an expres-
sivity analysis experiment is conducted in an attempt to for-
malise a framework where content generators can be thor-
oughly investigated and fairly compared. The study showed
that although the generators are overall quite different, they
all exhibit a limited generative space along the metrics de-
fined. This means that during gameplay, and after playing
a number of level, the player becomes aware of the style

Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014)

167

of the generator, can anticipate what will come next and
thereafter, the surprise factor will decrease over time result-
ing in an increase in the state of boredom and ultimately
quitting the game. The surprise factor or the presence of
a certain degree of unpredictability are important factors
for the experience of fun (Davenport et al. 1998; Dormann
and Biddle 2006). Variation is a well-known means of ex-
ploiting the element of surprise (Skelly 1995) and there-
after in providing an engaging experience (Skelly 1995;
Brandtzæg, Følstad, and Heim 2005). Human designers are
aware of this issue which is usually avoided through intro-
ducing new items, challenges and unexpected events.

When it comes to procedurally generating content, one
way to compensate for the surprise factor is to imitate hu-
man designers style. Dahlskog et al. (Dahlskog and Togelius
2013) conducted a study in this direction and they proposed
an approach that aims specifically at capturing patterns from
the original levels of the game designed by human.

In this paper, we aim at boosting variations and there-
fore supporting unpredictability through combining pat-
terns from different generators. We propose a combinatorial-
based approach for content creation using a Non-Negative
Matrix Factorization (NMF) method. The use of NMF al-
lows automatic discovery of patterns of arbitrary length, un-
like other frequent patterns extraction methods where the
length of the patterns to be extracted should be predefined
and manually assigned. NMF also permits the possibility of
exploring dissimilar variations of a specific pattern through
varying its weights.

To apply NMF, a large space of representative content
is extracted from five dissimilar generators of SMB. Five
independent NMF models capturing different details about
content are constructed from all level samples. Each NMF
model learns meaningful patterns about a specific game as-
pect and collectively, the five models can approximate the
training data and generate novel content.

2 Non-negative Matrix Factorisation
Non-Negative Matrix Factorization (NMF) is a technique for
representing non-negative data as a linear parts-based com-
binations (Lee and Seung 1999). Much of the appeal of NMF
comes from its success in learning abstract features from di-
verse collection of data (Hoyer 2004). The non-negativity
property makes NMF results easier to inspect since the rep-
resentation is purely additive in contrast to many other lin-
ear representations such as Principal Component Analysis
(PCA) and vector quantisation (VQ) (Lee and Seung 1999;
Hoyer 2004). The main difference between these three meth-
ods is the qualitative interpretation of the results. While PCA
uses eigenvalues, NMF basis are localised features corre-
sponding to parts of the training instances which align bet-
ter with intuitive notions (Lee and Seung 1999). When the
training dataset consisted for instance of a collection of face
images, the representation consisted of basis vectors encod-
ing the intuitive face features such as the mouth, nose, eyes,
etc (Buchsbaum and Bloch 2002).

Given a non-negative data matrix V, NMF finds an ap-
proximate factorization V ≈ WH where W and H are
non-negative factors.

Mathematically speaking, NMF is formalised
as follows: Given a non-negative data matrix
V = [v(1), v(2), ..., v(n)] ∈ Rm×n , NMF decom-
poses V into the product of two matrices, W ∈ Rm×r
and H = [h(1), h(2), ..., h(n)] ∈ Rr×n, where all
elements in all matrices are exclusively non-negative
wij ≥ 0, vij ≥, hij ≥ 0, 0 < r < min(n,m). The
objective function of NMF is to minimize the Euclidean
distance between each column of the matrix V and its
approximation V′ = WH. This is done as:

F(W,H) =
1

2
||V −HW||2F (1)

where ||.||2F denotes the Frobenius norm. Several iterative
approaches have been proposed to minimise this criteria
such as multiplicative algorithm (Lee and Seung 1999) and
an alternating least-squares algorithm (Berry et al. 2007).
Each column vi from the matrix V′ is a linear combination
of the columns of the matrix W which can be seen as parts
(i.e. building blocks) of the data. The (r-dimensional) coef-
ficient vector hi describes how strongly each part is present
in the measurement vector vi such as:

vi =

r∑
l=1

(wl ∗ hn
i (l)) (2)

NMF has been successfully applied in many areas to
find basis parts (vectors) of faces, clustering of text doc-
uments, discovering molecular patterns and speech recog-
nition (Van Hamme 2008; Buchsbaum and Bloch 2002;
Brunet et al. 2004; Kim and Tidor 2003). The model has
been mostly used for modelling and we are not aware of any
previous work that utilised NMF models as generators.

3 Experimental Testbed
The testbed game we are using for our experiments is cloned
version of Super Mario Bros. A number of dissimilar gen-
erators have been developed to automatically create content
for the game. In this paper, we focus on five of the generators
presented in (Horn et al. 2014). These generators were de-
veloped independently using different approaches and there-
fore it is expected that they exhibit different behaviour and
that each covers a distinctive expressive space (Horn et al.
2014). In the following section, we give a brief overview of
each generator used and the expressivity measures defined
to analyse their output spaces.

Generators
The Notch generator is the one originally created for IMB.
The generator works by adding components while travers-
ing the level. The component to be added is decided using
a number of probability values enabling the creation of end-
less variation of content with every run.

The Parametrized generator takes a number of param-
eters as input and outputs levels that satisfy these parame-
ters (Shaker, Yannakakis, and Togelius 2013). The version
used have the following six input parameters: the number of
gaps, width of gaps, number of enemies, enemy placement,

168

number of power ups and number of boxes. Other aspects of
level design are generated at random.

The Grammatical Evolution (GE) generator is an
evolutionary-based generator that employes a design gram-
mar to specify the structure of levels. Level generation is
handled through grammatical evolution and the fitness func-
tion optimises for the number of items presented and min-
imises the conflict in the placement of these items (Shaker
et al. 2012).

Launchpad is a rhythm-based generator where levels are
constructed satisfying rhythmical constraints defined in de-
sign grammars. The original generator was modified to gen-
erate content compatible with IMB (Smith et al. 2011).

The Hopper generator creates content by piecing together
small, hand-authored chunks according to predefined prob-
abilities (Shaker et al. 2011).

Expressivity Metrics
Given a number of dissimilar generators, the questions arise
about how the output they create differs? How can we de-
tect and measure these differences? And how can we know
which generator is “better”?. Towards finding answers to
these questions, attempts have been made to build an expres-
sivity analysis framework in which the output space of sev-
eral generators can be investigated. Several measures have
been proposed (Smith and Whitehead 2010; Shaker et al.
2012; 2013a). In the following, we describe the ones we use
to compare the results obtained in our experiments.

The linearity of a level is a measure of how flat a level is.
A level with a low linearity value exhibits a high number of
fluctuations in the height of the platform. To calculate this
value, we use the method proposed in (Horn et al. 2014)
and we consider the main platform and the hills as causes of
deviations of height.

Leniency accounts for how easy a level is through count-
ing the number of occurrences of rewarding and harmful
items such as coins and enemies. The implementation used
in this paper is taken from (Shaker et al. 2012).

A level Density is the number of platform stacked on top
of each other at each segment. This metric is calculated as
described in (Shaker et al. 2012).

4 The NMF Generator
Utilising NMF for level generation corresponds to the ex-
traction of the parts (patterns) matrix W from a set of train-
ing levels V . In our case, these levels are representative out-
puts from all individual generators combined in one matrix.
In order to construct the V matrix, the structure of the levels
is converted into sequences of numbers as described in the
following section.

Level Representation
Each level in SMB game is represented as a two dimensional
map where each cell contains a game item (a platform, a
coin, an enemy, ...). To apply NMF, and to capture as many
of the level details, this representation is converted into five
basic components as follows:

Platform, Vp: A vector is generated where each item rep-
resents to the height of the basic platform at the correspond-
ing position in the level map.

Hills, Vh: To accommodate for hills, another vector of the
same length is created in which each item stores the num-
ber of hills stacked at the corresponding column in the level
map. We differentiate between platforms and hills since
changes in the platform’s height is essential in the design
of the game, while the presence of hills, regardless of their
height, is what contributes to diversity.

Gaps, Vg: A vector is used to store whether a column con-
tains a gap. Although Vg can be combined with Vp, the anal-
ysis showed that better results can be obtained when sepa-
rated lists are used since this increases the sparsity of the
resultant matrix and ultimately improves the overall perfor-
mance of the NMF model.

Items, Vt: A vector is created to capture information
about the number of rewarding items presented at each col-
umn in the level map (coins, blocks and rocks).

Enemies, Ve: The final vector is binary accounting for the
presence of enemies at each column.

As a result, each level is represented by a quintuple <
Vp, Vh, Vg, Vt, Ve > capturing various details of the levels.

Constructing the Model
The final model consists of five independent NMF
models constructed for each level component
(NMFp, NMFp, NMFh, NMFg, NMFt, NMFe).
To estimate these models, each level i in the train-
ing set is converted into its corresponding quintu-
ple < Vpi, Vhi, Vgo, Vti, Vei > and the results ob-
tained from all levels are arranged in five matrices
V =< Vp,Vh,Vg,Vt,Ve > that collectively constitute
the original levels.

Training the NMF models results in an approximation of
the five part matrices W =< Wp,Wh,Wg,Wt,We >
that represent patterns extracted for each component, and
five coefficient matrices H =< Hp,Hh,Hg,Ht,He >
corresponding to the weights applied on each pattern. Fig-
ure 1 illustrates the overall framework followed.

Using the Model for Content Generation
Once the model is built and the Ws and Hs matrices are
estimated, the model can be used to generate a new level
following equation 2. A coefficient vector h′ representing
the weights applied on the estimated pattern matrices Ws
is set as input to the model (see Fig. 1 for illustration).
Since the model constitutes five NMFs, reconstructing a sin-
gle levels corresponds to estimating each of its basis com-
ponent independently. Consequently, the result is a vector
V ′ =< V′p,V

′
h,V

′
g,V

′
t,V

′
e > that represents the recon-

structed (or the newly generated, depending on the h′ used)
level. These vectors are then parsed and composed to create
a level in its 2D map format that can be loaded and played.

5 Experimental setup
To construct the model, the five generators described previ-
ously are used to generate 1000 levels each and the resultant

169

Figure 1: The framework implemented to estimate the model and to use it to generate new content. The upper part shows the steps followed
to construct the five NMFs. Levels are first converted into sequences of numbers and arranged in the V matrices that are used as input to
estimate W and H for each level component. In the content generation phase (the lower part), and to create a new level, a coefficient vector
is used as input that represents the weights applied on the pattern matrix W . The result is a vector representing the content of the new level.

set of 5000 levels is used to train the model. Each level map
is of size 200 x 15 and converting a level into its basis com-
ponent quintuple results in five vectors of length 200.

To estimate a single NMF model, a multiplicative update
algorithm is used (Lee and Seung 1999). The maximum
number of iteration to converge each model is 2000. The
number of parts for each component type is experimentally
tuned: 40 base vectors were used for platform, 40 for hills,
40 for gaps, 60 for coins and 60 for enemies. The dimen-
sions of the matrices in each model are 200 x 5000, 200 x
Bi and Bi x 5000 for V , W and H , respectively, where Bi

is the number of bases vectors for the level component i.

6 Pattern Analysis
The approach proposed for model construction is used to
build a generic content generator. The dataset of 5000 lev-
els is used as input. Five independent NMFs are constructed
corresponding to the various level components considered.
In the following, we provide a preliminarily analysis on the
patterns captured by each NMF model.

Figure 2 presents illustrative patterns captured by the five
NMF models constructed for each level component. The pat-
terns extracted by NMFp represents changes the platform’s
height and position. NMFh captures various hill structures
such as two or more hills of different width stacked on top of
each other. The number of gaps, their width and their spatial
placement are captured by NMFg . NMFt caries informa-
tion about the different arrangements of coins and blocks.
Finally, the ways enemies are scattered around the level are
represented in NMFe.

The effect of the coefficient matrix, H , on each pattern
matrix, W , differs according to the component type: Hp

has a vertical shifting effect on Wp leading to an increase
or decrease in the platform height and the appearance of
small platforms on the boundaries (see Fig. 3). Hh and Ht

(a) (b)

(c) (d)

Figure 2: Example patterns extracted by the NMF model from
the training data. Subfigures a is extracted by NMFp and show
a platform structure, Subfigure b represents item alignments and
are extracted by NMFt and Subfigures c and d capture various
positioning of enemies as captured by NMFe.

shift Wh and Wt, respectively along their y-axis resulting
in cutting horizontal slices of the patterns; finally, Hg and
He switch the values of Wg and We, respectively. Figure 3
presents example patterns from Wp and Wh and the same
patterns after applying different coefficient values.

7 Experiments and Analysis
We conduct two studies to analyse the efficiency of the gen-
erated model and to test its ability to imitate individual gen-
erators and to generate novel content. The expressivity mea-
sures discussed previously are employed as a framework for
comparing the generators’ outputs and to provide a quanti-
tative analysis of the results.

Resembling Individual Generator
In this study, we test the goodness of the generator in mim-
icking the input generators used for training while maintain-
ing its generalisation capability. To this end, we train the
model on the 5000 levels obtained from all generators and
we reconstruct these levels from the resultant NMF models.

170

(a) h = 0.025 (b) h = 0.1

(c) h = 0.15 (d) h = 0.2

(e) h = 0.9 (f) h = 0.65

Figure 3: Example patterns of a platform (a) and a hill (f), and the
resultant variations after multiplying by different coefficient values.

(a) A level generated by Hopper generator.

(b) A reconstructed level generated using the NMF model.

Figure 4: Example levels generated by Hopper and its correspond-
ing reconstructed level using the NMF model.

This can be done by using the same coefficient matrices es-
timated by the model during the training process as inputs.

An example level generated by Hopper and its recon-
structed level using our model can be seen in Figure 4. To
give more thorough insights on the generator’s output and
check whether the generative space of each generator can be
efficiently replicated by our generator, we calculated the val-
ues of each of the expressivity metrics for the generated and
the original levels. Figure 5 presents the averages and stan-
dard deviation values obtained. The results show that our
model is capable of effectively resembling the data used for
training as indicated by the values obtained from the recon-
structed levels which match closely those observed in the
training ones for the three expressivity measures.

We also looked at the visualisation of the histogram of
the expressive space obtained taking density and leniency
as dimensions. Figure 6 presents a pairwise comparison be-
tween the ranges obtained by the reconstructed and the orig-
inal levels along the chosen dimensions. As can be seen, the
distributions obtained are very similar. The results, however,
show that, in some cases, the original data covers slightly
wider expressive ranges compared to the corresponding re-
constructed ones. This is anticipated since our model learns
the frequently occurring patterns in each generator and not
the fine details. This also explains the reason our generator
covers mostly the areas of high density. Note however, that
it is possible to increase our model’s sensitivity and permit
grasping more details through the use of higher number of
parts (increasing the dimensions of the W and H). In the
following section, we discuss how our generator is able to
cover a wider range when its input is not bounded by the co-
efficient values of each generator but rather allowed to freely
explore the expressive space.

Figure 5: Averages and standard deviation values obtained from
levels created by the training generators and the values obtained
from the reconstructed levels using our NMF generator for various
expressivity metrics.

Figure 6: The distribution of 1000 levels obtained from each train-
ing generator (upper subfigures) and the corresponding distribu-
tions of 1000 levels created by the NMF model when resembling
the input levels (lower subfigures). The different colours corre-
spond to the number of levels in each cell; dark blue indicates 0
levels and red corresponds to high level density.

Exploring Novel Content Space
The novelty of the generator can be tested by analysing its
expressive range: the generator is novel if it shows ability to
explore areas in the expressive space that were not covered
by the generators used for training. This indicates that the
generator is able to generalise and improvise new content
through combining discovered patterns.

In this study, we investigate whether the proposed gener-
ator is able to improvise new levels through combining pat-
terns from different generators. Figure 7 presents the average
and standard deviation values obtained for the three expres-
sive measures for the 5000 training levels taken from all gen-
erators collectively. The figure also shows the correspond-
ing values for 5000 levels generated by the NMF model
when the input coefficient vectors used are the ones esti-
mated by the model and when the model is allowed to freely
explore the generative space (using randomly generated co-
efficient vectors as inputs). The results clearly demonstrate
the model’s ability to cover wider range than all generators
along the density and leniency dimensions. For the linear-
ity metric, and although the average value obtained is very
close to the averages from the other settings, the proposed
generator shows tendency towards creating highly nonlinear
content. This outcome is expected since for an NMF model
to create a linear level, a combination of 80 very low coeffi-
cient values should be used (40 coefficient for platform Hp,
and another 40 for hills Hh). Although this is possible, it

171

Figure 7: Average and standard deviation values for the three ex-
pressive metrics from the 5000 original levels used for training, the
levels generated by the NMF model when the coefficient matrix is
bounded by the ranges of the original generators and for levels cre-
ated by the NMF model when the coefficient matrix is unbounded.

Figure 8: The distribution of 5000 levels created by the generators
used for training, by the NMF model when its coefficient matrices
are restricted and by the NMF model when it freely explores the
expressive space.

is highly unlikely when only 5000 representative levels are
generated (which appears to be a slightly small number of
levels given the large number of coefficients).

Figure 8 shows the expressive ranges covered along the
density and leniency by all generators collectively, and by
the levels created by the NMF model when using the esti-
mated H matrices for all generators. The figure also presents
the expressive space covered when the model parameters are
not constrained. In the former case, similar distributions of
levels are obtained while in the latter case, the NMF gen-
erator was able to span a significantly wider space on both
dimensions with a more even distribution of levels.

Although it is not clear whether covering a wider space
is beneficial in terms of player experience or whether the
newly explored area is of interest for game designers, the
wider space definitely offers more variations and conse-
quently supports creativity by giving designers a greater
space of dissimilar patterns to explore. Two representative
levels with clear structure variations created by the NMF
generator are presented in Figure 9.

8 Conclusions
This paper proposes a novel use of the Non-Negative Matrix
Factorization method for modelling and generating game
content. To train the model, five content generators for the
popular game Super Mario Bros reported in the literature are
used to generate a large and diverse space of content. The
levels in the training dataset are converted into sequences
from which five NMF models are built where each learns
patterns about a specific component of the game. Several
experiments are conducted to test the method ability to imi-

(a)

(b)

Figure 9: Representative levels generated by the NMF generators
when its input space is unbounded.

tate the style of the input generators and to generate new, and
surprising content. This is done through analysing the gener-
ative space of each generator along three expressive metrics.
The results show that the suggested NMF-based generator is
capable of mimicking the input generators used for training
as well as demonstrating ability to improvise novel content.

There are a number of advantages gained by using NMF
for content generation: the extraction of patterns of unde-
fined length, the creation of novel content through combin-
ing and varying patterns from different generators, the pos-
sibility of visualising these patterns and presenting them to
game designers who can then select the ones they wish to
be present in the final design, and the possibility of training
the model on a set of hand-crafted levels to learn the de-
signer style and ultimately use the estimated model for gen-
eration. The third point constitutes a future work towards
implementing an authoring tool to aid game designers. The
latter points motivates further experimentations where the
original levels of the game crafted by human designers are
used for pattern extraction and style imitation. Future direc-
tions will also include investigation of a larger set of expres-
sivity measures along other directions. Example measures
include calculating the normalised compression distance be-
tween pairs of levels as a direct evaluation of their similarity,
another planed experiments is evaluating the novelty of the
generated content with human players or designers. Finally,
it is worth noting that our model captures patterns across
multiple dimensions independently. This can be seen a con-
straint and strength at the same time since on one hand it re-
strict the patters extracted to one dimension but on the other
hand it permits more variations and freedom in the genera-
tion phase when combining patterns opening the possibility
for novel content to be explored.

9 Acknowledgement
The research was supported in part by the Danish Research
Agency, Ministry of Science, Technology and Innovation;
project “PlayGALe” (1337-00172). This work also was sup-
ported in part by the Danish Council for Strategic Research
of the Danish Agency for Science Technology and Innova-
tion under the CoSound project, case number 11-115328.
This publication only reflects the authors views. The authors
would like to thank Gillian Smith for granting permission to
use the Launchpad generator.

References
Berry, M. W.; Browne, M.; Langville, A. N.; Pauca, V. P.;
and Plemmons, R. J. 2007. Algorithms and applications

172

for approximate nonnegative matrix factorization. Compu-
tational Statistics & Data Analysis 52(1):155–173.
Blizzard North. 1997. Diablo, Blizzard Entertainment,
Ubisoft and Electronic Arts.
Brandtzæg, P. B.; Følstad, A.; and Heim, J. 2005. Enjoy-
ment: lessons from karasek. In Funology. Springer. 55–65.
Brunet, J.-P.; Tamayo, P.; Golub, T. R.; and Mesirov, J. P.
2004. Metagenes and molecular pattern discovery using ma-
trix factorization. Proceedings of the National Academy of
Sciences 101(12):4164–4169.
Buchsbaum, G., and Bloch, O. 2002. Color categories re-
vealed by non-negative matrix factorization of munsell color
spectra. Vision research 42(5):559–563.
Cardamone, L.; Loiacono, D.; and Lanzi, P. L. 2011. In-
teractive evolution for the procedural generation of tracks in
a high-end racing game. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation, 395–
402. ACM.
Cook, M.; Colton, S.; and Gow, J. 2012. Initial results from
co-operative co-evolution for automated platformer design.
Applications of Evolutionary Computation 194–203.
Dahlskog, S., and Togelius, J. 2013. Procedural content
generation using patterns as objectives.
Davenport, G.; Holmquist, L. E.; Thomas, M.; ; and of Fun
Workshop Participants, F. 1998. Fun: A condition of creative
research. IEEE MultiMedia 5(3):10–15.
Dormann, C., and Biddle, R. 2006. Humour in game-based
learning. Learning, Media and Technology 31(4):411–424.
Firaxis Games. 2005. Civilization IV, 2K Games & Aspyr.
Hastings, E. J.; Guha, R. K.; and Stanley, K. O. 2009. Evolv-
ing content in the galactic arms race video game. In Pro-
ceedings of the 5th international conference on Computa-
tional Intelligence and Games, CIG’09, 241–248. Piscat-
away, NJ, USA: IEEE Press.
Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A comparative evaluation of procedural level gen-
erators in the mario ai framework.
Hoyer, P. O. 2004. Non-negative matrix factorization with
sparseness constraints. The Journal of Machine Learning
Research 5:1457–1469.
Illiger, A. 2011. Tiny Wings, Andreas Illiger.
Intelligence Engine Design Systems LLC. 2012. City Con-
quest.
Kim, P. M., and Tidor, B. 2003. Subsystem identification
through dimensionality reduction of large-scale gene expres-
sion data. Genome research 13(7):1706–1718.
Lee, D. D., and Seung, H. S. 1999. Learning the parts
of objects by non-negative matrix factorization. Nature
401(6755):788–791.
Maxis. 2008. Spore, Electronic Arts.
Mojang. 2011. Minecraft, Mojang and Microsoft Studios.
Persson, M. 2009. Infinite mario bros.
Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;

Mawhorter, P.; Takahashi, G.; et al. 2011. The 2010 mario ai
championship: Level generation track. Computational Intel-
ligence and AI in Games, IEEE Transactions on 3(4):332–
347.
Shaker, N.; Nicolau, M.; Yannakakis, G.; Togelius, J.; and
O?Neill, M. 2012. Evolving levels for super mario bros
using grammatical evolution. IEEE Conference on Compu-
tational Intelligence and Games (CIG) 304–311.
Shaker, M.; Sarhan, M.; Al Naameh, O.; Shaker, N.; and
Togelius, J. 2013a. Automatic generation and analy-
sis of physics-based puzzle games. In Proceedings of the
IEEE Conference on Computational Intelligence and Games
(CIG).
Shaker, M.; Sarhan, M. H.; Naameh, O. A.; Shaker, N.; and
Togelius, J. 2013b. Automatic generation and analysis of
physics-based puzzle games. In Computational Intelligence
in Games (CIG), 2013 IEEE Conference on, 1–8.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2014. Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.
Shaker, N.; Togelius, J.; and Yannakakis, G. Mario ai cham-
pionship.
Shaker, N.; Yannakakis, G. N.; and Togelius, J. 2013.
Crowdsourcing the aesthetics of platform games. Compu-
tational Intelligence and AI in Games, IEEE Transactions
on 5(3):276–290.
Skelly, T. 1995. Seductive interfaces–engaging, not enrag-
ing the user. In Microsoft Interactive Media Conference.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 4.
ACM.
Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2011. Launchpad: A rhythm-based level
generator for 2-d platformers. Computational Intelligence
and AI in Games, IEEE Transactions on 3(1):1–16.
Sorenson, N., and Pasquier, P. 2010. Towards a generic
framework for automated video game level creation. In
Proceedings of the European Conference on Applications
of Evolutionary Computation (EvoApplications), volume
6024, 130–139. Springer LNCS.
Togelius, J., and Schmidhuber, J. 2008. An experiment in
automatic game design. In IEEE Symposium On Computa-
tional Intelligence and Games. CIG’08, 111–118. IEEE.
Toy, M.; Wichman, G.; Arnold, K.; and Lane, J. 1980.
Rogue.
Van Hamme, H. 2008. H.: Hac-models: a novel approach to
continuous speech recognition. In Proceedings Interspeech,
ISCA.
Yu, D., and Hull, A. 2009. Spelunky, Independent.

173

