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Abstract

Eveil3d is a project for development of an immersive, vir-
tual “serious game” for computer assisted foreign language
learning, with which users interact verbally by means of an
automatic speech recogniser. The speech of the target user
group, namely adolescent low-proficiency non-native speak-
ers, differs significantly from native adult speakers on which
ASR systems are typically trained and thus on which they
perform the best. As only a very small corpus of near-domain
speech and text is available, the aforementioned difference
becomes a development challenge. We deal with this chal-
lenge by adapting existing systems on the small data set. We
adapt our language models using text selection to augment the
in-domain data with similar data from out-of-domain sources.
We adapt our acoustic models with MAP adaptation. Through
these steps we achieve significant reductions in error.

1 Introduction
Eveil3d is a Franco-German project for the development
of a “serious game” for computer assisted language learn-
ing of German and French as a foreign language by middle
school students in France and Germany, respectively. With
the help of virtual reality and head-tracking equipment, stu-
dents travel to a representation of the Strasbourg Cathedral
where they must navigate the environment, solve puzzles
and interact with game characters in the target language.
Verbal interaction is provided by an automatic speech recog-
nition (ASR) engine.

ASR holds great promise for computer assisted language
learning, since it could enable the improvement of oral pro-
ficiency, a skill which is one of the most difficult to practice
in the classroom (Van Doremalen, Cucchiarini, and Strik
2010). However, the speech produced by early language
learners and that of non-adults is difficult to recognise in
part due to what is called “mismatch,” arising from the so-
called “fragility” of ASR. While ASR robustness and the ex-
pansiveness of its capabilities have improved dramatically in
the last decades, compared to human robustness its perfor-
mance can still degrade rapidly when testing conditions and
data differ from those of training.

The speech of children and to a lesser degree ado-
lescents differs in important ways from that of adults
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and exhibits significant variability due to developmental
changes including anatomical and morphological changes,
and greater spectral variability, among others (Potamianos
and Narayanan 2003), Changes in vocal tract geometry
cause variable effects on fundamental and resonant fre-
quency (Kent 1976). Recognition of low-proficiency non-
native speech is also problematic as it deviates from standard
in all areas of speech production including morphology, pro-
nunciation, syntax, vocabulary, and sentence structure (Van
Doremalen, Cucchiarini, and Strik 2010). As most ASRs are
trained for adult, native speech, of which there is also the
most training material, such systems make for poor recog-
nisers in our domain (Lawson, Harris, and Grieco 2003;
Morgan 2004).

A straightforward solution to mismatch is to train on in-
domain data. Strictly speaking, our in-domain data would
be in-game speech by French and German adolescent lan-
guage learners of German and French. Instead, we have a
limited amount of near-domain read speech and dialog texts
of which there is too little to use for outright training. This
combination of unique domain, speech stlye, and limited
availbilty of data poses a novel challenge.

Due to the limited amount of data, we attempt instead to
adapt existing systems on this data. In this paper we will
describe two series of adaptation experiments which we per-
formed for the French language recogniser. First, we adapt
the acoustic model (AM) to the near-domain speech by in-
corporating it into the last step of AM training with a higher
weight. We systematically try weight combinations and ex-
amine trade-offs between two subsets of near-domain data.
For language model (LM) adaptation we try a combination
of incorporating invented text and intelligently selecting text
from out-of-domain (OOD) corpora, integrating both in our
LM.

2 ASR System Description
We develop the ASR systems for Eveil3d using the Janus
Recognition Toolkit (JRTk). Front-end preprocessing of the
audio sampled at 16kHz produces feature vectors consisting
of 13 Mel-Frequency Cepstral Coefficients stacked with a
left and right context of seven features. A Linear Discrimi-
nant Analysis is then applied to the stacked features, reduc-
ing the dimensionality to 40 coefficients.

All acoustic models are based on HMMs with generalized
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quinphone states with three states per phoneme and a left-to-
right topology without skip states. We used 3000 generalized
quinphones found by clustering them with the training data
using a decision-tree. Models were trained using incremen-
tal splitting of Gaussians. For all models we then estimated
one global semi-tied covariance matrix after LDA and re-
fined the models with two iterations of viterbi training.

Language models are 4-gram case-insensitive LMs with
either modified Kneser-Ney or Witten-Bell (WB) smooth-
ing. LMs were built using the SRI Language modeling
Toolkit (Stolcke 2002). The final LM is a weighted mixture
of the component LMs trained on the individual sources, the
weights being those minimizing perplexity on our tuning set
(a subset of the game dialogs) as found by an expectation-
maximization (EM) algorithm in the SRILM Toolkit. We
trained a series of case-insensitive LMs from a subset of
OOD sources selected automatically to be most similar to
the game dialogs using the mixture weighting process men-
tioned above. These sources are detailed in table 3.

The best-performing LM in the series, using WB smooth-
ing, serves as the baseline LM for the experiments described
in section 3. We selected a search vocabulary for our system
from the aforementioned sources tuned on a subset of the
game dialogs according to the maximum likelihood count
estimation described in (Venkataraman and Wang 2003).

3 Adaptation Experiments
3.1 Acoustic Model Adaptation
Acoustic Corpora Our near-domain acoustic data for
adaptation and testing comes from three sets of record-
ings. In all sets, speakers read aloud sentences from the
game dialogs as well as from copora from the Quaero
project (http://www.quaero.org), automatically selected for
their similarity to the game dialogs. The first two sets were
recordings of German middle school learners of French at
the A2 level of language proficiency. Speaker ages ranged
from 12 to 15 (median 13.) In the first set, which we call
TEST, 16 speakers spoke 15 utterances each, totaling 20
minutes of speech. This set was used for detecting over-
fitting. In the second set, which we call Group A, 11 speak-
ers read 100 to 150 sentences, or approximately 87 minutes.
The third set came from recordings of university students
of French of median age 21 reading between 100 and 200
sentences. We selected the six youngest speakers with Ger-
man as a native language for inclusion in this set, which we
called Group B. This made up 52 minutes of speech. All
speech was then orthographically transcribed in one pass.

We created our acoustic adaptation and our development
(DEV) sets from combinations of Groups A and B. The
breakdown by group, gender, as well as total utterances and
duration in minutes, is shown in Table 1.

Set Group A Group B Utts Mins♀ ♂ ♀ ♂
Acoustic adapt. 5 2 2 2 1459 95
DEV 1 3 2 0 609 30

Table 1: Speaker composition and set size of aADAPT and
DEV.

Figure 1: Results of MAP holding ratios of weight factors
between A and B constant. WER on DEV and TEST

In addition, we dispose of a large amount of out-of-
domain broadcast news and conversation domain speech
data from the Quaero and Ester (Galliano, Gravier, and
Chaubard 2009) projects. This data (Q+EST,) is approxi-
mately 302 hours long with about 64 thousand utterances.

MAP Adaptation We trained our baseline system on
the standard set of Quaero and Ester data. This included
context-independent modeling, polyphone clustering, and
context-dependent GMM training. The resulting model we
then adapt using Maximum A-Posteriori (MAP) adaptation.
We perform the MAP adaptation by weighting the Viterbi
training statistics from the three sources A, B, or Q+EST
with three different weight factors. The effective share of
training material or “relative weight” for each source is
Ri = wiLi/(

∑
j∈J wjLj) where i is the source in consid-

eration, J is the set of all sources, wi is the weight factor for
source i, and Li is the length of source i. In the first round
of weight adjustment we keep the ratio of the weight fac-
tors of A and B fixed, the factor of B being 3/4 of that of A.
We chose this factor based on the intuition that the speech
in B is less useful, as it comes from older and more profi-
cient speakers than that of the targeted game user. We then
searched a series of weighting factors for A+B, weighting
Q+EST with a constant factor of 1. Our results are shown
in figure 1, where for both DEV and TEST we show the
case-insensitive word error rate (WER) both without lat-
tice rescoring (“Base,”) and with the best-performing lattice
rescoring (“Best Rescore.”) A relative weight of 30.7% to
A+B gave the lowest WER on DEV for all factors tied.

In the second round of experiments, we step through val-
ues of factors for A, with the factor of B being a function
of that of A such that the relative weight of A+B remains
at a constant 30.7%. The best combination found that way
gave equal factors of 89 for both A and B, meaning relative
weights of 17.6% and 12.4% respectively.

Table 2 summarizes the results. The first line shows the
baseline system which does not see any near-domain data,
and on which one iteration of Viterbi training is performed
on Q+EST. The best results on DEV and TEST from the
second round of weighting experiments are shown in line
3, where the WER was reduced by 24-35% relative. Differ-
ences in WER within a column are statistically significant
within a 95% confidence interval according to the Sign test.
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Relative weight Ri (%) DEV WER (CIns) TEST WER (CIns)
A B Q+EST Base Best Rescore Base Best Rescore
0 0 100 71.1 66.4 60.8 55.4
0 30.7 69.3 60.1 56.5 48.2 44.5

17.6 13.1 69.3 54.0 50.0 39.2 35.8
30.7 0 69.3 55.2 53.4 43.3 40.2

Table 2: Summary of AM adaptation experiments. Best re-
sults indicated in boldface.

Source Running Words
l’Humanité (newspaper) 752M
Quaero blog sources 62M
Huffington Post (online newspaper) 5M
Quaero transcripts 2.6M
ESLO (oral corpus) (http://http://eslo.huma-num.fr/ ) 1.1M
CFPP2000 (oral corpus) (http://ed268.univ-paris3.fr/CFPP2000/ ) 417K
TCOF (oral corpus) (http://www.cnrtl.fr/corpus/tcof/ ) 153K

Table 3: Out-of-domain text sources

4 Language Model Adaptation
For language modeling we faced a similar situation as with
acoustic modeling. We had a number of out-of-domain
(OOD) sources, as well as some 752 lines of game dialogs
with 4566 running words. The latter we call GD. We au-
tomatically selected those texts most similar to the game
dialogs using the EM method described in section 2. To
expand our relevant data, we had French native speakers
and advanced students of French invent in-game utterances,
resulting in 1422 additional lines (called IGD.) Next, we
adapted our LMs using a popular text selection technique
described in (Moore and Lewis 2010). The approach uses
domain-specific and non-domain specific LMs to compute
cross-entropy scores for the out-of-domain data.

First, we concatenated our out-of-domain sources into one
set and scored the sentences in the set using the aforemen-
tioned approach. We selected the top-scoring percent P of
sentences as a new text and included this new text as a mix-
ture source in our LM training data. We concatenated our
GD and IGD, shuffled it, and split it three ways in a cross-
validation (CV) approach for determining the best mixture
weights on a heldout set, each part being alternately a mix-
ture tuning source, an LM training source, and an in-domain
set for text selection. With the best mixture weights deter-
mined, we compute the LM with the full GD+IGD as LM
source and text-selection in-domain set. As a reference, we
also computed scores for several LMs without text selection.

We computed perplexity on a test set consisting of the set
of sentences read by speakers in the TEST set of the previ-
ous section. Having optimized our acoustic adaptation, we
took the best-performing recogniser from the previous sec-
tion and tested it with our LMs on both DEV and TEST. Our
results are given in table 4. Those WER with a ? were tested
for significance with the Sign test. All were found to be sig-
nificant.

We achieve large gains simply from tuning on GD. Tun-
ing on IGD or GD+IGD is slighlty better. The most dra-
matic reduction in perplexity and WER comes from training
and tuning with the near-domain data, where the inclusion of
IGD also improves performance. With text selection, a small
percentage reduces the perplexity of our LM by just under
2 points relative to including all data. We also get a small
gain in word-error-rate performance relative to the best re-

P% Use of GD/IGD PPL WER1 WER2
Baseline (no use of GD or IGD) 113.9 54.0? 39.2?

- Tune GD 110.3 52.7 39.4
- Tune IGD 109.5 52.7 39
- Tune GD+IGD 109.3 53.2 38.2
- Train+Tune CV GD 59.8 45.7 35.8
- Train+Tune CV GD+IGD 57.7 45.3? 35.5?
100

Sel+Train+Tune CV GD+IGD

55.9 44.3 36.3
50 55.9 44.2 36.9
20 54.7 44.7? 35.2?
10 54.9 44.3 35.7
5 54.4 44.1 35.8
2 54.5 44.0 36.6
1 54.1 43.8? 36.5?

Table 4: Results of selection and LM experiments. WER1:
Base WER on DEV. WER2: Base WER on TEST

sult from the models not employing selection.

5 Conclusion
For the Eveil3d project we face the challenge of creating
speech recognisers for a very specific domain on unique and
non-standard speech using very little data. We chose to ad-
dress this problem in two ways. First, we adapted our acous-
tic models using MAP adaptation. Second, we expanded
our near-domain language model data set through genera-
tion of invented dialogs and through intelligent selection of
similar data in the out-of-domain set. While our gains over
the baseline are significant, we can still see room for future
work. Specifically, we would like to try bootstrapping our
in-domain set for text-selection using OOD material.
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