
[THIS SPACE MUST
BE KEPT BLANK]

Toward Generating 3D Games with the Help
of Commonsense Knowledge and the Crowd

Rania Hodhod1, Marc Huet2, and Mark Riedl2
1TSYS School of Computer Science, Columbus State University

2School of Interactive Computing, Georgia Institute of Technology
hodhod_rania@columbusstate.edu; {mbhuet, riedl}@gatech.edu

Abstract
Procedural game generation is the automatic creation of all
aspects of a playable computer game. Procedural game gen-
eration systems require specialized knowledge, virtual
worlds, and art assets. In this paper, we show how 3D
graphical scenes for interactive fictions can be automatically
generated with only knowledge that is readily available in
existing knowledge bases or can be acquired via
crowdsourcing. The key to 3D scene generation is common-
ly accepted spatial relationships between different types of
objects in different types of scenes. We use a crowdsourcing
game to automatically and rapidly acquire spatial relations.
The spatial relations are used by an intelligent scene genera-
tion system that selects and configures 3D assets within a
virtual geometric space.

Introduction
Procedural content generation is the automatic creation of
video game content, where content means anything that is
traditionally created by an artist or a designer, such as
maps, textures, levels, and objects. Procedural game gener-
ation is the automatic and simultaneous creation of all as-
pects of a playable computer game experience (Togelius et
al. 2011; Hendrikx et al. 2013). Procedural game genera-
tion is task that requires a large amount of outside infor-
mation and knowledge (Nelson & Mateas 2008; Smith and
Mateas 2010) Treanor et al. 2012; Cook et al. 2013; Cook,
and Colton 2014). Often a procedural game generation sys-
tem has access to a virtual world, art assets such as sprites
or 3D models, design criteria, and evaluation functions.
The Scheherazade system (Li, Lee-Urban, and Riedl 2012;
Li et al. 2013) demonstrated that a particular type of
game—the interactive fiction, a text-based game in which

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one issues commands to progress through a narrative—can
be generated without any knowledge except for that that
can be accessed through existing online knowledge bases
and corpora or can be automatically, quickly, and easily
crowdsourced. However, due to emphasis on learning plot
points from crowdsourcd textual corpora, the Scheherazade
system only generates textual adventure games.
 In this paper we present work exploring the question of
whether a graphical interactive narrative can be automati-
cally generated. We extend the existing work by Li, Lee-
Urban and Riedl with a procedural 3D graphical scene
generation technique that, true to the prior motivation, does
not use any knowledge that cannot be acquired through ex-
isting knowledge bases or crowdsourced directly from hu-
mans in a quick and automated fashion. Procedural scene
generation is a process of automatically rendering a 3D
graphical environment portraying a real world environ-
ment. For example, one may request a scene be generated
for a “restaurant”. Such a system should be able to respond
to any conceivable request.
 Procedural scene generation is related to text-to-scene
generation, but instead of taking a textual description of the
scene, the process relies on commonsense knowledge
about what typical scenes of the given type are expected to
look like. The key to procedural scene generation is com-
monsense knowledge. We humans, living in the real world,
have familiarity with a wide range of environments and
have expectations about what one finds in these environ-
ments and how they are arranged. Commonsense
knowledge bases such as CYC (Lenat 1995) and Concept-
Net (Havasi, Speer, and Alonso 2007) are sources that can
provide us with lists of objects that might exist in the envi-
ronment of interest. However, what is missing from all
commonsense knowledge bases to date is spatial infor-
mation: how objects in an environment tend to be situated
with respect to each other. For example, existing com-

Experimental Artificial Intelligence in Games: Papers from the AIIDE Workshop

21

monsense knowledge bases can tell us that tables, chairs,
and doors are commonly found in restaurants, but not that
chairs are typically found next to tables and far from doors.
 One possible solution to the problem of missing spatial
relational commonsense knowledge is to handcraft a cus-
tom knowledgebase for a large number of possible scenes.
However, it is not clear how this strategy would be differ-
ent from simply building the 3D scenes by hand. Further,
there would always be scenes that could not be generated.
Another possible solution is to crowdsource the requisite
spatial knowledge in a just-in-time fashion. Crowdsourcing
is the outsourcing of complicated tasks to a number of
anonymous human individuals and then aggregating the re-
sults (Quinn and Bederson 2011). Crowdsourcing is a
cheap and effective alternative for populating com-
monsense knowledge bases (Havasi, Speer, and Alonso
2007; Siorpaes and Hepp 2008).
 In this paper, we extend Scheherazade with a procedural
scene generation technique that uses just-in-time
crowdsourcing to acquire the necessary spatial relation in-
formation for a scene. The spatial relations are acquired via
a crowdsourcing computer game (game with a purpose) in
which points are earned by matching spatial relations to
pairs of objects that may appear in a particular scene. The
spatial relations are used by an intelligent scene generation
system that selects and configures 3D assets within a virtu-
al geometric space. To our knowledge, this is the first con-
sideration of procedural scene generation for games that
does not assume a pre-existing knowledgebase. It is also
the first example of how playing a computer game can help
create a computer game.

Background and Related Work
Computer game generation is a nascent area of Game AI
research. A number of researchers have developed intelli-
gent systems that produce playable games in a single genre
(Nelson & Mateas 2008; Smith and Mateas 2010) Treanor
et al. 2012; Cook et al. 2013; Cook, Colton, and Gow
2014) or across many game genres (Zook and Riedl, 2014).
Most game generation systems focus on 2D games. The
Angelina system is notable in that it has been updated to
produce 3D maze games (Cook and Colton 2014).
 Procedural content generation has been used to perform
scene layout. CAPS (Xu, Stewart, and Fiume 2002) is a
constraint-based automatic placement system, which lays
out a scene given a set of hand-coded constraints of vary-
ing degrees of specificity. The furniture arrangement tech-
nique by Yu et al. (2011) searches for a configuration of a
priori known types of furniture based on a set of heuristics
inspired by interior design.
 Procedural scene generation is a type of text-to-scene
system. Text-to-scene systems take a number of natural

language sentences describing a scene and produce a 3D
graphical visualization. Confucius (Ma 2006) is a multi-
modal text-to-animation system that generates animations
of virtual humans from single sentences containing an ac-
tion verb. In these systems the referenced objects, attrib-
utes, and actions are typically relatively small in number or
targeted to specific pre-existing domains. WordsEye
(Coyne and Sproat 2001) uses natural language input in
which verbs are resolved to semantic frames that are then
mapped to corresponding poses and spatial relations.
WordsEye database includes information about the objects’
typical parts, typical location and typical objects nearby
them. Zitnick, Parikh, and Vanderwende (2013) learn
probabilistic placements of items in 2D scenes by watching
humans illustrate text descriptions. Scenes can only be
composed from a finite set of known art assets.
 The successes of the above systems are functions of the
quality of knowledge they are working from. One chal-
lenge scene layout and text-to-scene systems face is the
addition of new types of objects, which requires not only a
new class but also understanding of the relationships with
all other types of objects. Crowdsouring seems to provide a
solution to this problem through the automated collection
of different objects and their spatial relationships. Word-
sEye (2001) knowledge base is partially crowdsourced.
The system by Zitnick, Parikh, and Vanderwende requires
a large corpus of example scene layouts, which can be
crowdsourced. As with most crowdsourced knowledge ba-
ses, no incentive is provided for people to contribute.
 Games with a Purpose (GWAPs) (von Ahn and Dabbish
2008) are games in which players generate useful data or
solve problems as a by-product of play. For example, play-
ers may label images (von Ahn and Dabbish 2004), dis-
cover the shapes of proteins (Cooper et al. 2010), or cate-
gorize concepts to develop an ontology (Siorpaes and Hepp
2008; Carranza and Krause 2012). von Ahn and Dabbish
(2008) give a number of design templates for GWAPs. In
particular output-agreement games ask two players to col-
laborate to generate labels for things (e.g., images) without
collusion. Players are rewarded when labels match. The
ESP Game (von Ahn and Dabbish 2004) is the canonical
example of an output-agreement game. Our approach to
procedural scene generation uses an output-agreement
GWAP to acquire spatial relations for items in a scene.
However, instead of asking players to generate text labels,
players select from a fixed vocabulary of spatial relations.
 The Scheherazade system (Li, Lee-Urban, and Riedl,
2012; Li et al. 2013) attempts to create a novel, fictional
narrative about a simple, user-provided topic. For example,
the user may request a story about a “bank robbery”. The
system uses crowdsourcing to rapidly acquire a number of
linear narrative examples about typical ways in which the
topic might occur. In other words, we collect human expe-
riences in narrative form and learn a generalized model

22

about the topic domain. The details of how Scheherazade
learns topic models and generates stories is beyond the
scope of this paper; See Li et al. (2013) for details. Sche-
herazade was modified to generate playable text-based in-
teractive fictions (Li, Lee-Urban, and Riedl 2012).

Procedural Scene Generation
Our approach to procedural scene generation takes a sim-
ple term describing a scene (e.g., “restaurant”) and produc-
es a fully rendered 3D visualization of the environment.
Procedural scene generation is a process of arranging the
items commonly found in an environment to conform to
the expectations of the user. However, we do not assume
that the system knows anything about the type of environ-
ment. Thus, our system must solve four problems. First, it
must determine what items should be in the requested sce-
ne. A common sense knowledge base structured in the
form of a semantic net is used for this purpose, see Figure
1(a). Second, it must determine typical spatial relation-
ships between the items in the scene. A simple game is de-
signed to collect these relations called HeartESP as shown
in Figure 1(b). Finally, it must procure graphical art assets
for the items in the scene. A 3D models database is used to
collect the assets which are then passed to the Unity 3D
Game Engine to position the graphical art assets in the vir-
tual environment, see Figure 1(c) and Figure 1(d).

Generating Scene Items
In this section we discuss how our system “expands” the
original query of an environment type into a set of items
that should populate the scene. Common sense knowledge
bases contain a vast amount of general knowledge that
people are expected to possess, represented in an ontologi-

cal form that it is available to artificial intelligence pro-
grams. ConceptNet (Havasi, Speer, and Alonso 2007) is a
knowledge base presently consisting of over 1.6 million
assertions of common sense knowledge encompassing the
spatial, physical, social, temporal, and psychological as-
pects of everyday life. Knowledge in Concept Net is orga-
nized in the form of a semantic net in which nodes are used
to represent the different concepts and edges are used to
describe relations between these concepts. Concepts and
their associated relations can be described in the form of
production rules, e.g., can_exist(payment_counter, bank).
ConceptNet does not contain spatial relations. We utilize
ConceptNet to “expand the query” by collating all concep-
tually related objects that can exist in the given environ-
ment type (e.g., “restaurant”).
 The use of the ConceptNet KB is both a strength and a
weakness. ConceptNet is noisy in the sense that it contains
concepts that are sometimes non-sensical from the perspec-
tive of procedural scene generation. For example,
can_exist (trust, bank) would result in our system attempt-
ing to place “trust” in the scene despite the fact that it is an
abstract concept. Consequently, we apply a filtration step
that eliminates the concepts that appear to be noise from
our purposes. We implement a rule that searches the net-
work for a used_for predicate for each candidate concept
retrieved. The used_for predicate only uses physical ob-
jects in the first parameter. For example, used_for(atm,
withdraw_money) would allow us to keep an ATM (Auto-
mated Teller Machine) as an item in a scene about a bank.
Despite our satisfaction with the generated list of objects, it
is possible for our system to retrieve equivalent concepts
with different symbolic names, such as coin and currency.
We were able to account for this later in the pipeline when
we acquire spatial relations.

Crowdsourcing Spatial Relations
No commonsense knowledge bases contain common typi-
cal spatial relations between objects. The idea behind
GWAPs is to use the computational power of humans to
perform tasks that computers cannot currently perform by
presenting the task as a game (von Ahn and Dabbish 2004;
von Ahn and Dabbish 2008). Unlike other approaches to
crowdsourcing that pay crowd workers, GWAPs incentiv-
ize people to perform work in exchange for entertainment.
 HeartESP is an output-agreement game based on The
ESP Game. In The ESP Game, two players collaborate to
label images while remaining anonymous to each other to
prevent collusion; players receive points when labels
match. Unlike in The ESP Game, HeartESP players must
select spatial relations from a fixed set of relations: on top,
far from, behind, under, in front of, above, next to, and no
relation. No relation is useful because some objects in a
scene are truly unrelated. It is also possible for objects to

Figure 1. The pipeline for scene generation for a re-

quested game environment.

23

be synonymous (e.g., “money” and “currency,” in which
case players are instructed to also choose “no relation”.
 When a scene is being procedurally generated for the
first time and requires spatial relations, the HeartESP game
is launched with a list of items identified for the scene
from the earlier part of the pipeline. Additionally, we add
three special objects: floor, ceiling, and wall, which help
determine object locations relative to the fixed boundaries
of the scene. The next sections describe how the game elic-
its and verifies spatial relations for objects for a scene.
Background Story
HeartESP has a background story to engage the players
and frame the rules and visuals of the game. The story is
about a witch who turned the queen to a swan. The queen
has two twin daughters who need to combine their efforts
through reading each others’ minds to provide the same
answer to the witch’s questions. Players assume the role of
one of the twin daughters.
Game Mechanics
The game is implemented in Unity and hosted on a web-
site. Once a player loads the game, he or she enters a
“waiting room” until at least one other player is available.
If another player is not available after a fixed amount of
time, the player will be matched against a simulated player
that uses play traces of prior players. Pairing a human
player with a trace of a previous player is a common strat-
egy used in GWAPs to ensure the game is always playable

regardless of the number of people online (c.f., Siorpaes
and Hepp 2008; von Ahn and Dabbish 2008; Siu, Zook,
and Riedl 2014). Partnered players are never aware of each
others’ identity and they cannot communicate.
 Once players are partnered, they are told the type of sce-
ne that they should consider. Each round of play involves a
random pair of objects that are carried across the top of the
screen by a swan. When the swan reaches the far side of
the screen, the round is over. Before the round ends, each
player must click on one of a fixed set of spatial relation
terms (see Figure 2). Both players will be shown the same
pair of objects. The task of each player is to pick the spatial
relation between the objects that he or she believes the oth-
er player will pick. Visual feedback (a falling feather signi-
fying the breaking of the spell) is shown when players
agree and both players receive 100 points. For each round,
one player receives an additional 10 points if there is
agreement but one player selected the agreed-upon relation
more quickly. If the players disagree, they both lose a life.
The game ends after 10 rounds or when the players have
lost all of their lives.
 After each round, a mini game starts that allows the
players to increase their scores regardless of the game’s
evaluation of their choices. In the mini game, players can
increase their scores by clicking on randomly appearing
coins. The purpose of the mini game is to keep the player
motivated and focused on score. Siu, Zook, and Riedl

Figure 2. Snapshot the HeartESP game.

24

(2014) found that competing for points increases player
engagement in output-agreement games. The presence of
mini game aims to engage the player and motivates him
during his play.
Reliability of Information
Crowd workers are prone to producing noisy results. This
is especially true in computer games with a time limit and
in which bonus points are awarded to faster selections. The
ESP Game assumes that agreement between two people is
a reliable signal for correct data. This assumption only
holds when the number of possible labels is extremely
large (such as the number of possible words in the English
language); the possibility of two matching but incorrect la-
bels is very low. HeartESP has only eight possible labels.
Consequently, we do additional statistical confidence test-
ing to ensure that we only add reliable data to our spatial
relation knowledge base. If p is probability of a spatial re-
lation being incorrectly chosen by two players simultane-
ously, then after n repetitions by different pairs of players
the probability of corruption is pn because repetitions are
independent of each other. When pn is less than a small
threshold, we assume the spatial relation between two ob-
jects is true.

Art Assets
Once a set of objects and their spatial relations has been
collected for a particular setting, art assets must be ac-
quired. 3D graphical models were downloaded from the
Sketchup Warehouse (https://3dwarehouse.sketchup.com).
Sketchup is a 3D modeling software program that uses re-
al-world units of measurement (e.g., meters) so that all
models are proportional, facilitating model reuse with the
need for manual scaling. Following Cook and Colton
(2014), our system queries the Sketchup Warehouse online
repository with the name of the item. The first 3D model is
picked from the list of retrieved models. If the search query
fails, a small cube is used as a placeholder in the 3D scene.
Future work is necessary to automatically determine the
scale of the placeholder box and automatically download
an image to place on the sides of the placeholder box.

Scene Generation
The scene is produced by procedurally placing art assets in
a 3D graphical space based on their spatial relations. We
currently assume that each scene takes place indoors and
thus generate a room—a simple cube with one side missing
(so that the inside of the room can be seen). The placement
algorithm is based on constraint satisfaction strategies, but
specialized for scene generation.
 Because gravity is a constant, the scene generator starts
with items that are on the floor. All objects that have the on
relationship with the floor are selected and sorted in a
queue based on the total number of relations the object ap-

pears in. Prioritizing variables that have the greatest num-
ber of constraints is a common optimization strategy in
constraint satisfaction algorithms. For each object in the
sorted list, the scene generator considers all points on the
top of the surface that the object is on. Points that do not
satisfy all spatial relations with items already placed in the
environment are pruned from consideration and one of the
remaining points is chosen randomly. Because spatial rela-
tions are reciprocal, all spatial relations will have been
considered by the time the last item is placed.
 It is possible, however, that no point can be identified
that satisfies all spatial relations. In this case, one spatial
relation is randomly dropped and the point search restarts.
Relations are dropped until a point can be identified or un-
til all relations involving the object have been dropped, in
which case the object is not placed in the scene.
 Once all objects on the floor have been placed, the scene
generator moves on to objects that are on the currently
placed objects. This process completes until all objects that
are on other objects are placed. Objects that are on walls
and the ceiling are placed last.
 Each generated arrangement is given an incompleteness
score. The incompleteness score of an arrangement is
computed as the number of relations that were dropped
plus an additional penalty for each object that was not
placed proportional to its size. Thus, ignoring a large piece
of furniture is considered more severe than ignoring a
small object such as a fork that is likely to be overlooked
by the user. Due to random decisions made in the scene
generation process, the arrangement algorithm is run many
times and the scene with the lowest incompleteness score
is kept as the final scene.
 Examples of a generated scene for “kitchen” can be seen
in Figure 3. Figure 3(a) has the highest incompleteness
score (609.57) while the scene shown in Figure 3(d) has
the best score (253.8). Figures 3(b) and 3(c) have interme-
diate incompleteness scores. These scenes were generated
from 18 objects (including wall, floor and ceiling) and 69
relations. Future work is necessary to evaluate the quality
of generated scenes as perceived by human users.

Discussion
Procedural game generation promises to substantially re-
duce the manual effort necessary for producing playable
game experiences. Procedural game generation may allow
non-programmers and people without game design and de-
velopment expertise to rapidly bring their game ideas to
life. However, procedural game generation systems require
substantial amounts of specialized knowledge that is not
always available. If specialized knowledge is hard-coded
into a procedural game generation system, it limits what
games can be produced automatically. For example, many

25

procedural game generation systems to date make strong
assumptions about the game genre and/or topics.
 The Scheherazade system can generate text-based inter-
active fictions about any conceivable topic by acquiring the
knowledge from humans via crowdsourcing. This work ex-
tends Scheherazade with procedural 3D graphical scene
generation, requiring commonsense knowledge about items
that should appear in scenes and commonsense knowledge
about spatial relationships between objects in each type of
scene. Addressing the question of incentives for human
crowd workers, we present a technique for using a game to
acquire requisite knowledge. In that sense, humans play
computer games in order to generate a computer game.
 Future work is required to address a number of aspects
of the system that are not entirely complete. As mentioned
earlier, we require a more intelligent means of handling the
situation wherein 3D art assets are not found on the Inter-
net. Orientation of objects in the scene is not yet addressed.
It should be possible to incorporate some of the design
heuristics from Yu et al. (2011) to preserve navigability of

scenes by animated NPCs.
 We have not yet evaluated the accuracy of spatial rela-
tions acquired by HeartESP. Because generated scenes ap-
pear reasonable, we anticipate that the acquired knowledge
is reliable. However, anecdotal evidence suggests that
HeartESP is not fun to play for long periods of time; a
problem with many GWAPs. While scenes with lower
scores visibly have fewer errors, we have also not yet eval-
uated the system to determine the extent to which scenes
are recognizable nor whether our generation technique
with multiple restarts is sufficient.
 Despite limitations and future work, preliminary results
demonstrate it is potentially feasible for an intelligent sys-
tem to procedurally generate 3D graphical adventure
games using only the information available in existing
knowledge bases and through crowdsourcing of any spe-
cialized knowledge. The concept that playing a game can
assist with the production of a game is a compelling vision
of how playing and constructing games can be unified un-
der a common framework.

Figure 3. Example scenes automatically generated for a kitchen, in order of decreasing incompleteness score.

(a) (b)

(c) (d)

26

Acknowledgements
We gratefully acknowledge the support of the U.S. De-
fense Advanced Research Projects Agency (DARPA).
Special thanks to Stephen Lee-Urban, John Rafferty, and
Matt Lee.

References
Carranza, J., and Krause, M. 2012. Evaluation of game designs
for human computation. Proceedings of the 2012 AAAI Workshop
on Human Computation in Digital Games and Artificial Intelli-
gence for Serious Games.

Cook, M. and Colton, S. 2014. Ludus ex machina: Building a 3D
game designer that competes alongside humans. Proceedings of
the 5th International Conference on Computational Creativity.

Cook, M., Colton, S., Raad, A., Gow, J. 2013. Mechanic Miner:
Reflection-driven game mechanic discovery and level design.
Proceedings of the 16th European Conference on the Applica-
tions of Evolutionary Computation.
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen,
M., Leaver-Fay, A., Baker, D., Popović, Z., and others. 2010.
Predicting protein structures with a multiplayer online game. Na-
ture, 466(7307), 756–60.
Coyne, B, and Sproat, R. 2001. WordsEye: An automatic text-to-
scene conversion system. Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques.

Havasi, C., Speer, R., and Alonso, J. 2007. ConceptNet: A lexical
resource for common sense knowledge. In N. Nicolov, G. Ange-
lova, and R. Mitkov (Eds.) Recent Advances in Natural Language
Processing V: Selected Papers from RANLP 2007.

Hendrikx, M., Meijer, S. Van Der Velden, J. and Iosup, A. 2013.
Procedural content generation for games: A survey. ACM Trans-
actions on Multimedia Computing, Communications, and Appli-
cations, 9(1).

Lenat, D. 1995. CYC: A large-scale investment in knowledge in-
frastructure. Communications of the ACM, 38(11), 33–38.

Li, B. Lee-Urban, S., Johnston, G., and Riedl, M.O. 2013. Story
generation with crowdsourced plot graphs. Proceedings of the
27th AAAI Conference on Artificial Intelligence.

Li, B., Lee-Urban, S., and Riedl, M.O. Toward autonomous
crowd-powered creation of interactive narratives. Proceedings of
the 5th AAAI Workshop on Intelligent Narrative.
Ma, M. 2006. Automatic Conversion of Natural Language to 3D
Animation. Ph.D. Thesis, University of Ulster.

Nelson, M. and Mateas, M. 2008. An interactive game-design as-
sistant. Proceedings of the 2008 International Conference on In-
telligent User Interfaces.

Quinn, A., and Bederson. B. 2011. Human computation: A survey
and taxonomy of a growing field. Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems.

Siorpaes, K, and Hepp, M. 2008. Games with a purpose for the
semantic web. IEEE Intelligent Systems, 23(3), 50–60.

Siu, K., Zook, A., and Riedl, M.O. 2014. Collaboration versus
competition: Design and evaluation of mechanics for games with

a purpose. Proceedings of the 9th International Conference on the
Foundations of Digital Games.

Smith, A. and Mateas, M. 2010. Variations Forever: Flexibly
generating rulesets from a sculptable design space of mini-games.
Proceedings of the 2010 IEEE Conference on Computational In-
telligence in Games.

Togelius, J., Yannakakis, G., Stanley, K., and Browne, C. 2011.
Search-based procedural content generation: A taxonomy and
survey. IEEE Transactions on Computational Intelligence and AI
in Games, 3(3), 172–86.

Treanor, M., Schweizer, B., Bogost, I., and Mateas, M. 2012. The
micro-rhetorics of Game-O-Matic. Proceedings of the 2012 In-
ternational Conference on the Foundations of Digital Games.

von Ahn, L., and Dabbish, L. 2004. Labeling images with a com-
puter game. Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems.

von Ahn, L., and Dabbish, L. 2008. Designing games with a pur-
pose. Communications of the ACM, 51(8), 58–67.

Xu, K., Stewart, J., and Fiume, E. 2002. Constraint-based auto-
matic placement for scene composition. Proceedings of the 2002
Graphics Interface Conference.

Yu, L-F, Yeung, S-K, Tang, C-K, Terzopoulos, D., Chan, T.F.,
and Osher, S.J. 2011. Make it home: Automatic optimization of
furniture arrangement. ACM Transactions on Graphics, 30(4),
Article 86.
Zitnick, L.C., Parikh, D., and Vanderwende, L. 2013. Learning
the Visual Interpretation of Sentences. Proceedings of the 2013
International Conference on Computational Vision.
Zook, A. and Riedl, M.O. 2014. Automatic game design via me-
chanic generation. Proceedings of the 28th AAAI Conference on
Artificial Intelligence.

27

