
Sequential Pattern Mining in StarCraft:
Brood War for Short and Long-Term Goals

Michael Leece and Arnav Jhala
Computational Cinematics Studio

UC Santa Cruz
{mleece, jhala} at soe.ucsc.edu

Abstract
A wide variety of strategies have been used to create
agents in the growing field of real-time strategy AI.
However, a frequent problem is the necessity of hand-
crafting competencies, which becomes prohibitively
difficult in a large space with many corner cases. A
preferable approach would be to learn these competen-
cies from the wealth of expert play available. We present
a system that uses the Generalized Sequential Pattern
(GSP) algorithm from data mining to find common pat-
terns in StarCraft:Brood War replays at both the micro-
and macro-level, and verify that these correspond to hu-
man understandings of expert play. In the future, we
hope to use these patterns to learn tasks and goals in
an unsupervised manner for an HTN planner.

Real-time strategy (RTS) games have, in recent years, be-
come a popular new domain for AI researchers. The reasons
for this are many, but at the core it is due to the inherent
difficulty of creating intelligent autonomous agents within
them. This in turn is caused by the imperfect information,
real-time, adversarial nature of the games. Additionally, the
requirement to reason at multiple levels of abstraction, with
interaction between the decisions made at each of the dif-
ferent levels, poses another challenge. On top of all of this,
the enormous sizes of the state and action spaces mean that
straightforward applications of traditionally successful tech-
niques such as search and MCTS run into difficulties.

In light of these challenges, many different approaches to
creating intelligent agents in RTS games have been tested.
Some of these include hand-crafted state machines, search-
based approaches, goal-driven autonomy, or, more com-
monly, some combination of techniques. We are interested
in planning approaches to the problem, and are particu-
larly looking at Hierarchical Task Networks (HTNs). An
HTN consists of a dictionary of primitive tasks (basic do-
main competencies), complex tasks (compositions of prim-
itive and complex tasks), and goals to be achieved. These
tasks can have preconditions and postconditions, with many
extensions such as durative actions and external precondi-
tions.

While many papers cite HTNs as a successful AI tech-
nique, it is nearly always followed with the caveat that they

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

require an immense amount of programmer/expert curation,
as they need to be defined and refined by hand. However,
with enough data the possibility to learn this structure in an
unsupervised manner exists, and has been the study of recent
research.

This paper presents a system that uses data mining tech-
niques to search for action patterns in RTS replays. There
are two main goals for the results. The first is that they give
us insight into the universal aspects of gameplay from hu-
man players, which may be useful when designing hand-
crafted agents. The second, and more ambitious, is to find
common sequences of actions that may translate to mean-
ingful task/goal pairings in an HTN model for an RTS agent.

Background and Related Work
StarCraft:Brood War
StarCraft: Brood War (SC:BW) is an RTS game produced
by Blizzard Entertainment. As it has been the focus of much
recent work, we will give a high-level overview while high-
lighting the relevant aspects to this work.

Play in SC:BW proceeds in the manner of traditional RTS
games: players build up an economy in order to train an
army that lets them defeat their opponent. The economy is
built by training worker units and expanding to new resource
locations. Army development requires construction of train-
ing buildings, from which military units can be trained, and
also tech buildings, which are required to construct higher
tech units or unlock upgrades to make current units stronger.
Players must balance resources between economy and mil-
itary to both not fall behind on production capability while
also not becoming vulnerable to attack from the opponent.

One of the attractive aspects of RTS games in general is
the requirement for planning at multiple levels of abstrac-
tion, from the individual unit movement level up to the high-
level resource allocation and tech advancement problem. In
addition, these plans must be coordinated with each other,
in that if the resource allocation plan is an aggressive mili-
tary one, this greatly affects how units must be moved at the
mid-level positioning problem and even the low-level micro
problem.

Another feature that has elevated SC:BW as an AI do-
main is the existence of expert human play. As one of the
first games to become an ’eSport’, SC:BW has professional

Artificial Intelligence in Adversarial Real-Time Games: Papers from the AIIDE Workshop

8



Figure 1: An example screenshot from SC:BW. Shown is a
Terran base with mining worker units, and a portion of the
Terran player’s army.

leagues and tournaments, and large numbers of replays from
professional players can be acquired online. This gives re-
searchers high-quality demonstrations of play from which to
train agents. To us, who are interested in unlabeled learning
from demonstration in this domain, this is a critical aspect.

Related Work
The sequential pattern mining problem was brought to the
forefront in (Agrawal, Imieliński, and Swami 1993), who
set forth many of the challenges and tradeoffs that must be
considered when approaching the problem. Later, Agrawal
et al. summarized the main algorithms for the problem in
(Agrawal and Srikant 1995). Since then, many extensions
and optimizations have been developed for these algorithms,
but the core set is sufficient for our purposes.

The work most similar to ours algorithmically was pre-
sented in (Bosc et al. 2013), which also used sequential data
mining to analyze RTS games, in this case StarCraft 2. How-
ever, their work focuses on the extraction itself, with some
additional analysis of high-level build order success/failure
rates, with an eye towards game balance. We feel that the
approach has much more potential than this.

One of the inspirations for this work is HTN-MAKER
(Hogg, Munoz-Avila, and Kuter 2008). This system learns
HTN methods from observation of expert demonstrations,
which is our stated end goal. However, it has issues with
generating large method databases even in simple domains,
something that will explode when transposed to the com-
plexity of SC:BW. Additionally, it uses a more logical than
statistical approach, which we feel is less appropriate when
working with human demonstrations that are likely to con-
tain errors. (Yang, Pan, and Pan 2007) use an EM clustering
of primitive actions to abstract tasks to incrementally build
up a hierarchy of methods, which is more likely to filter out
infrequent errors, but must use a total-order assumption in
their assignment of actions to tasks that does not hold in hu-

man SC:BW gameplay.
More generally related to our motivation, there has been

some amount of work on both HTNs in real-time games and
also learning from unlabeled demonstrations. Hoang et. al
used HTN representations in the first person shooter game
Unreal Tournament to good success, merging event-driven
agents with the higher-level planning to achieve both reac-
tiveness and strategy (Hoang, Lee-Urban, and Muñoz-Avila
2005). Another great success of HTNs in games was Bridge
Baron 8, which won the 1997 computer bridge champi-
onship (Smith, Nau, and Throop 1998). While not real-time,
its management of the imperfect information aspect of the
game is highly relevant to the RTS genre.

While our end goal is to learn an HTN model of ex-
pert play, prior work on learning from demonstration in the
RTS domain has mostly focused on working from case li-
braries. Weber et al. implemented a goal-driven autonomy
system and extended it to use a case library from expert re-
plays for detecting discrepancies and creating goals in (We-
ber, Mateas, and Jhala 2012). Additionally, while more su-
pervised in that the demonstrations provided had partial la-
beling, Ontañón et al. used case-based planning to imple-
ment a successful Wargus agent based on demonstrations
of a human player executing various strategies (Ontañón et
al. 2010). This system has been extended in a number of
ways, including towards automated plan extraction from hu-
man demonstrations in (Ontanón et al. 2009), in which the
authors use plan dependency graphs to correspond actions
to goals, but it still requires some amount of goal encoding
from the human moderator.

Many other approaches to strategy and planning have
been taken for SC:BW. A useful survey of these can be found
in (Ontanón et al. 2013).

Generalized Sequential Patterns
Generalized Sequential Patterns (GSP) is a sequential pat-
tern mining algorithm developed by (Srikant and Agrawal
1996). Its greatest appeal is in the flexibility that it affords
the searcher in placing restrictions on the types of patterns
to be searched for. In particular, it introduced the notion of
a maximum or minimum gap between elements in the pat-
tern, which places a hard limit on how separated consecutive
elements in a pattern are allowed to (or must) be. This is use-
ful for us, as we intend to search for short-term patterns to
identify actions that are linked together in expert play. With-
out this gap limitation, we might identify ”Build Barracks,
Train SCV, Train Tank” as a common pattern, since it would
appear in nearly every Terran game (with other actions in
between), while the actions themselves are not necessarily
directly linked in the player’s mind. Another capability of-
fered by GSP is user-defined taxonomies, with support for
patterns that include items from different levels of the tree.
While we have not yet included this aspect, we do feel it will
be valuable in the future.

GSP works by performing a series of scans over the data-
sequences, each time searching for frequent patterns one el-
ement longer than the scan before. Given a set of frequent
n-length patterns, we construct a candidate set of n + 1-
length patterns by searching for overlapping patterns within

9



our frequent set (that is, a pair of patterns where the last
n − 1 elements in one matches the first n − 1 elements in
the other). We stitch these together to create a n + 1-length
pattern for the candidate set. We then search for each candi-
date in each sequence, to determine the amount of support
and whether to add it as a frequent pattern. This approach is
guaranteed to generate all frequent patterns (due to the fact
that frequent patterns must be made up of frequent patterns),
and in practice greatly reduces extraneous searching.

A replay of SC:BW can be seen as two sequences of ac-
tions, performed by each player. However, if we look at the
full actions, we will find no overlapping patterns between
games, due to the ever-present RTS problem of action-space
size. Two players may move two units to minutely dif-
ferent locations, and these actions will not match up in a
pure pattern match. As a result, we must blur our vision
to some degree to find meaningful patterns. For this work,
we zoomed far out, removing location information entirely
from actions. Some example commands from our resultant
sequences would be ’Train(Marine)’, ’Build(Barracks)’, or
’Move(Dragoon)’. The last is the main weakness of our
abstraction, and our highest priority moving forward is to
reintroduce locality information via high-level regions. Even
so, the patterns that we extract are meaningful and starting
points for learning goals and tasks.

To demonstrate both the GSP algorithm and our pro-
cessing of replays, consider Fig. 2. Imagine that the
maximum acceptable gap between pattern elements has
been set at 4 seconds, and we require support from ev-
ery trace to consider a pattern frequent. The initial pass
will mark “Move(Probe)”, “Train(Probe)”, and “Attack-
Move(Zealot)” as frequent 1-element patterns, as they all
appear in each trace. Then, every combination of these pat-
terns will be generated as a candidate 2-element pattern, of
which only “Move(Probe), Move(Probe)”, “Move(Probe),
Train(Probe)”, and “Train(Probe), AttackMove(Zealot)”
will be supported by all 3 traces. The only 3-element can-
didates generated are then “Move(Probe), Move(Probe),
Train(Probe)” and “Move(Probe), Train(Probe), Attack-
Move(Zealot)”, as any other 3-element pattern would have
a non-frequent sub-pattern, and thus can be guaranteed to be
non-frequent itself.

Of the candidates, “Move(Probe), Train(Probe), Attack-
Move(Zealot)” does not find support, as it cannot be satis-
fied in Trace 3 without using a pattern with elements more
than 4 seconds apart. Therefore, we add “Move(Probe),
Move(Probe), Train(Probe)” to our frequent list and termi-
nate, as we cannot generate any 4-element candidates.
We extracted the action sequences using the fan-developed
program BWChart1. Once the sequences were extracted
from replays and preprocessed to the level of abstraction
described above, we then ran the actual GSP algorithm on
them. For our system, we used the open-source data mining
library SPMF2, which includes an implementation of GSP.
Some small code adjustments to the SPMF implementation
were required to accomodate longer sequences.

1available at http://bwchart.teamliquid.net/
2available at http://www.philippe-fournier-viger.com/spmf/

Second Action
161 Move(Probe) Trace 1
162 Move(Probe)
164 Move(Probe)
166 Train(Probe)
167 AttackMove(Zealot)
168 AttackMove(Dragoon)

388 Move(Probe) Trace 2
389 Build(Gateway)
391 Train(Probe)
394 AttackMove(Zealot)
402 Move(Probe)
403 Move(Probe)
407 Train(Probe)

222 Move(Probe) Trace 3
223 Move(Probe)
224 Move(Probe)
225 Move(Probe)
226 Train(Probe)
239 Train(Probe)
240 AttackMove(Zealot)
243 AttackMove(Dragoon)
244 AttackMove(Zealot)

Figure 2: Snippets from three replay traces that have been
preprocessed into our system’s format

Experiments and Results
For our experiments, we used 500 professional replays
downloaded from the website TeamLiquid3. We focused on
the Terran vs. Protoss matchup for our analysis, though it
can be extended to the other 5 matchups as well. Our tests
ended up splitting themselves into two categories: micro-
and macro-level patterns. In the former, we ran our system
as described above, with maximum gaps of 1-4 seconds,
to search for actions that human players tend to chain to-
gether one immediately after the other. In the latter, we at-
tempted to look for higher level goals and plans by remov-
ing the unit training and movement actions, leaving only the
higher level strategy-directing actions: building construction
and researches.
One thing to note is that we would prefer to use a larger num-
ber of replays to attain even more confidence in the mined
patterns, but were restricted by system limitations. Because
the GSP algorithm needs to loop through every sequence for
each pattern to see if support exists, it ends up storing all se-
quences in memory. For StarCraft:Brood War traces, with
thousands of actions, this fills up memory rather quickly.
The most prevalent sequence mining application is purchase
histories, which are much shorter, and therefore the algo-
rithm implementations are generally more geared towards
that problem type. That being said, a possible extension to
this work would be to use a batch approach, where candidate
patterns are generated per batch, then tested over the whole

3www.teamliquid.net

10



suite to determine if they are truly supported or not.

Micro-level Patterns

One type of pattern that we investigated was sequences
of actions separated by small amounts of time, which we
term ’micro-level patterns’. These are actions that occur fre-
quently and immediately after one another, thereby indicat-
ing that they are linked to each other and in pursuit of the
same goal.

In order to find these patterns, we ran our system allowing
gaps between actions of 1, 2, and 4 seconds. In the end, there
was not a qualitative difference between the results for any
of these gaps, so all results shown here are using a 1 second
maximum gap.

Upon examination, the mined patterns fell into three main
classes: action spamming, army movement, and production
cycles, examples of which are shown in Figure 3.

Action Spamming Action spamming is the habit of per-
forming unnecessary and null operator actions purely for the
sake of performing them. It is a technique often used by pro-
fessional players at the beginning of a game when there are
not enough units to tax their abilities, in order to warm up
for the later stages of the game when they will need to be
acting quickly. For the most part, these commands consist
of issuing move orders to worker units that simply reinforce
their current order. Since the habit is so prevalent, it is un-
surprising that we find these patterns, although they are not
particularly useful. If in the future their existence becomes
problematic, we should be able to address the problem by
eliminating null-operation actions.

Army Movement Another category of extended pattern
that is frequent in the data set is that of army movement. This
type of pattern is more in line with what we hope to find, as
the movement of one military unit followed by another is
very likely to be two primitive actions in pursuit of the same
goal. Unfortunately, actually identifying the goals pursued
would require more processing of the data, due to the loss of
location information from our abstraction. However, we are
confident that once we reintroduce this information, mean-
ingful army movement patterns will be apparent.

Production Cycles The final micro-level pattern that
shows up in our data is what we term ’production cycles’.
Professional players tend to sync up their production build-
ings in order to reissue training commands at the same time.
For example, if a Protoss player has 4 Gateways, he will
likely time their training to finish at roughly the same time,
so that he can queue up 4 more units at once, requiring less
time for mentally switching between his base and his army.
This is reflected in the patterns we find, as these Train com-
mands tend to follow immediately after one another. This is
another example of a promising grouping of primitive ac-
tions that could be translated into a complex action in the
HTN space, after preconditions and postconditions had been
learned.

Action Spamming
1: Move(Probe)
2: Move(Probe)
3: Move(Probe)
4: Move(Probe)
5: Train(Probe)
6: Move(Probe)
7: Move(Probe)

Army Movement
1: AttackMove(Zealot)
2: AttackMove(Zealot)
3: AttackMove(Zealot)
4: AttackMove(Dragoon)
5: AttackMove(Dragoon)
6: AttackMove(Dragoon)
7: AttackMove(Dragoon)

Production Cycle
1: Train(Dragoon)
2: Train(Dragoon)
3: Train(Dragoon)
4: Train(Dragoon)

Figure 3: A sample of frequent patterns generated by the
system. The maximum gap between subsequent actions is 1
in-game second.

Macro-level Patterns
In the opening stages of SC:BW, there is very little inter-
action and information flow between players. As a result, a
relatively small number of fixed strategies have been settled
upon as accepted for the first few minutes of play. These are
commonly referred to as ’build orders’, and they are gen-
erally an ordained order of constructing tech buildings and
researches. How long players remain in these build orders,
similar to chess, is dependent upon the choice of each, and
whether either player manages to disrupt the other’s build
with military aggression.

In order to search for high-level goals, of which build or-
ders are the most stable example, we removed unit train-
ing and movement actions from our traces and expanded the
amount of time allowed between actions to 60 seconds. With
these modifications, we ended up with two main types of
patterns.

The first was simple chains of production structures and
supply structures. Players in SC:BW must construct supply
structures in order to support new units. As a result, once the
economy of a player is up and running, construction comes
down to increasing training capacity and building supply
structures to support additional military units. These patterns
would translate well to long-term high-level goals in an HTN
formulation of building up infrastructure.

The second type of pattern was what we had hoped to
see, build order patterns. These were long chains of specific
training, tech, and supply structures in a particular order. In
order to verify these results, we compared them with the fan-
moderated wikipedia at TeamLiquid, and found that each of

11



Build Orders
1: Build(SupplyDepot)
2: Build(Barracks)
3: Build(Refinery)
4: Build(SupplyDepot)
5: Build(Factory)
6: AddOn(MachineShop)

1: Build(Pylon)
2: Build(Gateway)
3: Build(Assimilator)
4: Build(CyberneticsCore)
5: Build(Pylon)
6: Upgrade(DragoonRange)
7: Build(Pylon)

Figure 4: Two build orders generated by our system. Ac-
cording to TeamLiquid, the first is a Siege Expand, “one
of the oldest and most reliable openings for Terran against
Protoss”, while the second is a One Gate Cybernetics Core,
which “can be used to transition into any kind of mid game
style”.

the early game patterns generated by our system was posted
as a well-known and feasible build order. We feel that these
patterns are the strongest of the ones found, and the most
easily translated into high-level goals.

Discussion and Future work
The final goal of this work is to use the patterns found in the
data to generate complex tasks for an HTN model. Given
these complex tasks, we can use existing unsupervised tech-
niques to learn preconditions and postconditions in order to
create a fully functioning HTN planner for SC:BW.

Realistically, it is unlikely that a pure HTN planner
learned in a completely unsupervised manner will be a
highly competitive agent. In particular, it is probable that
the agent will require some amount of reactive agency for
the lowest level management of units. While it is certainly
possible to author tasks that dictate how to plan out an en-
gagement, we do not currently have a solution as to how to
learn these sorts of tasks in an unsupervised setup. That be-
ing said, we do believe that higher level strategy and more
mid level army positioning can absolutely be learned, and
feel that these results back up that claim. While it is true
that the build order knowledge discovered by our system has
been hand-curated and already exists, the fact that it lines up
so well gives us confidence in the approach.

One example of an agent that has combined reactivity and
planning can be found in Ben Weber’s work (Weber, Mateas,
and Jhala 2012) (Weber 2012), which used a reactive planner
to achieve goals generated by a GDA system. It may be the
case that we learn methods for this sort of reactive planner,
and match them with goals using differential state analysis
across our database of replays.

There are three main directions that we hope to extend
this work. The first is to reduce the amount of location ab-
straction that we are performing. The reasoning behind re-

moving it for this project was the fact that different regions
on different maps can be difficult to identify as performing
similar roles. The starting region for each player is easily
translated from map to map, and perhaps the first expansion
location, but beyond that it can become difficult to say: “Re-
gion A on Map X plays a similar role as Region B on Map
Y ”. However, we are currently working on a system to do
a data-driven mapping of maps, and hope to alleviate this
issue soon.

A second area of extension is to utilize the taxonomy com-
petency given by the GSP algorithm to see if this gener-
ates even more useful patterns. Taxonomies are natural to
SC:BW, a simple example would be to classify any Terran
unit produced from the Barracks as ’Infantry’, or to have an
umbrella classification of ’Military Unit’ for all non-worker
units. The added structure may result in longer and/or more
meaningful patterns generated.

A last goal would be to use these patterns to learn mean-
ingful predicates for HTN methods. For example, if post-
processing determined that a frequent pattern was to move
5, 6 or 7 Dragoons toward the enemy base at a time when
the player owned 5, 6 or 7 Dragoons respectively, it may be
the case that we can more accurately define the task being
performed as Move ’all’ Dragoons.

Conclusion
In conclusion, we have presented a data mining system that
searches for patterns within SC:BW replays, and shown that
the patterns generated are meaningful on both a micro and
macro level. With this success, we intend to continue to-
ward the motivation for the work, which is an unsuper-
vised method for learning HTN tasks and goals from expert
demonstrations.

References
Agrawal, R., and Srikant, R. 1995. Mining sequential
patterns. In Data Engineering, 1995. Proceedings of the
Eleventh International Conference on, 3–14. IEEE.
Agrawal, R.; Imieliński, T.; and Swami, A. 1993. Mining
association rules between sets of items in large databases. In
ACM SIGMOD Record, volume 22, 207–216. ACM.
Bosc, G.; Kaytoue, M.; Raıssi, C.; and Boulicaut, J.-F. 2013.
Strategic pattern discovery in rts-games for e-sport with se-
quential pattern mining.
Hoang, H.; Lee-Urban, S.; and Muñoz-Avila, H. 2005. Hi-
erarchical plan representations for encoding strategic game
ai. In AIIDE, 63–68.
Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with minimal additional knowl-
edge engineering required. In AAAI, 950–956.
Ontanón, S.; Bonnette, K.; Mahindrakar, P.; Gómez-Martı́n,
M. A.; Long, K.; Radhakrishnan, J.; Shah, R.; and Ram, A.
2009. Learning from human demonstrations for real-time
case-based planning.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010.
On-line case-based planning. Computational Intelligence
26(1):84–119.

12



Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-time
strategy game ai research and competition in starcraft.
Smith, S. J.; Nau, D.; and Throop, T. 1998. Computer
bridge: A big win for ai planning. Ai magazine 19(2):93.
Srikant, R., and Agrawal, R. 1996. Mining sequential
patterns: Generalizations and performance improvements.
Springer.
Weber, B. G.; Mateas, M.; and Jhala, A. 2012. Learning
from demonstration for goal-driven autonomy. In AAAI.
Weber, B. 2012. Integrating learning in a multi-scale agent.
Ph.D. Dissertation, UC Santa Cruz.
Yang, Q.; Pan, R.; and Pan, S. J. 2007. Learning recursive
HTN-method structures for planning. In Proceedings of the
ICAPS-07 Workshop on AI Planning and Learning.

13




