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Abstract 

In this paper we present a corpus of quest stories taken from 
a popular commercial Massively Multiplayer Online Role-
Playing Game (MMORPG). These stories are open-ended 
narrative, but anchored to formal, in-game actions and 
entities, providing valuable constraint as a narrative corpus. 
We present two preliminary experiments establishing 
baselines for evaluating similar patterns and content across 
the corpus. 

Introduction   

The ability to reason about narrative has long been 

considered a fundamental cognitive tool and an important 

challenge for artificial intelligence (cf. Schank 1977; 

Bruner 1991). But even though video games are well 

established as both a growing storytelling medium (cf. 

Jenkins 2006) and a powerful domain for AI research (cf. 

Laird 2001), we are not aware of any work that has used 

video game stories as a corpus to develop computational 

models of narrative. In this paper, we present a corpus of 

short stories taken from a Massively Multiplayer Online 

Role-Playing Game (MMORPG). These quest stories are 

delivered to players by in-game characters as first-person 

narrative. Each corresponds to a structured set of objectives 

that the player must achieve in the game to make progress. 

The quest stories allow the designers to flesh out the 

setting and characters, and to motivate and justify the 

objectives. They are open-domain stories, but they all 

motivate activities supported by the game simulation, such 

as combat, exploring and gathering materials. They also 

adhere to genre tropes, deliberately encouraging a sense of 

familiarity and comfort in the players. As a result, these 

quest stories demonstrate at fairly large scale how human 

storytellers can turn very similar events into very different 

stories. We believe that this makes a promising corpus for 
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modeling and learning structures and patterns in narrative 

discourse. 

 Deep narrative structures were a large part of early work 

on narrative understanding (cf. Dyer 1983), but were 

intractable at scale. Statistical NLP has proven robust at 

very large scale (cf. Voorhees & Buckland, 2009), but in 

part by omitting deep understanding. Recently, however, 

there has been more work using scalable, shallow 

statistical tools to identify patterns and map to script-like 

narrative event structures. Chambers and Jurafsky (2009) 

showed that next-event predictions could be extracted from 

a gigaword news corpus. Li et al. (2012) used statistical 

clustering over crowd sourced short narratives on common 

events (e.g. a movie date) to automatically generate scripts. 

In contrast to those corpora, our quest story corpus covers 

a wider range of creative narrative techniques, while still 

having useful constraint to in-game objectives. This can 

enable investigation beyond sequences of events to the way 

that they are presented in real, commercially relevant 

stories. Here we present two preliminary experiments to 

characterize similarities among the quest stories and 

establish baseline evaluations for future work. 

Activity Identification 

We collected over 7000 in-game quests from World of 

Warcraft, copyright Blizzard Entertainment
1
, which are 

publically available on many reference websites for 

players. Each quest in the corpus includes the quest story 

text, a brief objective statement and bullet points that 

explicitly detail the objectives. The majority of the bullet 

points consist of a single verb indicating the player activity 

needed to fulfill the objective, and unique identifiers for 

target in-game entities. A human player reading a quest 

story will understand generally what activities are being 

proposed, even without the explicit objectives. We believe 

that different narrative structures are used to motivate those  
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Table 2. Comparison of classifiers and features for KILL label classification. 

 

few activities in many different ways. Our first question, 

therefore, is to what extent the shallow, unstructured 

semantic content of the stories is sufficient to identify 

those activities. A strong positive answer to that question 

would diminish the usefulness of this corpus in exploring 

narrative structures. 

 In this experiment, the objective text and bullet points 

were used to label the activities, and only the story text was 

used in the classification. By comparing the verbs used in 

the objective text and bullets across the entire corpus, we 

identified nine initial activity labels. Each quest may have 

any number of activities. Three of the nine labels were 

omitted due to small positive example count, and a fourth 

was so semantically broad as to be meaningless. The 

remaining five labels and the number of instances in the 

corpus are given in Table 1. 

 

Table 1. Quest activity labels and annotation counts. 

Label Instances Description 

KILL 3110 Kill a NPC 

GATHER 1994 Collect Items 

SPEAK 1171 Social interactions with a NPC 

USE 337 Use an Item 

HELP 318 Protect/Save an NPC 

 

 For each activity, we preformed an independent binary 

classification to test the ability to predict whether the quest 

story implies it. This is a document classification problem, 

so we tested it with three common classifiers in that space: 

Multinomial Naive Bayes, Random Forest of Trees and 

Gradient Boosted Trees. Although it has been shown that 

the tree methods can outperform Naive Bayes (Caruana & 

Niculescu-Mizil 2006), we expected that the relatively 

small sample sizes would be a greater factor. The features 

were unstructured bag-of-words frequency counts covering 

the vocabulary of the training set (stopwords and low-

frequency terms filtered). We tested three feature set 

conditions: All Words, Verbs Only and Verbs Only 

(Stemmed). Verbs were tested because of their importance 

in narrative structure. However, only part-of-speech 

tagging was used to extract the verbs, to emphasize simple, 

shallow techniques. That combined with the relative 

shortness of the stories lead us to hypothesize that the All 

Words condition would be most effective. 

 Table 2 shows the results for predicting the KILL 

activity for each condition. For each, we used a random 

50/50 split of the corpus into testing and training, and 

calculated the accumulated precision, recall and f-score 

over 10 trials. The top three f-scores are highlighted in 

bold. We note first that the Gradient Boosted condition 

widely underperforms the other two classifiers. Boosting 

methods are susceptible to noise (Bootkrajang & Kabán 

2013), and the large number of different words combined 

with short stories (low occurrences) may have contributed 

to that. Among the top two classifiers, there is a 

statistically significant difference between the results for 

the All Words feature set (1-tailed student’s paired t-test, 

p<<0.01), but it is a negligible difference from the point of 

view of an initial exploration. In general, the two Verbs 

Only conditions significantly under-performed All Words 

(1-tailed student’s paired t-test, p>0.01), except in the case 

of Naive Bayes with Verbs Only (Stemmed). As the Verbs 

Only feature vectors are much more compact, this is a 

strong candidate for further exploration. 

 Table 3 shows the best results for all five labels. The 

Naive Bayes classifier with the All Words feature set was 

significantly the best performing condition for all the labels 

apart from KILL. As expected, the size of the positive 

samples strongly impacts the quality of classification. 

Following these results, we attempted to add sentiment 

analysis features as additional semantic information, but 

saw no significant improvements. We also ran Latent 

Semantic Analysis on the stories, transforming them into 

principle component vectors. It appeared in visualization 

that the components for verb co-occurrence clustered 

strongly with activity labels, but using the component 

vectors as features also failed to improve classification. 

 

Table 3. Naïve Bayes classification results for All Words. 

Label Precision Recall F-Score 

KILL 0.752 0.635 0.688 

GATHER 0.629 0.626 0.627 

SPEAK 0.545 0.512 0.528 

USE 0.215 0.171 0.190 

HELP 0.417 0.251 0.312 

 

 We present these results as a useful baseline, at different 

sample sizes, for the extent of the predictive power in the 

shallow, unstructured semantic content of the stories. We 

conclude that there is room for productive exploration of 

more sophisticated structural models that can be evaluated 

against this data. 

 All Words  Verbs Only Verbs Only (Stemmed) 

Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score 

Naïve Bayes 0.679 0.670 0.674 0.645 0.552 0.595 0.719 0.639 0.676 

Random Forest 0.752 0.635 0.688 0.669 0.572 0.616 0.826 0.487 0.613 

Gradient Boosted 0.787 0.440 0.564 0.704 0.390 0.502 0.750 0.496 0.597 
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Sentence Ordering 

The second question we ask is whether there are common, 

consistent patterns in the order in which events are 

presented. If there are, then it should be possible to identify 

more and less likely sequences of sentences, even without 

deep understanding of what is taking place. In this 

experiment, we use shallow features to identify correct 

sentence orderings from incorrect. For a story with n 

sentences, there are n
2
 – 2n + 2 alternative orderings that 

can be created by repositioning one sentence. While some 

alternative orderings would still form coherent stories, 

these should be rare given the short length of the quests. 

Once the alternative orderings are generated as negative 

examples, the task is to identify the correct ordering of a 

set of sentences, given all the possible orderings for a quest 

story. For any random half of this corpus, the expected 

accuracy for randomly guessing on this task is 0.20. 

 Our first approach, Paired Sentence Order, trains on a 

quest story by taking all possible sentence pairs within that 

story, labeled according to their correct ordering as before 

or after. It uses the same unstructured bag-of-words 

features for All Words and Verbs Only as in the first 

experiment. A Gaussian Naïve Bayes classifier was trained 

on a random 50% of the corpus. For testing, the trained 

model is used to predict the probability of each sentence 

pair order in each candidate ordering. The score for an 

ordering is the sum of the predicted probabilities for that 

ordering. We hypothesized that even though verb chains 

are key to narrative flow, the Verbs Only condition would 

under-perform the All Words condition due to the 

sparseness of verbs in the sentences. 

 We compared these conditions with a more sophisticated 

metric of Verb Chain Similarity. Li et al (2006) 

demonstrated the effectiveness of a sentence similarity 

metric that combines semantic and ordering similarity 

metrics. The former is calculated as cosine similarity 

between lexical semantic content vectors (generated using 

corpus information content and WordNet path lengths). 

The latter also uses vector-based similarity, for a novel 

vector representation of word order. This metric easily 

applies to verb chains, as sequences of words with both 

semantic and ordering similarity. Verb chains were 

extracted using simple part-of-speech tagging. For a given 

quest story, the feature vector is the sentence similarity 

between that story’s verb chain and each other story’s verb 

chain in the training set. A Gaussian Naïve Bayes classifier 

was trained with the correct orderings as positive samples, 

and the alternative orderings as negative samples. 

 The three conditions were run 10 times each with a 

random 50% training/testing split, and the mean accuracy 

and standard deviation are reported in Table 4. As 

expected, Verb Only significantly underperforms All 

Words (1-tailed student’s paired t-test, p<<0.01). Verb 

Chain Similarity significantly outperforms the simpler 

conditions (1-tailed student’s paired t-test, p<<0.01) in 

spite of using only rough verb information. This suggests 

that there are significant similarities in the presentation of 

verbs in the corpus which can be explored and exploited. It 

also provides a better baseline for future improvement. 

 

Table 4. Accuracy in the Sentence Ordering task. 
 Accuracy Std. Dev. 

Verb Chain Similarity 0.442 0.030 

Paired Sentence Order,  

All Words 

0.369 0.008 

Paired Sentence Order,  

Verbs Only 

0.331 0.006 

Conclusion 

Quest stories combine computationally friendly constraints 

and in-game meta-knowledge with open-ended narrative. 

They demonstrate how many different versions of the same 

stories can be told. The results we have presented here 

using accessible, shallow techniques aim to begin 

characterizing the consistent patterns of content across the 

corpus. The next step for this project is to use those 

insights to guide annotation efforts for deep structural 

elements in the stories. 
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