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Abstract 
Procedural game generation is the automatic creation of all 
aspects of a playable computer game. Procedural game gen-
eration systems require specialized knowledge, virtual 
worlds, and art assets. In this paper, we show how 3D 
graphical scenes for interactive fictions can be automatically 
generated with only knowledge that is readily available in 
existing knowledge bases or can be acquired via 
crowdsourcing. The key to 3D scene generation is common-
ly accepted spatial relationships between different types of 
objects in different types of scenes. We use a crowdsourcing 
game to automatically and rapidly acquire spatial relations. 
The spatial relations are used by an intelligent scene genera-
tion system that selects and configures 3D assets within a 
virtual geometric space. 
 

Introduction   
Procedural content generation is the automatic creation of 
video game content, where content means anything that is 
traditionally created by an artist or a designer, such as 
maps, textures, levels, and objects. Procedural game gener-
ation is the automatic and simultaneous creation of all as-
pects of a playable computer game experience (Togelius et 
al. 2011; Hendrikx et al. 2013). Procedural game genera-
tion is task that requires a large amount of outside infor-
mation and knowledge (Nelson & Mateas 2008; Smith and 
Mateas 2010) Treanor et al. 2012; Cook et al. 2013; Cook, 
and Colton 2014). Often a procedural game generation sys-
tem has access to a virtual world, art assets such as sprites 
or 3D models, design criteria, and evaluation functions. 
The Scheherazade system (Li, Lee-Urban, and Riedl 2012; 
Li et al. 2013) demonstrated that a particular type of 
game—the interactive fiction, a text-based game in which 
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one issues commands to progress through a narrative—can 
be generated without any knowledge except for that that 
can be accessed through existing online knowledge bases 
and corpora or can be automatically, quickly, and easily 
crowdsourced. However, due to emphasis on learning plot 
points from crowdsourcd textual corpora, the Scheherazade 
system only generates textual adventure games. 
 In this paper we present work exploring the question of 
whether a graphical interactive narrative can be automati-
cally generated. We extend the existing work by Li, Lee-
Urban and Riedl with a procedural 3D graphical scene 
generation technique that, true to the prior motivation, does 
not use any knowledge that cannot be acquired through ex-
isting knowledge bases or crowdsourced directly from hu-
mans in a quick and automated fashion. Procedural scene 
generation is a process of automatically rendering a 3D 
graphical environment portraying a real world environ-
ment. For example, one may request a scene be generated 
for a “restaurant”. Such a system should be able to respond 
to any conceivable request. 
 Procedural scene generation is related to text-to-scene 
generation, but instead of taking a textual description of the 
scene, the process relies on commonsense knowledge 
about what typical scenes of the given type are expected to 
look like. The key to procedural scene generation is com-
monsense knowledge. We humans, living in the real world, 
have familiarity with a wide range of environments and 
have expectations about what one finds in these environ-
ments and how they are arranged. Commonsense 
knowledge bases such as CYC (Lenat 1995) and Concept-
Net (Havasi, Speer, and Alonso 2007) are sources that can 
provide us with lists of objects that might exist in the envi-
ronment of interest. However, what is missing from all 
commonsense knowledge bases to date is spatial infor-
mation: how objects in an environment tend to be situated 
with respect to each other. For example, existing com-
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monsense knowledge bases can tell us that tables, chairs, 
and doors are commonly found in restaurants, but not that 
chairs are typically found next to tables and far from doors. 
 One possible solution to the problem of missing spatial 
relational commonsense knowledge is to handcraft a cus-
tom knowledgebase for a large number of possible scenes. 
However, it is not clear how this strategy would be differ-
ent from simply building the 3D scenes by hand. Further, 
there would always be scenes that could not be generated. 
Another possible solution is to crowdsource the requisite 
spatial knowledge in a just-in-time fashion. Crowdsourcing 
is the outsourcing of complicated tasks to a number of 
anonymous human individuals and then aggregating the re-
sults (Quinn and Bederson 2011). Crowdsourcing is a 
cheap and effective alternative for populating com-
monsense knowledge bases (Havasi, Speer, and Alonso 
2007; Siorpaes and Hepp 2008).  
 In this paper, we extend Scheherazade with a procedural 
scene generation technique that uses just-in-time 
crowdsourcing to acquire the necessary spatial relation in-
formation for a scene. The spatial relations are acquired via 
a crowdsourcing computer game (game with a purpose) in 
which points are earned by matching spatial relations to 
pairs of objects that may appear in a particular scene. The 
spatial relations are used by an intelligent scene generation 
system that selects and configures 3D assets within a virtu-
al geometric space. To our knowledge, this is the first con-
sideration of procedural scene generation for games that 
does not assume a pre-existing knowledgebase. It is also 
the first example of how playing a computer game can help 
create a computer game. 

Background and Related Work 
Computer game generation is a nascent area of Game AI 
research. A number of researchers have developed intelli-
gent systems that produce playable games in a single genre 
(Nelson & Mateas 2008; Smith and Mateas 2010) Treanor 
et al. 2012; Cook et al. 2013; Cook, Colton, and Gow 
2014) or across many game genres (Zook and Riedl, 2014). 
Most game generation systems focus on 2D games. The 
Angelina system is notable in that it has been updated to 
produce 3D maze games (Cook and Colton 2014). 
 Procedural content generation has been used to perform 
scene layout. CAPS (Xu, Stewart, and Fiume 2002) is a 
constraint-based automatic placement system, which lays 
out a scene given a set of hand-coded constraints of vary-
ing degrees of specificity. The furniture arrangement tech-
nique by Yu et al. (2011) searches for a configuration of a 
priori known types of furniture based on a set of heuristics 
inspired by interior design.  
 Procedural scene generation is a type of text-to-scene 
system. Text-to-scene systems take a number of natural 

language sentences describing a scene and produce a 3D 
graphical visualization. Confucius (Ma 2006) is a multi-
modal text-to-animation system that generates animations 
of virtual humans from single sentences containing an ac-
tion verb. In these systems the referenced objects, attrib-
utes, and actions are typically relatively small in number or 
targeted to specific pre-existing domains. WordsEye 
(Coyne and Sproat 2001) uses natural language input in 
which verbs are resolved to semantic frames that are then 
mapped to corresponding poses and spatial relations. 
WordsEye database includes information about the objects’ 
typical parts, typical location and typical objects nearby 
them. Zitnick, Parikh, and Vanderwende (2013) learn 
probabilistic placements of items in 2D scenes by watching 
humans illustrate text descriptions. Scenes can only be 
composed from a finite set of known art assets. 
 The successes of the above systems are functions of the 
quality of knowledge they are working from. One chal-
lenge scene layout and text-to-scene systems face is the 
addition of new types of objects, which requires not only a 
new class but also understanding of the relationships with 
all other types of objects. Crowdsouring seems to provide a 
solution to this problem through the automated collection 
of different objects and their spatial relationships. Word-
sEye (2001) knowledge base is partially crowdsourced. 
The system by Zitnick, Parikh, and Vanderwende requires 
a large corpus of example scene layouts, which can be 
crowdsourced. As with most crowdsourced knowledge ba-
ses, no incentive is provided for people to contribute. 
 Games with a Purpose (GWAPs) (von Ahn and Dabbish 
2008) are games in which players generate useful data or 
solve problems as a by-product of play. For example, play-
ers may label images (von Ahn and Dabbish 2004), dis-
cover the shapes of proteins (Cooper et al. 2010), or cate-
gorize concepts to develop an ontology (Siorpaes and Hepp 
2008; Carranza and Krause 2012). von Ahn and Dabbish 
(2008) give a number of design templates for GWAPs. In 
particular output-agreement games ask two players to col-
laborate to generate labels for things (e.g., images) without 
collusion. Players are rewarded when labels match. The 
ESP Game (von Ahn and Dabbish 2004) is the canonical 
example of an output-agreement game. Our approach to 
procedural scene generation uses an output-agreement 
GWAP to acquire spatial relations for items in a scene. 
However, instead of asking players to generate text labels, 
players select from a fixed vocabulary of spatial relations. 
  The Scheherazade system (Li, Lee-Urban, and Riedl, 
2012; Li et al. 2013) attempts to create a novel, fictional 
narrative about a simple, user-provided topic. For example, 
the user may request a story about a “bank robbery”. The 
system uses crowdsourcing to rapidly acquire a number of 
linear narrative examples about typical ways in which the 
topic might occur. In other words, we collect human expe-
riences in narrative form and learn a generalized model 
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about the topic domain. The details of how Scheherazade 
learns topic models and generates stories is beyond the 
scope of this paper; See Li et al. (2013) for details. Sche-
herazade was modified to generate playable text-based in-
teractive fictions (Li, Lee-Urban, and Riedl 2012).  

Procedural Scene Generation 
Our approach to procedural scene generation takes a sim-
ple term describing a scene (e.g., “restaurant”) and produc-
es a fully rendered 3D visualization of the environment. 
Procedural scene generation is a process of arranging the 
items commonly found in an environment to conform to 
the expectations of the user. However, we do not assume 
that the system knows anything about the type of environ-
ment. Thus, our system must solve four problems. First, it 
must determine what items should be in the requested sce-
ne. A common sense knowledge base structured in the 
form of a semantic net is used for this purpose, see Figure 
1(a).  Second, it must determine typical spatial relation-
ships between the items in the scene. A simple game is de-
signed to collect these relations called HeartESP as shown 
in Figure 1(b). Finally, it must procure graphical art assets 
for the items in the scene. A 3D models database is used to 
collect the assets which are then passed to the Unity 3D 
Game Engine to position the graphical art assets in the vir-
tual environment, see Figure 1(c) and Figure 1(d). 

Generating Scene Items 
In this section we discuss how our system “expands” the 
original query of an environment type into a set of items 
that should populate the scene. Common sense knowledge 
bases contain a vast amount of general knowledge that 
people are expected to possess, represented in an ontologi-

cal form that it is available to artificial intelligence pro-
grams. ConceptNet (Havasi, Speer, and Alonso 2007) is a 
knowledge base presently consisting of over 1.6 million 
assertions of common sense knowledge encompassing the 
spatial, physical, social, temporal, and psychological as-
pects of everyday life. Knowledge in Concept Net is orga-
nized in the form of a semantic net in which nodes are used 
to represent the different concepts and edges are used to 
describe relations between these concepts. Concepts and 
their associated relations can be described in the form of 
production rules, e.g., can_exist(payment_counter, bank). 
ConceptNet does not contain spatial relations. We utilize 
ConceptNet to “expand the query” by collating all concep-
tually related objects that can exist in the given environ-
ment type (e.g., “restaurant”).   
 The use of the ConceptNet KB is both a strength and a 
weakness. ConceptNet is noisy in the sense that it contains 
concepts that are sometimes non-sensical from the perspec-
tive of procedural scene generation. For example, 
can_exist (trust, bank) would result in our system attempt-
ing to place “trust” in the scene despite the fact that it is an 
abstract concept. Consequently, we apply a filtration step 
that eliminates the concepts that appear to be noise from 
our purposes. We implement a rule that searches the net-
work for a used_for predicate for each candidate concept 
retrieved. The used_for predicate only uses physical ob-
jects in the first parameter. For example, used_for(atm, 
withdraw_money) would allow us to keep an ATM (Auto-
mated Teller Machine) as an item in a scene about a bank. 
Despite our satisfaction with the generated list of objects, it 
is possible for our system to retrieve equivalent concepts 
with different symbolic names, such as coin and currency. 
We were able to account for this later in the pipeline when 
we acquire spatial relations. 

Crowdsourcing Spatial Relations 
No commonsense knowledge bases contain common typi-
cal spatial relations between objects. The idea behind 
GWAPs is to use the computational power of humans to 
perform tasks that computers cannot currently perform by 
presenting the task as a game (von Ahn and Dabbish 2004; 
von Ahn and Dabbish 2008). Unlike other approaches to 
crowdsourcing that pay crowd workers, GWAPs incentiv-
ize people to perform work in exchange for entertainment.  
 HeartESP is an output-agreement game based on The 
ESP Game. In The ESP Game, two players collaborate to 
label images while remaining anonymous to each other to 
prevent collusion; players receive points when labels 
match. Unlike in The ESP Game, HeartESP players must 
select spatial relations from a fixed set of relations: on top, 
far from, behind, under, in front of, above, next to, and no 
relation. No relation is useful because some objects in a 
scene are truly unrelated. It is also possible for objects to 

 
Figure 1. The pipeline for scene generation for a re-

quested game environment. 
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be synonymous (e.g., “money” and “currency,” in which 
case players are instructed to also choose “no relation”.  
 When a scene is being procedurally generated for the 
first time and requires spatial relations, the HeartESP game 
is launched with a list of items identified for the scene 
from the earlier part of the pipeline. Additionally, we add 
three special objects: floor, ceiling, and wall, which help 
determine object locations relative to the fixed boundaries 
of the scene. The next sections describe how the game elic-
its and verifies spatial relations for objects for a scene. 
Background Story 
HeartESP has a background story to engage the players 
and frame the rules and visuals of the game. The story is 
about a witch who turned the queen to a swan. The queen 
has two twin daughters who need to combine their efforts 
through reading each others’ minds to provide the same 
answer to the witch’s questions. Players assume the role of 
one of the twin daughters. 
Game Mechanics 
The game is implemented in Unity and hosted on a web-
site. Once a player loads the game, he or she enters a 
“waiting room” until at least one other player is available. 
If another player is not available after a fixed amount of 
time, the player will be matched against a simulated player 
that uses play traces of prior players. Pairing a human 
player with a trace of a previous player is a common strat-
egy used in GWAPs to ensure the game is always playable 

regardless of the number of people online (c.f., Siorpaes 
and Hepp 2008; von Ahn and Dabbish 2008; Siu, Zook, 
and Riedl 2014). Partnered players are never aware of each 
others’ identity and they cannot communicate.  
 Once players are partnered, they are told the type of sce-
ne that they should consider. Each round of play involves a 
random pair of objects that are carried across the top of the 
screen by a swan. When the swan reaches the far side of 
the screen, the round is over. Before the round ends, each 
player must click on one of a fixed set of spatial relation 
terms (see Figure 2). Both players will be shown the same 
pair of objects. The task of each player is to pick the spatial 
relation between the objects that he or she believes the oth-
er player will pick. Visual feedback (a falling feather signi-
fying the breaking of the spell) is shown when players 
agree and both players receive 100 points. For each round, 
one player receives an additional 10 points if there is 
agreement but one player selected the agreed-upon relation 
more quickly. If the players disagree, they both lose a life. 
The game ends after 10 rounds or when the players have 
lost all of their lives. 
 After each round, a mini game starts that allows the 
players to increase their scores regardless of the game’s 
evaluation of their choices. In the mini game, players can 
increase their scores by clicking on randomly appearing 
coins. The purpose of the mini game is to keep the player 
motivated and focused on score. Siu, Zook, and Riedl 

 
Figure 2. Snapshot the HeartESP game. 
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(2014) found that competing for points increases player 
engagement in output-agreement games. The presence of 
mini game aims to engage the player and motivates him 
during his play. 
Reliability of Information 
Crowd workers are prone to producing noisy results. This 
is especially true in computer games with a time limit and 
in which bonus points are awarded to faster selections. The 
ESP Game assumes that agreement between two people is 
a reliable signal for correct data. This assumption only 
holds when the number of possible labels is extremely 
large (such as the number of possible words in the English 
language); the possibility of two matching but incorrect la-
bels is very low. HeartESP has only eight possible labels. 
Consequently, we do additional statistical confidence test-
ing to ensure that we only add reliable data to our spatial 
relation knowledge base. If p is probability of a spatial re-
lation being incorrectly chosen by two players simultane-
ously, then after n repetitions by different pairs of players 
the probability of corruption is pn because repetitions are 
independent of each other. When pn is less than a small 
threshold, we assume the spatial relation between two ob-
jects is true.  

Art Assets 
Once a set of objects and their spatial relations has been 
collected for a particular setting, art assets must be ac-
quired.  3D graphical models were downloaded from the 
Sketchup Warehouse (https://3dwarehouse.sketchup.com). 
Sketchup is a 3D modeling software program that uses re-
al-world units of measurement (e.g., meters) so that all 
models are proportional, facilitating model reuse with the 
need for manual scaling. Following Cook and Colton 
(2014), our system queries the Sketchup Warehouse online 
repository with the name of the item. The first 3D model is 
picked from the list of retrieved models. If the search query 
fails, a small cube is used as a placeholder in the 3D scene. 
Future work is necessary to automatically determine the 
scale of the placeholder box and automatically download 
an image to place on the sides of the placeholder box.      

Scene Generation 
The scene is produced by procedurally placing art assets in 
a 3D graphical space based on their spatial relations. We 
currently assume that each scene takes place indoors and 
thus generate a room—a simple cube with one side missing 
(so that the inside of the room can be seen). The placement 
algorithm is based on constraint satisfaction strategies, but 
specialized for scene generation.  
 Because gravity is a constant, the scene generator starts 
with items that are on the floor. All objects that have the on 
relationship with the floor are selected and sorted in a 
queue based on the total number of relations the object ap-

pears in. Prioritizing variables that have the greatest num-
ber of constraints is a common optimization strategy in 
constraint satisfaction algorithms. For each object in the 
sorted list, the scene generator considers all points on the 
top of the surface that the object is on. Points that do not 
satisfy all spatial relations with items already placed in the 
environment are pruned from consideration and one of the 
remaining points is chosen randomly. Because spatial rela-
tions are reciprocal, all spatial relations will have been 
considered by the time the last item is placed. 
 It is possible, however, that no point can be identified 
that satisfies all spatial relations. In this case, one spatial 
relation is randomly dropped and the point search restarts. 
Relations are dropped until a point can be identified or un-
til all relations involving the object have been dropped, in 
which case the object is not placed in the scene. 
 Once all objects on the floor have been placed, the scene 
generator moves on to objects that are on the currently 
placed objects. This process completes until all objects that 
are on other objects are placed. Objects that are on walls 
and the ceiling are placed last.  
 Each generated arrangement is given an incompleteness 
score. The incompleteness score of an arrangement is 
computed as the number of relations that were dropped 
plus an additional penalty for each object that was not 
placed proportional to its size. Thus, ignoring a large piece 
of furniture is considered more severe than ignoring a 
small object such as a fork that is likely to be overlooked 
by the user. Due to random decisions made in the scene 
generation process, the arrangement algorithm is run many 
times and the scene with the lowest incompleteness score 
is kept as the final scene. 
 Examples of a generated scene for “kitchen” can be seen 
in Figure 3. Figure 3(a) has the highest incompleteness 
score (609.57) while the scene shown in Figure 3(d) has 
the best score (253.8). Figures 3(b) and 3(c) have interme-
diate incompleteness scores. These scenes were generated 
from 18 objects (including wall, floor and ceiling) and 69 
relations. Future work is necessary to evaluate the quality 
of generated scenes as perceived by human users. 

Discussion 
Procedural game generation promises to substantially re-
duce the manual effort necessary for producing playable 
game experiences. Procedural game generation may allow 
non-programmers and people without game design and de-
velopment expertise to rapidly bring their game ideas to 
life. However, procedural game generation systems require 
substantial amounts of specialized knowledge that is not 
always available. If specialized knowledge is hard-coded 
into a procedural game generation system, it limits what 
games can be produced automatically. For example, many 

25



procedural game generation systems to date make strong 
assumptions about the game genre and/or topics.  
 The Scheherazade system can generate text-based inter-
active fictions about any conceivable topic by acquiring the 
knowledge from humans via crowdsourcing. This work ex-
tends Scheherazade with procedural 3D graphical scene 
generation, requiring commonsense knowledge about items 
that should appear in scenes and commonsense knowledge 
about spatial relationships between objects in each type of 
scene. Addressing the question of incentives for human 
crowd workers, we present a technique for using a game to 
acquire requisite knowledge. In that sense, humans play 
computer games in order to generate a computer game. 
 Future work is required to address a number of aspects 
of the system that are not entirely complete. As mentioned 
earlier, we require a more intelligent means of handling the 
situation wherein 3D art assets are not found on the Inter-
net. Orientation of objects in the scene is not yet addressed. 
It should be possible to incorporate some of the design 
heuristics from Yu et al. (2011) to preserve navigability of 

scenes by animated NPCs.  
 We have not yet evaluated the accuracy of spatial rela-
tions acquired by HeartESP. Because generated scenes ap-
pear reasonable, we anticipate that the acquired knowledge 
is reliable. However, anecdotal evidence suggests that 
HeartESP is not fun to play for long periods of time; a 
problem with many GWAPs. While scenes with lower 
scores visibly have fewer errors, we have also not yet eval-
uated the system to determine the extent to which scenes 
are recognizable nor whether our generation technique 
with multiple restarts is sufficient.  
 Despite limitations and future work, preliminary results 
demonstrate it is potentially feasible for an intelligent sys-
tem to procedurally generate 3D graphical adventure 
games using only the information available in existing 
knowledge bases and through crowdsourcing of any spe-
cialized knowledge. The concept that playing a game can 
assist with the production of a game is a compelling vision 
of how playing and constructing games can be unified un-
der a common framework. 

    
 

    
Figure 3. Example scenes automatically generated for a kitchen, in order of decreasing incompleteness score. 

(a) (b) 

(c) (d) 
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