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Abstract

In interactive storytelling systems and other story-based
computer games, a drama manager is a background
agent that aims to bring about an enjoyable and coher-
ent experience for the players. In this paper, we present
a personalized drama manager that increases a player’s
expected enjoyment without removing player agency.
Our personalized drama manager models a player’s
preference using data-driven techniques, predicts the
probability the player transitioning to different story ex-
periences, selects an objective experience that can max-
imize the player’s expected enjoyment, and guides the
player to the selected story experience. Human study re-
sults show that our drama manager can significantly in-
crease players’ enjoyment ratings in an interactive sto-
rytelling testbed, compared to drama managers in pre-
vious research.

Introduction
Storytelling, in oral, visual, or written forms, plays a cen-
tral role in various types of media, including novels, movies,
and televisions. An interactive narrative is a new type of
storytelling in which players can create or influence a dra-
matic storyline through actions, typically by assuming the
role of a character in a fictional virtual world (Riedl and
Bulitko 2013). Compared to traditional storytelling sys-
tems, the interactive narrative gives the players the oppor-
tunity to change the direction or outcome of the stories,
thus increasing player engagement. There are many ways to
achieve interactive narrative. A simple technique is to con-
struct a branching story graph—a directed acyclic graph in
which nodes contain narrative content (e.g., plot points) and
arcs denote alternative choices of action that the player can
choose. Branching story graphs are found in the choose your
own adventure novels, and also used to great effect in hyper-
media and interactive systems.

More sophisticated interactive storytelling systems often
employ a Drama Manager (DM), an omniscient background
agent that monitors the fictional world and determines what
will happen next in the player’s story experience, often
through coordinating and/or instructing virtual characters in
response to player actions (Bates 1992). The goal of the DM
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is to increase the likelihood that a player will experience
an enjoyable and coherent narrative. In prevailing interac-
tive storytelling systems, the human game designers usually
describe in high or low level what a “good” story should
be. A DM then works to increase the likelihood that play-
ers will have narrative experiences that satisfy the descrip-
tions given by the game designers (Nelson and Mateas 2005;
Weyhrauch 1997; Roberts et al. 2006; Riedl et al. 2008;
Magerko and Laird 2005; Mateas and Stern 2003). In other
words, the DMs are surrogates for the game designers.

We believe that DMs should factor player preference into
their decisions on how to manipulate the narrative experi-
ence (Thue et al. 2007; Yu and Riedl 2012). A DM that can
optimize players’ perceived experience thus is also a surro-
gate for the game players. Thue et al. (2007) create an in-
teractive storytelling that models players’ preference using
fixed player types. In our previous research, we used a col-
laborative filtering player modeling algorithm to learn play-
ers’ preferences over trajectories through a branching story
graph without pre-defined player types (Yu and Riedl 2012).
We previously proposed a graph modification algorithm to
manipulate the likelihood of players following certain tra-
jectories (Yu and Riedl 2013a; 2014).

Our previous drama management system works on
branching story graphs where multiple options can point to
the same plot point. The evaluation showed that the tech-
nique can influence the selection of a subsequent plot point,
but did not incorporate the player preference model. In sub-
sequent studies, reported in this paper, we show that the prior
technique does not significantly increase player preference
ratings for complete story experiences.

In this paper, we build off our previous work and present
a new DM that uses the previous player modeling algorithm
but maximizes players’ expected enjoyment. The personal-
ized DM algorithm presented in this paper chooses a succes-
sive branch that simultaneously increases the players’ enjoy-
ment and the probability of the player selecting the branch
at every branching point. Our evaluation shows that the new
technique outperforms earlier techniques and significantly
increases players’ ratings for their experiences.

Background and Related Work
Drama management has been widely used in interactive sto-
rytelling systems to guide the players through a story ex-
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Figure 1: A simple branching story graph.

perience pre-defined by game designers (Riedl and Bulitko
2013). Most of these Drama Management techniques do not
consider players’ preference and move the story forward in a
way partially or completely conceived by a human designer.

Previous personalized DMs learn the player model us-
ing pre-defined discrete player types. PaSSAGE (Thue et
al. 2007) builds the player model using Robin’s Laws five
game player types: Fighters, Power Gamers, Tacticians, Sto-
rytellers, and Method Actors. PaSSAGE models each player
as a five dimensional vector and learns the vector through
observations of the player’s behavior in a CYOA style
story world. Similar dimensional player models are found
in Peinado and Gervás (2004) and Seif El-Nasr (2007).

In our previous research, we presented a data-driven
player modeling algorithm that modeled player preferences
over story experience in a branching story graph—Prefix-
Based Collaborative Filtering (PBCF) (Yu and Riedl 2012).
The PBCF algorithm is a data-driven technique that makes
no pre-defined dimensional assumption and uses collabora-
tive filtering to predict players’ preference ratings for suc-
cessive trajectories in the branching story graph. We further
proposed a DM to increase the probability the player choos-
ing selected plot points (Yu and Riedl 2013b; 2013a). The
DM used a multi-option branching story graph that could
have multiple options pointing to the same child plot point.
It selected a subset of options to maximize the probability
the player choosing the intended plot point selected by the
DM. However, we did not implement a fully functional per-
sonalized DM agent that used the PBCF or other preference
models to predict players’ preference. Instead, our previous
DM randomly selected a successive plot point as its target
at each branching point in the multi-option branching story
graph. We demonstrate in this paper that our previous DM
will not perform well even using the PBCF player modeling
algorithm because the DM may fail to guide a player at some
branching points, leading the player to a subgraph where
there is no appropriate plot point for the current player. In
this paper, we present a new personalized DM that uses the
PBCF algorithm and a new DM algorithm to maximize the
expected player enjoyment in interactive narrative systems.

As in our previous work, the personalized DM assumes
that an interactive narrative experience can be represented as
a branching story graph. Figure 1 shows a simple branching
story graph, in which nodes (denoted by numbers) represent
plot points and arcs (denoted by Greek letters) represent al-
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Figure 2: The prefix tree converted from the branching story
graph in Figure 1.

ternative choices that players can choose. A full-length story
is a path through the graph starting at the root node and ter-
minating at a leaf node. While the representation is simple,
many other drama management plot representations are re-
ducible to the branching story graphs (Yu and Riedl 2012).

Prefix-Based Collaborative Filtering
The prefix-based collaborative filtering uses collaborative
filtering to learn players’ preference over story plot point
sequences (Yu and Riedl 2012). Collaborative filtering al-
gorithms are capable of detecting patterns in users’ ratings,
discovering latent user types, and predicting ratings for new
users. Due to the sequential nature of stories, a player’s pref-
erence over a plot point depends on the history of plot points
the player has visited.

The PBCF extends standard CF algorithms to solve the
sequential recommendation problems. The PBCF works in
a prefix tree that is generated from the branching story graph.
Each node in the prefix graph incorporates all the previous
experienced plot points in the corresponding branching story
graph. The children of a prefix node are those prefixes that
can directly follow the parent prefix. Figure 2 shows a prefix
tree that is converted from the branching story graph in Fig-
ure 1. Given the prefix tree representation, the PBCF uses
collaborative filtering algorithms to learn and predict play-
ers’ preference ratings over the prefix nodes. Notice that
throughout the paper, we will use numbers to represent plot
points, uppercase letters to represent prefixes, and Greek let-
ters to represent options.

The PBCF algorithm can predict a player’s preference
over the story prefixes and select a successive plot point
best for the current player. A DM is required to influence
the player’s decisions and maximize enjoyment.

Multi-Option Branching Story Graph
To increase the probability that the player transitions to the
selected plot points, we proposed a variation of the branch-
ing story graph—multi-option branching story graph—in
which multiple options could point to the same plot point
(Yu and Riedl 2013a). An option is a CYOA style choice that
the players can select in the multi-option branching story
graph. Figure 3 shows top three layers of the multi-option
branching story graph converted from Figure 1.

101



1

32

54

α2α1 α3 β1 β2 β3

ε1 ε2 ε3

δ1

δ2

δ3

γ1 γ2 γ3

Figure 3: Example of a multi-option branching story graph.

The personalized DM uses collaborative filtering algo-
rithms to additionally model the players’ preference over
the options. Given a desired child plot point that can lead
to the optimal full-length story experience (a leaf node in
the prefix tree) selected by the PBCF, a personalized DM
can pick a particular subset of the options to present to the
player such that at least one option leads to each child. This
ensures true player agency and also increases the likelihood
that the player will pick the option that transitions to the de-
sired child plot point.

Our previous personalized DM selects an objective full-
length story based only on the PBCF algorithm. It does not
consider the probability that the player transitions to the se-
lected full-length story. Thus it is possible for the player
to transition to a subtree where there is no preferred full-
length story for the player. For example, assume that the
PBCF predicts that a player’s preferences over the leaf nodes
G,H, I, J,K, and L in Figure 2 are 4, 4, 4, 4, 1, and 5, re-
spectively. Their personalized DM will attempt to guide the
player to the node L. Let’s further assume that after the DM
intervention, the current player still has a much higher prob-
ability to choose the option that transitions to prefix node
K instead of L at F for a variety of reasons. In this case,
it is very likely that the player will be end up at the node K
and receive the worst story experience. A better strategy, im-
plemented in this paper, is to select a full-length story from
G,H, I, or J as the objective when the player is at node A.

Personalized Drama Manager
In this section, we describe our new personalized DM al-
gorithm. The personalized DM uses the PBCF algorithm
to model players’ preference over the story trajectories and
works in the multi-option branching story graph.

Our personalized DM approach is summarized as follows.
First, for a particular player, the personalized DM models
his/her preference for all the possible trajectories using the
PBCF algorithm. Second, the personalized DM uses stan-
dard CF to model the player’s preference for all the options
in the multi-option branching story graph. Third, the per-
sonalized DM models the probability that the player reaches
each full-length story experience. Finally, the personalized
DM chooses an objective full-length story that maximizes
the expected enjoyment for the current player and selects
a subset of options to maximize the probability the player

transitioning to the objective full-length story.

Option Preference Modeling
We create the multi-option branching story graph through
authoring multiple options between all the plot points and
their immediate successors using a variety of motivational
theories (Yu and Riedl 2013a). Collaborative filtering algo-
rithms are used to model the players’ preferences over the
options. We have players rate the options presented after
each plot point in a training phase and construct an option-
rating matrix which is similar to the product rating matrix in
traditional CF algorithms. Non-negative Matrix Factoriza-
tion (NMF) (Lee and Seung 2001; Zhang et al. 2006) and
probabilistic PCA (pPCA) (Tipping and Bishop 1999) are
used to model the option preference ratings and predict op-
tion ratings for new players.

Branch Transition Probability Modeling
With the option preference ratings for a particular player,
the personalized DM uses probabilistic classification algo-
rithms to predict the player’s successive story branch tran-
sition probability. Logit regression, Probit regression and
probabilistic Support Vector Machine (SVM) are used to
train the branch transition probability model. Logit regres-
sion (Bishop 2006) is a probabilistic statistical classification
model that can be used to predict the probability that an input
data point belongs to each class. The binary Logit regression
assumes that the class label yi for each input data point Xi

follows a Bernoulli distribution with expectation:

E[yi|Xi] = Logit(θ′ ·Xi) (1)

where Logit() is the Logit function and θ contains the pa-
rameters to be learned.

The Probit regression model (Bishop 2006) is similar to
Logit regression, except that the Logit function is substi-
tuted with a Gaussian cumulative distribution function in
Equation 1. The probabilistic SVM (Platt 1999) trains a tra-
ditional SVM and an additional sigmoid function that maps
the SVM outputs into probabilities.

Applying the probabilistic classification algorithms to the
branch transition probability modeling, we define xIJ,K to
be the feature that the player is at a prefix node I with two
successive prefix nodes J and K, where the node J is the
preferred child selected by the personalized DM. xIJ,K is a
two dimensional vector containing highest preference rating
for the options transitioning to the preferred node J and the
lowest preference rating for the options transitioning to the
node K. To be more specific, xIJ,K is:

(maxα∈OI
J
{R(α)}, minβ∈OI

K
{R(β)})′ (2)

where R(·) is the predicted preference rating for an option,
OIJ is the set of options that lead to preferred successive pre-
fix node J from node I , and OIK is the set of options that
lead to the other successive prefix node K from node I .

The probability PIJ,K that the player transitions from I to
J under the DM intervention is:

PIJ,K = f(xIJ,K ;θ) (3)
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where f could be the Logit, Probit, or probabilistic SVM
model, θ are the parameters to be learned. Notice that
PIJ,K + PIK,J 6= 1 due to the DM intervention. For a pre-
fix node that has three or more successive nodes, a multi-
nomial Logit regression, multinomial Probit regression or
multi-class SVM can be used in a similar way to model the
transition probability P (Bishop 2006).

For example, suppose a player is at prefix node A in Fig-
ure 2 (plot point 1 of the branching story graph) and the DM
selects node C (plot point 3) as the objective for the player.
The DM has six options to select from as in Figure 3. Then
the feature value xAC,B contains the maximum of the three
preference ratings for options β1, β2, and β3, and the mini-
mum of the three preference ratings for options α1, α2, and
α3. The probability PAC,B will be f(xAC,B ;θ).

For a player at prefix node I , we define PIL to be the proba-
bility that the player transitions to a leaf prefix node L under
the DM intervention. PIL can be computed by multiplying
the successive transition probabilities through the path from
node I to node L. For example, in the prefix tree of Figure 2,
suppose the player is at the root nodeA. The probability that
the player transitions to node L: PAL = PAC,B ∗ PFL,K .

Objective Full-length Story Selection
For a player at prefix node I of a prefix tree, the personal-
ized DM will select an objective full-length story from the
subtree with the root I to maximize the player’s expected
enjoyment. More precisely, the personalized DM selects a
leaf node L∗ such that:

L∗ = argmaxLi∈LeafI{R(Li) ∗ P
I
Li
} (4)

where LeafI is the set of leaf nodes (full-length stories) in
the subtree with root I in the current story prefix tree; R(Li)
is the predicted story rating for Li using PBCF; PILi

is the
predicted probability that the player transitions to Li from
the current node I under the DM intervention as computed
in previous section.

Personalized Drama Manager Algorithm
Our personalized DM puts all the models to use as follows.
For a new player, the personalized DM must first collect a
few initial ratings for story prefixes and options. These rat-
ings can be collected on a graph especially for training on
new players or can come from repeated interactions with the
system. The collected ratings are then used to bootstrap the
PBCF model and the CF model for option rating prediction.
Then at each prefix node I in the prefix tree, the personalized
DM uses the algorithm in Figure 4 to guide the player.

Notice that it is not strictly necessary to collect story and
option ratings as in step 7. We do it in our system for the
purpose of collecting as much data as possible to build more
accurate player models. With every new rating, the person-
alized DM will get better predictions in step 2 and 3. On the
other hand, if we do not collect new ratings, it will not be
necessary for the personalized DM to re-predict the ratings
for full-length stories and options after every plot point.

1: while I is not a full-length story do
2: Predict the ratings for full-length stories Li that are descen-

dants of I using PBCF
3: Predict the ratings for all the available options in the subtree

with I as its root using CF
4: Calculate the probabilities that the player transitions to each

Li under DM intervention: PI
Li

5: Select an objective full-length story L∗ that has the highest
expected rating using Equation 4

6: Increase the probability the player transitions to the succes-
sive node that leads to L∗ by showing a subset of options to
the player

7: Collect the player’s preference over the story-so-far (the cur-
rent node I) and the presented options and update the PBCF
and CF models

8: The player chooses an option
9: Set I to be the next prefix node based on the player’s choice

10: end while

Figure 4: The personalized drama manager algorithm.

Evaluation
To evaluate our personalized DM, we conducted a group of
human studies in an interactive storytelling system built with
choose your own adventure stories. We hypothesize that our
personalized DM will be better at increasing players’ en-
joyment in the interactive storytelling system, as compared
to baseline DMs. In this section, we will describe the story
library and the interactive storytelling system we built, the
training and testing of the personalized DM, human study
results and discussions.

Story Library and System Setup
We built the story library using two choose your own adven-
ture books: The Abominable Snowman and The Lost Jew-
els of Nabooti, were transcribed into two branching story
graphs. We modified the stories such that each possible nar-
rative trajectory contains exactly six plot points. On average
each full-length story contains around 1,000 English words.
The branching story graph of The Abominable Snowman
contains 26 leaf nodes and 19 branching points. The branch-
ing story graph of The Lost Jewels of Nabooti contains 31
leaf nodes and 18 branching points. The two branching story
graphs are converted into two prefix trees. In total we have
134 story prefix nodes in the two trees.

We authored two additional options for each branch in the
two branching story graphs as in (Yu and Riedl 2013a). In
the final multi-option branching story graphs, there are three
different options per successor plot point at every branching
point. We have totally 275 options in the two multi-option
branching story graphs.

In the human study, all the stories were presented plot-
point by plot-point to the players. After each plot point, the
players were asked to rate the story-so-far (for PBCF train-
ing) and all the options (for option-preference CF training)
on a scale of 1 to 5 before they could select one of the op-
tions to continue. A bigger rating number indicates a higher
preference. We created our storytelling system using an open
source tool Undum (http://undum.com/). Figure 5 shows a
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Figure 5: A screenshot of the interactive storytelling testbed.

screenshot of our online interactive storytelling system. The
figure shows two plot points, a place for players to rate the
story-so-far, and two options. The human study is composed
of two phases: model training and testing, which will be de-
scribed in the following sections.

Training the Personalized DM
We recruited 80 participants from Amazon’s Mechanical
Turk (MT). Each player read 4 to 6 full-length stories, each
of which was randomly started at the root of one of the
two branching story graphs. In total we had 410 valid play-
throughs from the 80 players. Each story was presented plot-
point by plot-point to the player. At every branching plot
point, the DM randomly picked one option for each succes-
sor plot point to present to the player and the player was free
to make a choice. We collected the players’ ratings for all
the options and stories they read. The players were asked
to explore the graph as much as possible. If the players en-
countered a plot point they had seen previously, their previ-
ous ratings for story-so-far and options were automatically
filled out from their previous response. We obtain a 134 by
80 prefix-rating matrix and a 275 by 80 option-rating matrix
in the training process.

To train the PBCF model, we randomly select 90% of
the ratings in the prefix-rating matrix to train the pPCA and
NMF algorithms, which are then used to predict the rest 10%
of ratings in the prefix-rating matrix. The process is repeated
50 times. The best average root-mean-square-error (RMSE)
for pPCA algorithm is 0.576 (dimension 46), and for NMF
algorithm is 0.743 (dimension 12). Thus pPCA is used to
model players’ story preference in the testing phase.

To train the option preference model, we randomly select
80% of the training players to learn a option preference CF
model. For the rest 20% of players, the DM builds the ini-
tial rating vector from the players’ option ratings in one of
the branching story graph and predicts option ratings in the
other branching story graph. We repeated the process for 50

times. The best average RMSE for pPCA algorithm is 0.550
(dimension 225), and for NMF algorithm is 0.798 (dimen-
sion 9). Thus the pPCA algorithm is also selected for option
preference modeling in the testing phase.

We train the branch transition probability model using the
predicted option ratings from the learned option preference
model and the players’ option selection. Similar to option
preference model learning, we randomly select 80% of the
training players to learn a option preference CF model. For
the rest 20% of players, the personalized DM firstly builds
the initial rating vector using the players’ option ratings
from one of the branching story graph. Then the DM uses
the learned option preference model and the learned branch
transition probability model to predict players’ branch selec-
tion in the other branching story graph. The average predic-
tion accuracies for the Logit, Probit, and probabilistic SVM
algorithm are 78.89%, 78.19%, and 79.35%. We select Logit
regression for branch transition probability modeling in the
testing phase because the linear model is more stable against
the noise in the predicted option ratings.

Testing the Personalized DM
We recruited another 101 players, divided into three groups
as described below, from MT to evaluate the personalized
DM’s ability to increase the players’ enjoyment. Each player
read 6 full-length stories plot-point by plot-point. For the
first five stories, the player explored one of the two branch-
ing story graphs. As in the training phase, the DM randomly
picked one option for each successive branch to present. The
story and option ratings collected were used to bootstrap the
preference models for the new player. For the sixth story, the
player played through the other branching story graph. At
each branching point, the personalized DM selected a de-
sired successive plot point and picked a subset of options
using one of the three guidance algorithms described below
to increase the player’s enjoyment.

Personalized DM Algorithm Comparison For the pur-
pose of comparison, we have implemented the following
three guidance algorithms for the personalized DM:

• HighestRating (HR): at each node in the prefix tree, the
personalized DM selects an target full-length story based
on predicted ratings of the stories. This is exactly the same
as our previous DM (Yu and Riedl 2013a).

• HighestMeanRating (HMR): at each node in the prefix
tree, the personalized DM selects one successive node that
leads to the full-length stories with the highest mean rat-
ing. For example, suppose a player is at node A in Fig-
ure 2. The DM will compare the average predicted rating
for nodes G,H, I, and J to the average predicted rating
for nodes K and L. If the former one is bigger, the DM
will select nodeB as its objective. Otherwise, the DM will
select node C as its objective.

• HighestExpectedRating (HER): this is our new personal-
ized DM algorithm as in Figure 4.

In the human study, the above three personalized DM al-
gorithms use the same PBCF story preference model and
option preference model for the purpose of comparison. At
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Table 1: The comparison of the three guidance algorithms.

Algorithm w/o DM with DM p-value Successful rate
HR 3.41 3.50 0.263 65.7%

HMR 3.27 3.62 0.023 64.6%
HER 3.14 3.96 <0.001 81.3%

each branching point, the personalized DM used one of the
three algorithms to select a desired successive plot point and
picked two options for the desired plot point and one option
for each other successive plot point.

The 101 testing players are assigned to the three groups:
28 players for HR, 26 players for HMR, and 47 players
forHER. Table 1 shows the results of the comparison of the
three algorithms. The first column (w/o DM) and the sec-
ond column (with DM) show the average full-length story
ratings for stories that are without DM guidance (average
ratings in the first five trials) and with DM guidance (av-
erage ratings in the sixth trial). The Wilcoxon signed-rank
test is used to compare the ratings for w/o DM stories and
with DM stories. The p-values are shown in the third col-
umn. The last column shows the percent of the time the
players chose the options transitioning to the desired plot
points selected by the DM. As we can see from Table 1,
the personalized DM algorithm HMR and HER can signifi-
cantly increase the players’ preference rating for their story
experience. The HER algorithm has a much higher guidance
successful rate than the other two algorithms. We recruited
more players for the HER algorithm in order to compare to
the equal-number-of-option case in the next section. In fact
the with DM ratings for HER was 4.13 (p<0.001) after we
recruited only 24 players.

We further compared the players’ ratings for with DM
stories under the three different DM algorithms. The results
show that the with DM ratings for the HER algorithm are
significantly higher than the HR algorithm (p=0.037). The
with DM rating comparisons for HER vs. HMR and HMR
vs. HR are not significant on a significance level of 0.05 (the
p values are 0.126 and 0.452, respectively).

Select One Option Per Branch In the above human stud-
ies, the personalized DM picked two options for the de-
sired branch but only one option for all the other succes-
sive branches. We also studied whether the personalized DM
would perform differently if it picked equal number of op-
tions for each successive branch. We recruited another 50
players from Mechanic Turk. The study was conducted as
in the above testing process. The only difference was that
the personalized DM picked one option for each successive
plot point in the sixth trial. The HER algorithm was used to
guide the player in the sixth trial. The average ratings for
full-length stories w/o DM and with DM are 3.28 and 3.74,
respectively. The with DM ratings are significantly higher
than the w/o DM ratings (p=0.004). The average guidance
successful rate is 70.8% for all the 50 players. Thus the per-
sonalized DM with the HER algorithm can also increase the
players’ preference ratings significantly when the DM picks
one option for each successive branch.

Discussion

The Logistic model is capable of correctly predicting the
players’ branch transitions for 78.9% of the time. Although
the more complicated non-linear probabilistic SVM can
achieve higher predicting accuracy on the training data, the
generalization error will probably not be reduced due to the
prediction error in the option ratings. In the future, we will
include some personalized features such as the player’s pre-
vious transition behaviors into the branch transition proba-
bility modeling process.

By incorporating the players’ transition probabilities into
the DM’s decision process, our personalized DM signifi-
cantly increases the players’ enjoyment in the interactive
storytelling system. Our DM algorithm HER beats both HR
and HMR in terms of the players’ enjoyment ratings. The
guidance successful rate of HER is also greatly improved
against HR and HMR since our DM does not select ob-
jectives that the players have low chance to reach. The
with DM rating comparison between HER and HMR is not
significant. One possible explanation is that we do not have
enough testing players, which is suggested by the fluctua-
tion of the players’ average ratings in the case of without
DM (column w/o DM in Table 1).

We allow the players to rate their narrative experience by
whatever means they choose, instead of imposing a defini-
tion of enjoyment on the players. This adds strength to the
results by showing robustness to individually differing be-
liefs about enjoyment. Although our personalized DM algo-
rithm is studied in a simple testbed, it represents one of the
most important fundamentals of drama management: guid-
ing the players in a branching story graph. Our personalized
DM can be easily extended to other story-based computer
games and tutoring systems in which the players can se-
lect options or perform actions to change the direction of
the story progression.

Conclusions

In this paper, we describe a new DM algorithm that aims
to maximize the players’ expected enjoyment. Our DM is
capable of predicting an individual player’s preference over
the stories and options, modeling the probability the player
transitioning to successive plot points, selecting an objective
story experience that can maximize the player’s expected en-
joyment, and guiding the player to the selected story experi-
ence in an interactive storytelling system. Compared to DMs
in previous research, our personalized DM significantly in-
creases the players’ story experience ratings and guidance
successful rate in a testbed built with CYOA stories.

Improving player experience is an important goal for the
DM in interactive narrative. Although personalized drama
management has not been well explored, we believe that
building a personalized DM is essential to enhance the
player experience. Our personalized DM can optimize each
individual player’s expected enjoyment while preserving
his/her agency. Thus it is more capable of delivering enjoy-
able experience to the players in interactive narrative.
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