

Game Design for Classical AI

Ian Horswill
Northwestern University
ian@northwestern.edu

Abstract
Reasoning using expressive symbolic representations is a
central theme of AI research, yet there are surprisingly few
deployed games, even within the AIIDE research
community, that use this sort of “classical” AI. This is
partly due to practical and methodological issues, but also
due to fundamental mismatches between current game
genres and classical AI systems. I will argue that if we want
to build games that leverage high-end classical AI
techniques like commonsense reasoning and natural
language processing, we will also have to develop new
game genres and mechanics that better exploit those
capabilities. I will also present a design sketch of a game
that explores potential game mechanics for classical AI.

 Introduction
Reasoning and representation using expressive formalisms
such as predicate logic (of whatever form) are a central
thrust of AI research, and historically its biggest thrust.
However there is very little use of expressive knowledge
representation in game AI. I cannot, for example, find a
single shipped game (as opposed to a research prototype)
that even has an implementation of unification (Robinson,
1965), much less the concept and role hierarchies of
modern knowledge representation languages such as CycL.
Apart from A* and game tree search, there’s surprisingly
little overlap between contemporary game AI and a typical
undergraduate AI course.
 This is not to say that classical AI is broken or that game
AI is primitive. Rather, the two have evolved in different
directions under different pressures. Contemporary game
AI and contemporary game genres and mechanics co-
evolved. Game AI adapted to best support the genres and
mechanics of contemporary games, while genres and
mechanics adapted to better leverage contemporary game
AI. Not surprisingly, research AI systems would have a
very difficult time beating contemporary game AI for first-

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

person shooters. Behavior trees (Isla, 2005) work really
well for FPSes, and while Cyc (Cycorp, 1984) and SNLP
(McAllester & Rosenblitt, 1991) are “smarter” in certain
ways than behavior trees, they’re smarter in ways that are
difficult to show off in an FPS, while being much more
expensive.
 Natural language processing systems have a similar
problem in game AI. When the RPG genre was
developing, game hardware couldn’t even run even simple
NLP systems; human-authored dialog was the only option.
So RPGs evolved to make the best possible use of the
strengths of human-authored (fluency, drama, delivery),
while trying to minimize its deficiencies (limited player
choice, repetition, etc.). Unfortunately, NLP systems
make the opposite trade-off: generativity at the cost of
fluency and performance. So while, they might have been
successful if they could have been used back in the original
Legend of Zelda (Nintendo Corporation, 1986), current
NLP systems can’t possibly live up to the expectations for
a game like Mass Effect 3 (BioWare, 2012), because the
genre has evolved in such a way as to accentuate NLP’s
deficiencies and minimize its advantages.
 I see no solution to this problem except for us, as AI
researchers, to develop new genres and mechanics
ourselves, ones that are better matched to the capabilities
of our systems. As Hecker (2010) has argued, AI and
gameplay are intimately connected, much more so than
graphics and gameplay; graphics researchers can work on
global illumination without thinking about gameplay, but
AI researchers don’t have that luxury.
 Instead of looking for ways to integrate high-end AI into
existing genres, let’s instead try to design new mechanics
around high-end AI. This is certainly what made
successful AI-heavy titles like The Sims (Wright, 2000),
Prom Week (McCoy, Treanor, Samuel, & Reed, 2012), and
Versu (Evans & Short, 2013) work.
 In this paper, I will discuss some of the issues with
designing game mechanics for classical AI, and provide a
design sketch for a game that explores such mechanics.

Experimental Artificial Intelligence in Games: Papers from the AIIDE Workshop

28

SHRDLU Game Mechanics
Suppose we wanted to design game mechanics around an
AI system with roughly the capabilities of SHRDLU
(Winograd, 1972). Even though SHRDLU is over 40 years
old, it’s difficult to find any examples of games that
support even its level of AI functionality. Moreover, game
hardware is more than powerful enough to run a system
like SHRDLU, so it’s realistic to think about building
gameplay around it.
 SHRDLU has two primary capabilities: problem solving
and question answering. That is, given a blocks-world
goal, like “build a tower”, it can manipulate the world to
achieve it. And given a question like “how many tall
blocks are there?” it can tell you the answer. So the
question is how to center game mechanics around NPC
problem solving and question answering, and to do so in a
way that is tolerant of the limitations of the technology.

Challenges
One limitation is fragility. Classical AI systems, especially
simple SHRDLU-like ones, can be very smart, but they can
also do stupid, crazy things that can annoy the user and
destroy the illusion of intelligence. There are a number of
possible strategies for dealing with fragility, including:

• Build perfect or near-perfect AI

Good luck with that.
• Constrain gameplay

enough to allow exhaustive debugging of the AI
within the space of possible gameplay. This is
doable, but reduces the generativity, and therefore
the value, of the AI system.

• Narrative alibis
Use the game narrative to explain away the
dysfunctional behavior. For example, make the AI
characters be zombies, children, or kooky aliens.

• Adult supervision
Make the gameplay involve keeping the AI out of
trouble (as in The Sims).

• Make it the player’s problem
Incorporate AI debugging into the gameplay. Then
failure is expected and is the player’s “fault.”

 A related problem is making the AI transparent so that
the player understands why it does what it does and has
some basis for anticipating its behavior. An NPC’s
entirely rational behavior might appear random (and
stupid) if the player misunderstands its goals and beliefs.
 Third Eye Crime (Moonshot Games, 2014) has a
particularly elegant solution to this problem. It overlays
the internal state of the NPCs’ search system on the screen
so the player can understand what the NPCs are thinking

(Isla, 2013). This is explained in the game narrative by
making the player character telepathic. Moreover, this
allows the designers to create a new game mechanic:
unlike traditional stealth games, the player character has to
be discovered; the gameplay lies in using the player’s
knowledge of the AI’s state to successfully avoid the NPCs
after discovery.
 A third challenge is controlling player expectations. For
the foreseeable future, any classical AI system we can put
in a game is going to have serious limitations. It will be
important to design the gameplay so as to teach the player
in as painless a manner as possible exactly what the AI’s
capabilities and limitations are. For example, any question
answering system will involve a tightly constrained
grammar and vocabulary. One way or another, the player
needs to learn what the grammar and vocabulary are, so
feedback above and beyond “I don’t understand” is
important.

Game mechanics for AI problem solving
Most AI-based gameplay is centered around the AI solving
problems, at least for an inclusive definition of the term.
There are several different mechanics that have already
been explored for problem solvers. These vary according
to the role the AI plays:

• Adversary

Gameplay involves outwitting or otherwise
overcoming the AI. Examples include game-tree
search for turn-based strategy games (Whitehouse,
Cowling, Powley, & Rollason, 2013), as well as
NPC AIs using behavior trees (Isla, 2005) or
STRIPS planning (Orkin, 2002).

• Ally
The AI assists the player, but is largely autonomous
from the player, rather than waiting to take orders.
For example, the Elizabeth character in Bioshock
Infinite (Abercrombie, 2014).

• Subordinate
The player achieves her goals by tasking the AIs:
giving them goals and relying on them to achieve
them. For example, in squad-based tactical
shooters, and RTS games.

• Ward
The NPCs have limited autonomous AI, but require
management by the player to keep them out of
trouble, as in The Sims (Wright, 2000).

• Puzzle
The player is expected to reverse-engineer the
behavior of the AI in order to understand how to
manipulate it to her ends. For example, in Prom
Week, the player is intended to learn the game’s
model of “social physics” well enough to exploit it.

29

 Roles are not mutually exclusive; adversarial AIs are
often also puzzles that the player is intended to solve by
learning the AIs patterns and exploiting them.
 Different roles involve different expectations for the
AI’s sophistication. Subordinate AI should generally be
capable and reliable, while ward and puzzle gameplay
often requires the AI to have limitations or blind spots.

Dialog
Although many games involve dialog, dialog as a game
mechanic has been most extensively explored in interactive
fiction (Short, 2011) and visual novels (Cavallaro, 2009).1
Question answering
Dialog is most often used in games for providing
information (clues, quests, item locations, etc.) to the
player. Generative question answering is of obvious use
here, and so genres and mechanics that emphasize
information gathering are good candidates for this kind of
AI.
 The most obvious example here would be the detective
genre (hard-boiled or otherwise), which has been explored
in non-AI-based gameplay in games from Deadline (Blank,
1982) to L.A. Noir (Team Bondi, 2011). The challenge lies
in finding ways of adapting these from the ASK/TELL
dialog interfaces of parser-based IF and the dialog trees of
titles like L.A. Noir, to the broader range of questions that
can be asked with a generative system. And again, it will
be necessary to design around the limitations of the
technology; it’s unlikely that a near-term generative
question answering system will be able to handle a player
input like “Aha! But you said that Colonel Mustard was
reading 50 Shades of Grey when you last saw him, but we
now know that his monocle was smashed during the
elephant stampede! I put it to you that you are lying!
What say you sir?”
Affinity, trust building, and rapport
Dialog can also be used to build relationships with
characters. Character relationships are often the central
goals of visual novels, with more sophisticated games
having affinity systems for tracking the NPC’s attitudes
toward the player character. The player has an explicit
goal of developing rapport with one or more NPCs, often
in order to have a romantic relationship, but sometimes in
order that they will confide in the PC. Similar affinity
systems, with different goals, can be found in systems like
Façade (Mateas & Stern, 2005), Prom Week (McCoy et
al., 2012) and Versu (Evans & Short, 2014).

1 Although visual novels, save perhaps for kinetic novels, are technically
interactive fiction, I’m treating these separately, since they evolved
independently and have very different themes, tropes, mechanics, and
demographics.

Gameplay Sketch
I'm currently working on a game that explores mechanics
for classical AI (see figure). A mystery thriller, its plot is
based on the premise that the CIA's mind control
experiments of the 50s, 60s, and 70s were successful; it’s
working title, MKULTRA, is the name of the best known of
those programs (United States Congress, 1977). The
mystery and detection aspects of the game will follow
Laws’ (2013) structure of scenes with core clues and
peripheral clues. The game’s core mechanics will
primarily involve dialog and mind control. The game is
visually styled as an old-school tile-based RPG (hopefully
with better art than that above), but with gameplay closer
to a text adventure.

Dialog
The player is positioned as a kind of super-ego for the
player character (PC). The player primarily interacts by
typing English text, which is treated as part of the PC’s
internal dialog.
 The player character AI’s response to player input
depends on the type of speech act and the context.
Questions directed to the PC are answered by the PC, and
are thought of as part of the PC’s stream of consciousness:
“Who’s that?” “Oh yea, that’s Bennie; he owns this bar.

Figure 1: Screenshot of debug level

30

He’s kind of a jerk.” This provides a mechanism for
delivering backstory to the player, without resorting to
narrative info-dumps or NPCs whose primary purpose is to
be walking encyclopedias.
 Most other inputs, be they imperatives or dialog directed
to other characters, are treated as advice for the PC’s action
selection mechanism (see below). The player does not
directly pilot the PC, although she has considerable control
over its actions.
User interface issues
Game interfaces based on typed natural language face a
number of difficulties. One major issue is that the system
will inevitably understand only a tiny fraction of the
player’s grammar and lexicon. The player needs to learn
this subset as quickly and painlessly as possible, lest the
gameplay devolve into an endless series of “I don’t
understand” messages as the user plays “hunt the verb.”
MKULTRA attempts to mitigate this issue by using a
bidirectional grammar. This allows the system to parse
partial inputs from the user and generate randomized
completions that form valid utterances given the system’s
lexicon and grammar.
 Each time the player completes a word, the system
solves for a completion. If no completion exists, their
input is displayed in red and the player will be unable to
type further until they delete back to a point from which
completion is possible. If a completion does exist, their
input turns green and the completion is displayed in grey
italics. The player can then hit return to accept that input,
or continue typing.
 Another issue is the mismatch between typing speed and
normal human conversation. In real-time games
supporting typed English input, NPCs often time out
before the player has finished typing. The NPC then gets
further confused when the player hits return, since their
utterance is no longer relevant. I do not have a good
solution for this. MKULTRA’s underlying game world
runs in continuous time, so strict turn-based input is not
practical. The current system pauses the game simulation
whenever the player starts typing, but it might be
preferable to have it slow the simulation rather than stop it.
Conversation with NPCs
This is the least-well worked out part of the design. From
a gameplay standpoint, NPC conversation will be used
primarily for information gathering. From a mechanical
standpoint the dialog system be a hybrid of a question
answering system and a standard IF topics-and-quips
system (Short, 2011), but with fancier indexing so that the
player can ask questions in a more open-ended manner.
 The intent is that NPCs choose answers using the
general goal-directed problem solving mechanism used for
other purposes, and that they therefore be able to lie or
evade. This would then allow the use of a trust-building

mechanic where the player builds trust with the NPC (or
simply deceives or mind controls them) so as to obtain
information the character would not otherwise give.
 Given the setting of the game, it is tempting to populate
it with a large number of paranoid characters
(schizophrenics, cult members, white supremacists, etc.),
both because these would provide a clear basis for
distrust/trust mechanics, and because it’s relatively easy to
write AI characters that humans accept as paranoid (Colby,
1975).

Advice, willpower, and ego depletion
Characters use utility-based action selection, similar to
Versu (Evans & Short, 2014); one set of rules propose
actions while another scores them for utility. Advice to the
PC is not automatically followed, but rather increases the
utility of the action. If that utility is insufficient to make it
the maximum utility action, the advice is ignored. The
player will be able to increase the utility further by adding
exclamation points to their command to simulate using
more willpower. However, willpower is a limited resource,
and when it is exhausted, the PC will run open loop until
its willpower has recharged. (This is a real psychological
phenomenon in humans, referred to as ego depletion (Vohs
et al., 2008)).

Mind control
The player will also gradually develop the ability to control
the minds of NPCs. The player will not be able to directly
joystick or otherwise control the actions of the NPC as in
Stubbs the Zombie (Wideload, 2005), but rather they will
be able to inject beliefs into the heads of NPCs. Players
must then back-solve for what beliefs will lead to the
desired NPC behavior, so this is an AI-as-subordinate-and-
puzzle mechanic. It effectively makes AI debugging the
problem of the player and provides a ready narrative alibi
for dysfunctional behavior: of course they’re stupid,
they’re mind controlled zombies!
 The player will inject beliefs by speaking in a separate,
fictitious language (explained within the narrative of the
game as being some kind of divine or infernal language) of
which the player has only limited knowledge. This
provides a mechanism for limiting the player to saying
things that the AI will be able to act on reasonably. It also
provides a mechanism for leveling up the player by slowly
feeding her bits of grammar and lexicon. It is also tempting
to make the learning of the language a puzzle in itself, such
as in The Gostak (Muckenhoupt, 2001).
Example puzzle
Suppose the PC needs to get past a guard NPC to obtain
access to a computer in the room being guarded. The
player can solve the problem by injecting two beliefs in the
guard NPC:

31

• It’s time for a shift change
• The PC is another guard

The guard NPC walks away and PC can enter the room
without interference.
 While this solves the problem, it has the disadvantage
that someone walking past the room later will notice that
it’s unguarded. So the player could do better (e.g. win an
achievement or avoid problems later in the game) by
injecting these beliefs instead:

• The PC is another guard
• The NPC has to pee really badly

Then the NPC would ask the PC to take over while he went
to the bathroom. While the NPC is gone, the PC accesses
the computer, and then goes back outside. The guard
returns, and the intrusion is never detected.
Crafting telepathic items
One attractive property of the mechanic of belief injection
through spoken commands is that it can combine with
items to achieve interesting effects. A loudspeaker could
allow mind control to act as an area effect weapon (a
weapons of mass delusion). A tape recorder could be used
as a “belief grenade,” allowing time delay or greater
standoff distance. Combining the tape recorder with a
triggering mechanism allows the creation of mental
landmines or time bombs, or to allow the player character
inject beliefs into herself.
 For example, suppose a malevolent organization has
constructed a device that broadcasts suicidal thoughts to
anyone who comes near it, and the player needs to
deactivate it. One particularly amoral solution would be to
choose some conveniently disposable NPC, give them
explosives, and convince them to approach the device.
When the NPC reaches the device, they decide to commit
suicide, but since they're already holding explosives, the
most convenient way to do so would be to detonate the
explosives, thereby taking the device with them.

Mind reading
Finally, it’s necessary to provide feedback to the player
about the states of the various NPC AIs. In real life,
humans rely on non-verbal behavior such as facial
expressions. Unfortunately, this is not practical for a game
with RPGMaker-style graphics. While it’s tempting to
have the characters display English language thought
balloons showing their internal thoughts, this is more
information than we want the player to have, and more
information than the player could assimilate anyway.
 An interesting alternative is to use aural displays to
simulate telepathy. Mood and other long term state
information will be communicated using drones that

change pitch, volume, or timbre. In addition, the system
can play a short, staccato sound event (e.g. a click or chirp)
each time the character considers an option in its decision
cycle. Ideally, these would be modulated based on the
utility, valence, or other attribute of option. This would
allow the player to hear the NPC thinking, even if they
don’t know the propositional content of the thoughts.
 This mechanic is most directly useful for judging
whether an NPC is lying – if they make a lot of noise
before answering, they’re thinking hard about the answer.
But puzzles are also possible. An invisible character could
be located by the sound of their thoughts or a character
impersonating another character (or possibly one who is
being mind controlled) might be found out through a
change in the sound of their thoughts. It’s also an
interesting mechanism for debugging during development.

Implementation status
The initial version of the system infrastructure (world
simulation, NLP, problem solver) should be completed by
mid-August. Then implementation effort will shift to
generating content using placeholder art. My goal is to
have a playable demo level ready by October and an alpha
release of the game by Spring 2015. The system is open-
source to encourage modding, particularly for educational
and research purposes.
 The system is built on Unity3D (Unity Technologies,
2004). The basic tile system with locomotion code
(steering behaviors and path planner) is written in C#, as is
the Prolog interpreter and the glue code between it and the
rest of the game.
 The AI is written in Prolog (Clocksin & Mellish, 2003).
The interpreter is mostly ISO compliant, with the addition
of the freeze/2 and dif/2 predicates for constraint handling.
It also contains a number of additions that are useful for
game programming: an implementation of eremic logic
(Evans, 2010), which has better semantics for state changes
than conventional Prolog, the ability to selectively
randomize the order of clause execution, and relatively
transparent interoperation with C# code.
 The English parser-generator handles single-clause
sentences or single clauses wrapped in modal verbs. It can
parse and generate the standard tenses, aspects, and moods,
although tense and aspect are not currently used in any
interesting way. It uses a definite-clause grammar (Pereira
& Shieber, 1987), with Montague’s PTQ semantics
(Montague, 1973) to handle quantifiers, although there are
not currently any quantifiers in the system’s lexicon – I
don’t yet have a use case for them.
 DCGs offer a number of advantages. It’s relatively easy
to make them bidirectional, so the same code base can both
parse and generate. They macro-expand directly into

32

Prolog code, so they’re very easy to implement, and they
can also be salted with raw Prolog code to execute during
the parsing process. Finally, it’s straightforward to
implement a quip system by treating quips as additional
character-specific grammatical productions. They can be
thought of as generalizations of the slotted string
mechanisms used elsewhere (Evans & Short, 2014; McCoy
et al., 2012; Montfort, 2007; Nelson, 2006).
 Problem solving is performed using a number of
mechanisms. A rudimentary reactive planner (Bonasso,
Firby, Gat, & Kortenkamp, 1997; Mateas & Stern, 2002)
provides basic support for event handling and utility-based
action selection. Within this framework, different
mechanisms can be used for proposing and scoring: a
grammar-like mechanism is used for proposing actions in
ritual exchanges like greetings and partings; the player
interface component proposes whatever action the player
last proposed and scores it accordingly. Although I have a
more traditional reactive planner implemented, I intend to
replace it with a trivial subset of NASL. The appeal of this
is that it would allow the use of Sibun’s (1992)
incremental, local discourse planner.

Related Work
Although most game AI code can be thought of as a
combination of finite-state control and combinational
logic, there are also examples of the use of more powerful
representations, the best-known examples being Façade
(Mateas & Stern, 2005), Prom Week (McCoy et al., 2012),
and the various pieces built on the Versu platform (Evans
& Short, 2013). These systems use generative AI
internally for character control, but provide fixed options
for user input, such as menus of possible actions. In the
case of Façade, players type English text that the system
categorizes as one of a fixed set of atomic speech acts.
 The opposite case can be found in parser-based
interactive fiction (Jackson-Mead & Wheeler, 2011). They
support generativity in player input, but have little or no AI
per se. More recent IF systems use declarative methods.
Inform 7 (Nelson, 2006), although it doesn’t directly
implement any character AI, does represent world state and
behavior declaratively in terms of an internal logical form
(facts + rules). And Versu, which very much does
implement character AI, uses its own modal logic called
eremic logic (Evans, 2010).
 Various research IF systems have also been built using
more expressive logics. Zafeiropoulos (2008) used an
object-oriented version of Prolog to implement a
traditional text adventure engine. Koller et al. (2004) built
an IF engine based on SHIQ description logic together with
a dependency parser and a Tree-Adjoining Grammar
generator.

 A number of games use propositional declarative
representations like rule systems (Evans, 2009) or STRIPS
planners (Orkin, 2002). These systems either don’t allow
variable binding or use some variant of deictic
representation (P. Agre & Chapman, 1987; P. E. Agre,
1988), meaning that variable binding is moved outside the
inference engine, allowing inference to be propositional
and thereby more efficient (Zubek, 2015). Although not a
game per se, it’s worth noting that Chapman (1990) used a
similar architecture in an AI player for a Joust clone that
could take advice from a human.

Conclusion
Classical AI has seen surprisingly little use in
contemporary game AI. I believe this is due to a
combination of system building/integration issues and,
more importantly, a mismatch between classical AI and
contemporary game mechanics that makes classical AI ill-
suited to current games. While I hope that some of the
tools being built for MKULTRA will help with the former, I
believe the latter can only be solved by the research
community developing not only new technologies, but also
new mechanics and genres that properly leverage them.

Acknowledgements
I would like to thank the members of the AI Game
Programmers Guild for helpful feedback on the industry
state of the art. I’d also like to thank Rob Zubek, Richard
Evans, Andrew Fray, Eileen Hollinger, and James Ryan for
kind words of encouragement.

References
Abercrombie, J. (2014). Bringing BioShock Infinite’s Elizabeth
to Life: An AI Development Postmortem. In Game Developer’s
Conference. San Francisco, CA.
Agre, P., & Chapman, D. (1987). PENGI: An implementation of
a theory of activity. Sixth National Conference on Artificial
Intelligence (AAAI-87). Seattle, WA: AAAI Press.
Agre, P. E. (1988). The dynamic structure of everyday life.
Cambridge, MA: MIT Artificial Intelligence Laboratory.
BioWare. (2012). Mass Effect 3.
Blank, M. (1982). Deadline. Infocom.
Bonasso, P., Firby, R. J., Gat, E., & Kortenkamp, D. (1997).
Experiences with an Architecture for Intelligent Reactive Agents.
Journal of Theoretical and Experimental Artificial Intelligence,
9(2-3).
Cavallaro, D. (2009). Anime and the Visual Novel: Narrative
Structure, Design and Play at the Crossroads of Animation and
Computer Games. Jefferson, NC: McFarland.
Chapman, D. (1990). Vision, Instruction, and Action.
Massachusetts Institute of Technology.

33

Clocksin, W. F., & Mellish, C. S. (2003). Programming in
Prolog: Using the ISO Standard (5th ed.). New York, NY:
Springer.
Colby, K. M. (1975). Artificial Paranoia. Oxford: Pergamon
Press, Ltd.
Cycorp. (1984). Cyc.
Evans, R. (2009). AI Challenges in Sims 3. In Artificial
Intelligence and Interactive Digital Entertainment. Stanford, CA:
AAAI Press.
Evans, R. (2010). Introducing Exclusion Logic as a Deontic
Logic. In Deontic Logic in Computer Science, Proceedings of the
10th International Conference, DEON 2010, Lecture Notes in
Computer Science Volume 6181 (pp. 179–195). Fiesole, Italy:
Springer.
Evans, R., & Short, E. (2013). Versu. San Francisco, CA: Linden
Lab.
Evans, R., & Short, E. (2014). Versu - A Simulationist
Storytelling System. IEEE Transactions on Computational
Intelligence and AI in Games, 6(2), 113–130.
Hecker, C. (2010). Game AI is Game Desgin. Stanford, CA.
Isla, D. (2005). Handling Complexity in the Halo 2 AI. Game
Developer’s Conference 2005. San Francisco, CA, USA: CMP,
Inc.
Isla, D. (2013). Third Eye Crime: Building a Stealth Game
Around Occupancy Maps. In Proceedings of the Ninth
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE-13). Boston, MA: AAAI Press.
Jackson-Mead, K., & Wheeler, J. R. (Eds.). (2011). IF Theory
Reader. Boston, MA: > Transcript On Press.
Koller, A., Debusmann, R., Gabsdill, M., & Striegnitz, K. (2004).
Put my galakmid coin into the dispenser and kick it:
Computational Linguistics and Theorem Proving in a Computer
Game. Journal of Logic, Language and Information, 13(2), 187–
206.
Laws, R. (2013). The Esoterrorists (2nd ed.). London: Pelgrane
Press.
Mateas, M., & Stern, A. (2002). A Behavior Language for Story-
Based Agents. IEEE Intelligent Systems, 17(4), 39–47.
Mateas, M., & Stern, A. (2005). Façade.
McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear
planning. In Proceedings of the ninth National conference on
Artificial intelligence (AAAI-91) (pp. 634–639).
McCoy, J., Treanor, M., Samuel, B., & Reed, A. A. (2012). Prom
Week. Santa Cruz, California: Expressive Inteligence Studio at
UC Santa Cruz.
Montague, R. (1973). The proper treatment of quantification in
ordinary English. In P. Suppes, J. Moravcsik, & J. Hintikka
(Eds.), Approaches to Natural Language: Proceedings of the
1970 Stanford Workshop on Grammar and Semantics (pp. 221–
242). Dordrect, NL.
Montfort, N. (2007). Generating Narrative Variation in
Interactive Fiction. University of Pennsylvania.
Moonshot Games. (2014). Third Eye Crime.
Muckenhoupt, C. (2001). The Gostak. IFDB.
Nelson, G. (2006). Inform 7.
Nintendo Corporation. (1986). The Legend of Zelda.

Orkin, J. (2002). Applying Goal-Oriented Planning for Games. In
S. Rabin (Ed.), AI Game Programming Wisdom 2. Stamford, CT:
Cengage Learning.
Pereira, F. C. N., & Shieber, S. (1987). Prolog and Natural
Language Analysis. Brookline, MA: Microtome Publishing.
Robinson, J. A. (1965). A Machine-Oriented Logic Based on the
Resolution Principle. Journal of the ACM, 12(1), 23–41.
Short, E. (2011). NPC Dialog Systems. (K. Jackson-Mead & J. R.
Wheeler, Eds.)IF Theory Reader. Boston, MA: > Transcript On
Press.
Sibun, P. (1992). Locally Organized Text Generation. University
of Massachusetts, Amherst.
Team Bondi. (2011). L.A. Noir. New York: Rockstar Games.
United States Congress. (1977). Project MKUltra, the Central
Intelligence Agency’s Program of Research into Behavioral
Modification. Joint Hearing before the Select Committee on
Intelligence and the Subcommittee on Health and Scientific
Research of the Committee on Human Resources, Unit.
Washington, DC.
Unity Technologies. (2004). Unity 3D. San Francisco, CA.
Vohs, K. D., Baumeister, R. F., Schmeichel, B. J., Twenge, J. M.,
Nelson, N. M., & Tice, D. M. (2008). Making choices impairs
subsequent self-control: A limited resource account of decision
making, self-regulation, and active initiative. Journal of
Personality and Social Psychology, 94, 883–898.
Whitehouse, D., Cowling, P., Powley, E., & Rollason, J. (2013).
Integrating MCTS with Knowledge-Based Methods to Create
Engaging Play in a Commercial Mobile Game. In Proceedings of
the Ninth Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-13). Boston, MA: AAAI Press.
Wideload. (2005). Stubbs the Zombie in Rebel Without a Pulse.
Winograd, T. (1972). Understanding Natural Language.
Academic Press.
Wright, W. (2000). The Sims. MAXIS/Electronic Arts.
Zafeiropoulous, V. (2008). Adventure Games Implementation
Under The Prolog Language. Mälardalen University.
Zubek, R. (2015). Production Rules Implementation in 1849. In
S. Rabin (Ed.), Game AI Pro 2. Natick, MA: A K Peters/CRC
Press.

34

