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Abstract 
Music composition can be a challenge for many small- to 
medium-sized game companies, largely due to the expense 
and difficulty in creating original music for each level of a 
game. To address this, we developed a tool that automatical-
ly generates original music, by training a music generator on 
pieces whose style the game designer wishes to imitate. The 
generator then creates original music in that style in real-
time, and switches between styles when signaled by the 
game. This software has been refined to produce music that 
is coherent and imitates a composer’s larger music structure. 

Introduction  
Music is an essential part of the video game experience, 
but having a variety of original, high-quality soundtracks 
into a game can be expensive. There is a financial cost in-
volved in commissioning a soundtrack, and a memory cost 
in storing them. Ideally, in-game music should be cheap to 
compose and store, and each region of a game level should 
produce original music endlessly, segueing seamlessly and 
sensibly from one soundtrack to the next. 

Early work in automatic music generation involved 
techniques such as handcrafted rule-based composition, 
and extraction and recombination of music segments from 
existing pieces (Cope 2006). Other research has created 
genre recognition systems effective at distinguishing be-
tween composers, and allude to their potential application 
to music generation (Lo & Lucas, 2006). 

Recent systems train on existing pieces to generate orig-
inal compositions. One example involved work in rhythm 
generation, where stochastic models analyze and store 
rhythmic patterns from existing pieces to generate similar 
but novel patterns (Marchini and Purwins 2011; Sioros and 
Guedes 2011). Chord extraction from music has also pre-
viously explored (Simon, Morris and Basu, 2008).  
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The Music Generation System 
We have implemented a music composition tool that gen-
erates original music that is inexpensive to produce and 
store. By training itself on existing compositions, this tool 
composes original and sensible musical scores in real-time. 
 The tool is based on a variation of a Markov model, 
which is a technique that has been also been used by 
(Marchini and Purwins 2011; Pachet, 2003; Sioros and 
Guedes 2011). The core generator was first created in 2011 
by (Engels and Eisner, 2011), using a Markov model 
where each state is a collection of notes that share a com-
mon starting position within a bar. A composition is bro-
ken down into these states, and the resulting Markov model 
would stores the frequencies of notes and transitions within 
that� composition (Figure 1). Each model could then be 
used to generate polyphonic segments with output that re-
spects rhythmic boundaries, similar to the original piece. 

Figure 1: Extraction of polyphonic segments from original piece. 
 The resulting tool generated novel music in the style of 
an original piece, by recombining portions of the original 
work in new ways, within the bounds of the note transi-
tions in the original piece. The trained models are small 
and thus easy to store (around 500kb per model), and could 
generate the notes of a new piece of music in real-time. 
 Our automatic music generation system facilitates track 
switching as in-game characters move from one level re-
gion to another. Instead of relying on fading between 
tracks or human-designated transition points, the system 
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transitions when the current model generates a note se-
quence that the next model might also generate. The new 
model continues composing its soundtrack where the pre-
vious model leaves off, resulting in a seamless transition. 

The Hierarchical Markov Model  
More sophisticated music required a hierarchical Markov 
model, to produce the different sections of a piece (e.g. 
overture, crescendo, denouement). We automatically seg-
mented each piece into sections, trained separate models 
for each section, and calculated the transition probabilities 
between sections to use in the generation stage. 

Our automatic segmenter detects similar recurring pas-
sages in a piece, and segments the entire piece into large 
component passages. The similarity metric used is based 
on a Levenshtein distance calculation, using the pitch, du-
ration, timbre and volume as the main factors for its edit 
distance calculation (Figure 2). 

 
 
 
 
 
 
 

 
Figure 2: Calculating edit distances between two segments of 

Chopin’s Minute Waltz. Vertical dotted lines denote mismatches. 
A support vector machine classifier with a radial basis 

function (rbf) kernel is used on the results of this calcula-
tion, to determine matching passages. The classifier is 
trained using labeled data from the original piece. Finally, 
the segmenter finds the optimal set of segments with non-
overlapping coverage, by optimizing Equation 1: 

  Eq. 1        

By treating this as an interval-scheduling problem that 
uses greedy selection based on the value of S, the result is a 
near-optimal segmentation, calculable in polynomial time.  

The segmentations are illustrated with a recurrence plot 
below, whose major axes represent the piece’s bars, and 
darker elements indicate higher similarity (Figure 3). The 
segmenter uncovers the largest similar sections, and trains 
a Markov model within each section, thus producing music 
that is characteristic to the beginning, middle and end of a 
piece, depending on its original structure. 

  Figure 3: Recurrence plot for Hilarity by J. Scott. Notice 
small- and large-scale similarity structures marked in red. 

Chord Progression as Hidden States  
In addition to segmenting music pieces into sections for 
training purposes, this tool incorporates hidden states with-
in each section to produce a higher-level progression. After 
exploring several options, chord progression were the 
strongest predictor for continuous, coherent note genera-
tion between sections. 
 This produced a hidden Markov model (HMM), where 
chords served as the hidden states, similar to the work of 
(Simon, Morris and Basu, 2008). In cases where the com-
poser had not tagged the training data with chords, our tool 
tagged bars automatically with the chord that best matched 
the notes and similarly tagged bars from other pieces. The 
result created a more natural flow throughout the generated 
piece, and also allowed models trained on multiple pieces. 

A Mixture of Models 
By adding chord label information to each state, the tool 
could now train a single model on multiple pieces. This re-
duces sparseness in each model, while maintaining musical 
coherence through the chord structure. Adjustments still 
need to be made during training, since pieces may be 
slightly incompatible due to key or meter differences. To 
address this issue, multiple input pieces were pitch-shifted 
to ensure that note transitions were compatible. 

Discussion 
The result of this work is a tool that can produce original 
music in real-time, in the style of a training piece. It can 
change styles from one game region to another, and pre-
sents little additional load on the processor. The incorpora-
tion of high-level progression with hidden states based on 
chord transitions has added a higher level of composition 
to the generated pieces. The result is a tool that allows 
game studios to have original music for their games, while 
minimizing the time, memory or financial cost of requiring 
human composers. 
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