
Width-Based Planning for General Video-Game Playing

Tomas Geffner
Universidad de Buenos Aires

Buenos Aires, Argentina
tomas.geffner@gmail.com

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

IW(1) is a simple search algorithm that assumes that states
can be characterized in terms of a set of boolean features or
atoms. IW(1) consists of a standard breadth-first search with
one variation: a newly generated state is pruned if it does
not make a new atom true. Thus, while a breadth-first search
runs in time that is exponential in the number of atoms, IW(1)
runs in linear time. Variations of the algorithm have been
shown to yield state-of-the-art results in classical planning
and more recently in the Atari video games. In this paper,
we use the algorithm for selecting actions in the games of the
general video-game AI competition (GVG-AI) which, unlike
classical planning problems and the Atari games, are stochas-
tic. We evaluate a variation of the algorithm over 30 games
under different time windows using the number of wins as
the performance measure. We find that IW(1) does better
than the sample MCTS and OLMCTS controllers for all time
windows with the performance gap growing with the win-
dow size. The exception are the puzzle-like games where
all the algorithms do poorly. For such problems, we show
that much better results can be obtained with the IW(2) algo-
rithm, which is like IW(1), except that states are pruned in the
breadth-first search when they fail to make true a new pair of
atoms.

Introduction
In its early years, AI researchers used computers for ex-
ploring intuitions about intelligence and for writing pro-
grams displaying intelligent behavior. Since the 80s, how-
ever, there has been a shift from this early paradigm of writ-
ing programs for specific, sometimes ill-defined problems
to developing solvers for well-defined mathematical mod-
els like constraint satisfaction problems, STRIPS planning,
SAT, Bayesian networks, partially observable Markov deci-
sion processes, logic programs, and general game playing
(Geffner 2014). Unlike the early AI programs, solvers are
general as they must deal with any instance that fits the un-
derlying model. The generality captures a key component
of intelligence and raises a crisp computational challenge,
as these models are all computationally intractable. Indeed,
for these solvers to scale up, they must be able to exploit
the structure of the problems automatically. The generality

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and scalability of solvers is tested experimentally through
benchmarks and in most cases through competitions.

The general video-game AI playing competition (GVG-
AI) is one of the latest developments in this trend toward
empirically tested and scalable solvers (Perez et al. 2015).
The competition provides a setting for evaluating action se-
lection mechanisms on a class of Markov decision processes
(MDPs) that represent video-games. As in other competi-
tions, some of the games are known and some are new. The
information available to the decision mechanisms are the
states, the rewards, and the status of the game as resulting
from a simulator. The games are defined in a compact man-
ner through a convenient high-level language called VGDL
(Schaul 2013) but these compact descriptions are not avail-
able to the solvers. The competition is closely related to
the existing MDP planning competition (Younes et al. 2005;
Coles et al. 2012), except that the MDPs express video
games, they are specified in a different language that is not
available to the solvers, and time windows for action selec-
tion are very short precluding much exploration before deci-
sions.

Like in the MDP competition, the algorithms that do
best in the GVG-AI setting tend to be based on variations
of Monte-Carlo Tree Search (Chaslot et al. 2008). While
Monte-Carlo planning methods evaluate each of the appli-
cable actions by performing a number of stochastic simula-
tions starting with each of the actions, in Monte-Carlo Tree
Search, the average rewards obtained from such simulations
are used to incrementally build a tree of the possible exe-
cutions, which may deliver good decisions over short time
windows, while ensuring optimal decisions asymptotically.
Since its first success in the game of Go, where leaves of
the tree are initialized with values obtained from a given in-
formed base policy (Gelly and Silver 2007), variations of the
basic MCTS algorithm called UCT (Kocsis and Szepesvári
2006) have been successfully used in a number of contexts,
including the MDP and GVG-AI competitions.

MCTS methods, however, do not do well in problems
with large spaces, sparse rewards, and non-informed base
policies where they end up generating random actions while
bootstraping very slowly. Indeed, plain MCTS methods
make no attempt at exploiting the structure of such prob-
lems. This is in contrast with the methods developed for ex-
ample in classical planning, SAT, and CSP solving, where

Proceedings, The Eleventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15)

23



good, general methods have been devised for exploiting
structure successfully in the form of automatically derived
heuristic functions or effective forms of inference (Geffner
and Bonet 2013; Biere, Heule, and van Maaren 2009;
Rossi, Van Beek, and Walsh 2006).

The aim of this paper is to gain further insights on the
computational challenges raised by the GVG-AI framework
by using a different type of algorithm whose origin is pre-
cisely in classical planning where it has been shown to be
effective over large spaces (Lipovetzky and Geffner 2012).
The complete algorithm, called Iterated Width or IW, is a se-
quence of calls IW(1), IW(2), . . . where IW(k) is a breadth-
first search in which a new state is pruned right away when
it is not the first state in the search to make true some sub-
set of k atoms or boolean features. Recently, the algorithm
IW(k) with the parameter k fixed to 1 (Lipovetzky, Ramirez,
and Geffner 2015) has been shown to outperform MCTS in
the Atari games within the Arcade Learning Environment
(Bellemare et al. 2013). In this work, we consider variations
of IW(1) and IW(2) within the GVG-AI framework where
the games can be stochastic.

The rest of the paper is organized as follows. First, we
review the IW algorithm, the GVG-AI framework, and the
way IW(1) is used. We look then at the empirical results,
consider a version of the IW(2) algorithm, and end with a
summary and discussion.

Basic Algorithms: IW and IW(1)
The iterated width algorithm (IW) has been introduced as
a classical planning algorithm that takes a planning prob-
lem as an input and computes an action sequence that solves
the problem as the output (Lipovetzky and Geffner 2012).
The algorithm, however, applies to a broader range of prob-
lems which can be characterized in terms of a finite set of
states where each state s has a structure given by a set of
features or variables that can take a finite set of values. A
state assigns values to all the variables. In classical planning,
the state variables are boolean, while in ALE, for example,
the state is a vector of 1024 bits organized into 128 words,
which can be regarded as composed of 1024 boolean vari-
ables or as 128 variables that can take up to 28 values each.
Width-based algorithms are sensitive to these choices, and
in particular, to the resulting set of atoms. An atom X = x
represents the assignment of value x to variable X , while a
tuple of atoms is a set of atoms involving different variables.
The size of a tuple is the number of atoms that it contains. A
state smakes an atomX = x true if the value ofX in s is x,
and makes a tuple of atoms t true if it makes each atom in t
true. Likewise, the state s makes the atom false if it doesn’t
make it true, and makes a tuple of atoms false if it makes
false one of the atoms in the tuple.

IW is a sequence of calls IW(i) for i = 1, 2, . . . where
IW(i) is a plain breadth-first search with one change: right
after a new state s is generated in the search, the state is
pruned if s does not make true a new tuple of at most i atoms.
That is, the state s is not pruned in the breadth-first search
only if there is a tuple t of size no greater than i such that t
is true in s and false in all the states generated in the search
before s.

As an illustration, IW(i) for i = 1, i.e., IW(1), is
a breadth-first search where a newly generated state s is
pruned when there is no new atom made true by s. Similarly,
IW(2) is a breadth-first search where a newly generated state
s is pruned when there is no new atom pair made true by s,
and so on.

A key property of the algorithm is that while the number
of states is exponential in the number of atoms, IW(i) runs
in time that is exponential in i only. In particular, IW(1)
is linear in the number of atoms, while IW(2) is quadratic.
Furthermore, Lipovetzky and Geffner define a general width
measure for problems P and prove that IW(i) solves P
when the width of P is no greater than i. Moreover in such
a case, IW(i) solves P optimally (i.e., it finds a shortest so-
lution). For example, any blocks world problem where the
goal is to have one block x on top of another block y can
be shown to have width 2 no matter the number of blocks or
configuration. As a result, all such problems can be solved
in quadratic time by IW(2) although the number of states
is exponential. On the other hand, the same problem with
joint goals, as when a tower of blocks is to be built, does
not have a bounded width independent of the number of
blocks. The serialized iterated algorithm (SIW) proposed by
Lipovetzky and Geffner uses IW sequentially for achieving
the joint goal, one subgoal at a time. The algorithm is effec-
tive on most classical planning benchmarks where there are
general ways for serializing goals into subgoals, and where
the width of the resulting subproblems is bounded and low.
At the same time, the algorithm IW(i) with i set to the num-
ber of problem variables is equivalent to breadth-first search
and hence complete for all problems provided that different
states disagree on the truth of some atom or feature.

The algorithm IW(1) has been used recently for play-
ing Atari video-games on-line in the Arcade Learning En-
vironment (Bellemare et al. 2013) where it was shown to
achieve state-of-the-art performance (Lipovetzky, Ramirez,
and Geffner 2015). For this, the atoms Xi = x were defined
so that there is one variable Xi for each of the 128 words in
the state vector, and one atom Xi = x for each of its 28 pos-
sible values. IW runs in time linear in the number of atoms,
which in this representation is 128 × 256 = 215. The alter-
native representation where the variables Xi are associated
with each of the 1024 bits in the state vector results into a
smaller set of 1024 × 2 = 211 atoms, making IW(1) run
faster but with poorer results.

In the Atari games, there is no crisp goal to achieve but
rewards to be collected, and planning is done on-line by se-
lecting actions from the current state using the simulator
in a lookahead search. This search is performed with the
IW(1) algorithm with little modification, keeping the (dis-
counted) total reward accumulated in each non-pruned path
in the breadth-first search, and selecting the first action of
the path with most reward. A similar idea will be used in the
GVG-AI setting.

Last, for using the IW(i) algorithms it is not necessary for
the states s to explicitly encode the value xi of a set of vari-
ablesXi. An alternative is to associate the variablesXi with
a set of features. Indeed, the algorithm IW(i) can be under-
stood as the algorithm IW(1) with a set of boolean features

24



each of which checks whether tuple tk of size no greater than
i is true in s.

The GVG-AI Framework
The games supported in the GVG-AI framework are MDPs
that represent video games (Perez et al. 2015). The video-
games consist of objects of different categories that live in
a rectangular grid and have dynamic properties. There are
four actions for moving an avatar in the four directions and
a fifth “use” action whose effects are game and state depen-
dent but which basically makes use of the resources that the
avatar may have. The categories of objects includes avatar,
non-playing character (NPC), movable and static objects, re-
sources, portal, and from-avatar (like bullets fired by avatar).
Changes occur due to the actions performed, object colli-
sions, and the internal dynamics of objects. The games are
defined in a compact manner through a convenient high level
language called VGDL (Schaul 2013) that is mostly declar-
ative except for the changes resulting from collisions that
are expressed in Java code. The game descriptions are not
available to the solvers which have to select an action every
40 milliseconds by interacting with the simulator. The sim-
ulator provides information about the state, the rewards, and
the status of the game (won/lost/on-going) while applying
the actions selected. The range of problems that can be ex-
pressed elegantly in VGDL is very broad and includes from
simple shooter games to Sokoban puzzles

An important part of the game description is the object
type hierarchy tree (sprite set). For example, the tree for the
game Butterfly has nodes cocoon and animal, the latter with
children avatar and butterfly. We call the nodes in these
hierarchies, stypes (sprite types). The stype of an object is
associated with its dynamic and behaviors and is readable
from the state observation. Stypes are important in our use
of the IW algorithms as the set of total stypes in a game is
finite and usually small (smaller than 20 in general), while
the set of objects and the stype of an object may change
dynamically as when the avatar gets a key.

The GVG-AI setting is similar to the one used in the MDP
planning competition (Younes et al. 2005; Coles et al. 2012),
the main difference being that the MDPs are described in
a different language and that the game descriptions are not
available to the solvers.

IW Algorithms in GVG-AI
For using the IW algorithms in the GVG-AI setting, two is-
sues need be addressed: first the definition of the boolean
features or atoms; second, the stochasticity of the games.
We consider these two issues next.

Since every object has a unique ID id and a number of
dynamic features φi, we could associate problem variables
X[id, i] with values φi(id, s) representing the value of fea-
ture φi of object id in the state s. There are however two
problems with this. First, the set of objects is dynamic. Sec-
ond, the resulting number of atoms ends up being too large
even for a linear time algorithm like IW(1) given that the
time window for decisions is very small: 40 milliseconds.

Indeed, running IW(1) to completion in such a representa-
tion may require up to two orders-of-magnitude more time
in some games.

In order to avoid dealing with either a dynamic set of vari-
ables or a set of atoms that is too large, we have chosen
to define the set of boolean features as the ones represent-
ing just whether an object of a certain stype is in a given
grid cell. If there are N grid cells and T stypes in the ob-
ject hierarchy, the number of atoms at(cell, stype) would be
N × T , no matter the number of actual objects. In addition,
since avatars have also an orientation, we consider the atoms
avatar(cell, angle, atype) where angle is the avatar orien-
tation (between 1 and 4 depending on the game) and atype is
the avatar stype (1 or 2; e.g. for avatar-with-key and avatar-
with-no-key). With this provision, the total number of atoms
is in the order of N × T +N ×O×A where O and A rep-
resent the number of possible avatar orientations and stypes
respectively. For a grid with 100 cells and a hierarchy of 10
stypes, this means a number of atoms no greater than 1800.
The IW(1) lookahead search will not expand then more than
1800 nodes.

The second issue to be addressed is the stochasticity of the
games. In principle, IW algorithms can be used off the box
oblivious to the fact that calling the simulator twice from the
same state and with the same action may result in different
successor states. Indeed, IW(i) would never call the sim-
ulator twice in that fashion. This is because IW(i) will not
apply the same action twice in the same node, and the search
tree generated by IW(i) can never have two nodes repre-
senting the same state (the tuples made true by the second
node must have been made true by the first node). Yet ig-
noring stochasticity altogether and considering only the first
outcome produced by the simulator can be too risky. For
example, if the avatar has a killing monster that moves ran-
domly to its right, it would be wise to move away from the
monster. However, IW(i) may find the action of moving
right safe, if the simulator returns a state where the mon-
ster also happened to move right. Thus to temper the risky
optimism that follows from ignoring all but the state transi-
tions returned first by the simulator when other transitions
are possible, we add to IW(i) a simple safety check. Before
running IW(i) for selecting an action in a state s, we takeM
samples of the successor state of each action a applicable in
s, and count the number of times D(a, s) where the avatar
dies as a result of that one step (game lost). The actions a
that are then regarded as safe in s are all the actions applica-
ble in s that have a minimum count D(a, s). This minimum
count does not have to be zero, although hopefully it will be
smaller than M . Equivalently, if D(a, s) < D(a′, s) for two
applicable actions a and a′ in s, action a′ will be declared
not safe in s.

The applicable actions that are labeled as not safe in the
current state s are then treated as if they were not applica-
ble in s. That is, when deciding which action to apply in
s, actions that are not safe in s are deemed not applicable
in s when performing the looking ahead from s using the
IW(i) algorithm. We call this pruning, safety prepruning
or just prepruning. This pruning is shallow and fast, but
helps to tame optimism when risk is immediate. The IW(i)

25



Time 40ms 300ms 1s
Game BRFS MC OLMC IW(1) BRFS MC OLMC IW(1) BRFS MC OLMC IW(1) 1-Look RND

Aliens 24 25 25 25 25 25 25 25 25 25 25 25 10 5
Boulderdash 0 0 2 1 5 1 0 7 5 2 0 17 1 0
Butterflies 24 24 25 25 25 25 25 25 25 25 25 25 22 9

Chase 3 0 0 6 5 1 1 17 8 0 0 14 1 0
Frogs 17 4 5 20 15 6 8 25 17 6 8 25 12 0

Missile Command 15 13 13 17 19 22 20 25 16 23 21 25 8 5
Portals 15 2 3 17 14 3 0 20 14 1 1 22 5 0

Sokoban 5 7 6 2 8 10 9 3 9 11 10 1 0 0
Survive Zombies 13 10 12 12 9 13 14 14 8 12 14 14 7 1

Zelda 9 4 2 20 9 3 8 20 10 3 4 23 1 0

Total 125 89 93 145 134 109 110 181 137 108 108 191 67 20

Table 1: Performance over first set of games for three time windows. Rows show wins over 5 simulations per level, 5 levels.

Time 40ms 300ms 1s
Game BRFS MC OLMC IW(1) BRFS MC OLMC IW(1) BRFS MC OLMC IW(1) 1-Look RND

Camel Race 1 0 1 0 1 3 0 24 1 0 3 25 0 1
Digdug 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Firestorms 13 2 2 11 14 7 6 25 12 3 4 23 10 0
Infection 22 21 19 23 21 19 22 21 20 22 20 25 19 22
Firecaster 0 0 0 0 0 0 1 0 0 0 0 3 0 0
Overload 10 4 7 19 17 3 5 23 17 5 5 25 0 0
Pacman 1 0 0 1 1 1 4 14 2 2 7 22 0 0
Seaquest 13 16 14 15 11 17 22 9 4 20 24 18 12 0

Whackamole 23 23 24 20 22 23 25 21 24 22 25 19 21 5
Eggomania 1 2 3 15 0 0 2 22 3 3 2 23 0 0

Total 84 68 70 104 87 73 87 159 84 77 90 183 62 28

Table 2: Performance over second set of games for three time windows. Rows show wins over 5 simulations per level, 5 levels.

algorithms below use this simple form of prepruning. For
comparison, a plain breadth-first search is also used in the
experiments with and without prepruning. In all cases, the
number M of samples is set to 10.

This way of dealing with stochastic state transitions is my-
opic but practical. Actually, it’s common to design closed-
loop controllers for stochastic systems using simplified de-
terministic models, letting the feedback loop take care of the
modelling error. Similar “determinization” techniques have
been used for controlling MDPs even without risk detection.
Indeed, the on-line MDP planner called FF-replan (Yoon,
Fern, and Givan 2007), that performed very well in the first
two MDP competitions, makes the assumption that the un-
certain state transitions are under the control of the planning
agent, replanning when follow unexpected transitions.

In our use of the IW algorithms, the determinization is not
made by the agent but by the simulator, replanning is done
at every step, and the prepruning trick is introduced to deal
with immediate risk.

Experimental Results
For testing the IW algorithms in the GVG-setting, we used
the software available in the competition site along with the
3 sets of 10 games each available.1 For comparison, we con-
sider the vanilla Monte Carlo Tree Search (MCTS) and the

1The competition site is http://www.gvgai.net.

Open Loop MCTS (OLMCTS) controllers provided by the
organizers (Perez et al. 2015), a breadth-first search looka-
head (BrFS), a simple 1-step lookahead (1-Look), and ran-
dom action selection (RND). Moreover, for BrFs, we con-
sider a variant with prepruning and one without. The 1-
lookahead algorithm uses the M = 10 samples not only
to prune unsafe actions but to choose the safe action with
the most reward. Initially we evaluate the IW(1) algorithm
but then consider IW(2) and an additional variant. In order
to learn how time affects the performance of the various al-
gorithms, we consider three time windows for action selec-
tion: 40 milliseconds, 300 milliseconds, and 1 second. The
experiments were run on an AMD Opteron 6300@2.4Ghz
with 8GB of RAM.

Tables 1–3 show the performance of the algorithms for
each of the game sets. The tables include BrFS (with
prepruning), MCTS, OLMCTS, IW(1), 1-Look, and RND.
We focus on a crisp performance measure: the number of
games won by each algorithm. Since there are 5 levels in
each game, and for each level we run 5 simulations, the max-
imum number of wins per game is 25. The total number of
wins in each set of games is shown in the bottom row, which
is bounded by the total number of games played in the set
(250).

For the first set of games, shown in Table 1, we can see
that IW(1) wins more games than MCTS and OLMCTS for
each of the three time windows. For 40 msecs, the number of

26



Time 40ms 300ms 1s
Game BRFS MC OLMC IW(1) BRFS MC OLMC IW(1) BRFS MC OLMC IW(1) 1-Look RND

Bait 3 2 2 7 1 2 2 5 1 3 2 5 2 2
Bolo Adventures 0 0 0 0 0 0 1 0 0 1 0 0 0 0

Brain Man 1 1 1 0 2 2 2 0 1 0 3 0 0 0
Chips Challenge 4 5 4 0 6 3 4 0 7 5 5 2 4 0

Modality 8 6 5 6 9 6 8 5 5 6 6 5 5 2
Painters 25 21 24 25 25 25 24 25 25 25 25 25 6 8

Real Portals 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Real Sokoban 0 0 0 0 0 0 9 0 0 0 0 0 0 0
The Citadel 2 5 1 1 3 4 2 3 4 7 4 2 1 0
Zen Puzzle 5 9 5 6 6 15 16 6 6 13 13 5 2 2

Total 48 49 42 45 52 57 59 44 49 60 58 44 20 14

Table 3: Performance over third set of games for three time windows. Rows show wins over 5 simulations per level, 5 levels.

wins for MCTS, OLMCTS, and IW(1) are 89, 93, and 145
respectively, and the gap in performance grows with time:
with 260 msecs more, MCTS and OLMCTS win 20 and 17
more games respectively, while IW(1) wins 36 more. Then,
MCTS and OLMCTS do not win additional games when the
window is extended to 1 second, while IW(1) wins 10 games
more then. The total number of games won by each of these
three algorithms when the time window is 1 second is thus
108, 108, and 191 respectively. Surprisingly, breadth-first
search with prepruning does also very well in these games;
indeed, better than MCTS and OLMCTS for all time win-
dows, although not as well as IW(1), which also takes better
advantage of longer times. BrFS with prepruning wins 125
games with 40 msecs, while normal BrFS without the prun-
ing (not shown), wins 107. The two algorithms win 137 and
123 games respectively with 1 second. 1-step lookahead and
random action selection end up winning 67 and 20 games re-
spectively.

The pattern for the second set of games, shown in Table
2, is similar: IW(1) does best for all time windows and in
this case by larger margins. For 40 msecs, MCTS, OLM-
CTS, and IW(1) win 68, 70, and 104 games respectively,
while the numbers are 77, 90, and 183 for 1 second. Again,
BrFS with prepruning does slightly better than MCTS for all
time windows, although for this set it is tied with OLMCTS.
BrFS without prepruning, on the other hand, does slightly
worse. 1-step lookahead does almost as well as MCTS (for
40 msec) winning 62 of the games, while random selection
wins 28.

Table 3 for the third set of games is however very dif-
ferent. These games feature more subtle interactions, like
Sokoban, and as a result all the algorithms do poorly, includ-
ing IW(1), that actually does worse than MCTS, OLMCTS,
and even BrFS. The number of wins by MCTS and OLM-
CTS reach the 59 and 60 games, while IW(1) does not get
beyond 45. Moreover, in these games, IW(1) does not get
better with time. Of course, these games are more challeng-
ing, and indeed, none of the algorithms manages to solve
25% of the games for any time window. In the previous two
sets of games, IW(1) managed to win more than 72% of the
games with 1 second.

IW(2) and Variations
A key question is what makes the problems in the third set
more puzzle-like and challenging. It’s definitely not the size
of the state space; indeed, the famous blocks world has a
state space that is exponential in the number of blocks, and
yet it’s not a puzzle (unless one is looking for provably short-
est solutions). A second question is why on such problems
IW(1) does poorly and doesn’t get better with time. For-
tunately, for these questions, the theory behind the IW(i)
algorithms helps (Lipovetzky and Geffner 2012). From this
perspective, a problem is easy either if it has a low width, or
if it can be easily serialized into problems with low width.
This is certainly true for blocks world problems but not for
problems like Sokoban. Indeed, while IW(1) runs in time
that is linear in the number of features, it is not a complete
algorithm in general; it is provably complete (and actually
optimal) for width 1 problems only. Problems like Sokoban
have a higher width even when a single stone needs to be
placed in the goal in the presence of other stones. One way
to deal with such problems is by moving to a IW(i) algo-
rithm with a higher width-parameter i.

Table 4 shows the results of the IW(2) algorithm for the
third set of puzzle-like problems. The algorithm runs in time
that is quadratic in the number of atoms and thus is less ef-
ficient than IW(1) but as it can be seen from the table, by 1
second, it has won 81 of the games, many more than those
won in 1 second by MCTS and OLMCTS: 60 and 58. The
three algorithms have a similar performance for 40 millisec-
onds but while MCTS and OLMCTS do not improve much
then, the opposite is true for IW(2).

Given the special role of the avatar in the GVG-AI games,
we also considered a variant of IW(2) that we call IW(3/2),
which pays attention to some atom pairs only: those where
one of the atoms is an avatar atom, i.e., an atom of the form
avatar(cell, angle, atype). As it can be seen in the table,
IW(3/2) does better than IW(2), as while the resulting search
considers a smaller set of nodes, it gets deeper in the search
tree faster. The same is true for IW(1) in the first two sets
of “easier” problems where it actually does better than both
IW(2) and IW(3/2) for the same reasons.

The performance of the algorithms over all the games is
summarized in the curves shown in Figure 1. For each algo-

27



Time 40ms 300ms 1s
Game IW1 IW2 IW3/2 IW1 IW2 IW3/2 IW1 IW2 IW3/2

Bait 7 5 5 5 5 14 5 10 19
Bolo Adv 0 0 0 0 0 0 0 0 0
Brain Man 0 1 2 0 0 5 0 3 8
Chips Ch 0 2 0 0 2 2 2 4 5
Modality 6 5 6 5 15 20 5 20 20
Painters 25 25 25 25 25 25 25 25 25

Real Port 0 0 0 0 0 0 0 0 0
R Sokoban 0 0 0 0 0 0 0 0 0

Citadel 1 2 0 3 3 7 2 12 17
Zen Puzz 6 6 5 6 6 8 5 7 16

Total 45 46 43 44 56 81 44 81 100

Table 4: IW(1), IW(2) and IW(3/2) in third set of games

rithm, the curve shows the total number of games won in the
Y axis as a function of the three time windows shown in the
X axis. The flat line shows the performance of 1-step looka-
head. The curves for MCTS, OLMCTS, and BrFS show a
higher number of wins for 40 milliseconds that, however,
becomes practically flat after 300 milliseconds. The curve
for IW(1) starts higher than these curves and increases until
reaching its peak at 1 second, where the gap with the pre-
vious algorithms is very large. The curve for IW(2) starts
lower, but overtakes MCTS, OLMCTS, and BrFS after 300
milliseconds. Finally, the curve for IW(3/2) is similar to the
curve for IW(1) although the two algorithms do best on dif-
ferent game sets: IW(1) on the easier games, and IW(3/2)
on the last set.

Summary and Discussion
We have evaluated the IW(1) algorithm in the games of the
GVG-AI framework and shown that it appears to outper-
form breadth-first search and plain Monte-Carlo methods
like MCTS and OLMCTS. The exception are the puzzle-
like games where all the algorithms do poorly. The theory
behind the IW(i) algorithms provides useful hints for under-
standing why. The algorithm IW(2) does indeed much better
over such problems but needs more time. The width param-
eter i in IW(i) captures a tradeoff: the higher the number,
the higher the quality of the decision when given more time.

IW algorithms operate on state spaces where the relevant
information about states can be encoded through a number
of boolean features. For the games in the GVG-AI set-
ting, these boolean features have been identified with atoms
of the form at(cell, stype) and avatar(cell, angle, atype)
where the stypes (atypes) correspond to the types of ob-
jects (avatars) in the sprite set. IW(1) preserves new states
that bring new atoms and runs in time linear in this set
of atoms, while IW(2) preserves new states that bring
new pair of atoms, and runs in quadratic time. The al-
gorithm IW(3/2) achieves a further tradeoff by consider-
ing only some pairs: those that include an avatar atom
avatar(cell, angle, atype).

IW algorithms are oblivious to the stochasticity of the do-
main as they only consider one successor state s′ for ev-
ery applicable action a in a state s: the one returned by the

Figure 1: Total number of games won by each algorithm over the
three sets of games as function of time window

stochastic simulator the first time that it is called with a and
s. Since this may be too risky sometimes, before running
IW(i) (and BrFS) from a state s in the GVG-AI games, ac-
tions that are deemed not safe in s after a 1-lookahead step
that uses M = 10 samples, are regarded as not applicable in
s.

A key difference between IW algorithms and MCTS is
that the former make an attempt at exploiting the structure
of the problems and states. This is why IW algorithms can
do so well in classical planning problems that often involve
huge state spaces. At the same time, a key difference be-
tween IW and standard classical planners is that the latter
require an explicit, compact encoding of the action effects
and goals. These relations suggest a very concrete and crisp
challenge; namely, how to plan effectively with a simula-
tor when there is no explicit encoding of the action effects
and goals in problems that are easy to serialize into simple
problems but where not every serialization would work. The
simplest example illustrating this challenge is no puzzle at
all: it’s the classical blocks world where the goal is to build
a given tower of blocks. Getting rewards for achieving parts
of the tower does not make the problem easier as the agent
must realize that it has to work bottom up. Modern classical
planners that have explicit descriptions of the action effects
and goals do not run into this problem as they can easily in-
fer such goal orderings. For simulation-based approaches,
however, that is a challenge.

Acknowledgements. We thank the team behind the GVG-
AI framework for a wonderful environment and set of prob-
lems, Ivan Jimenez at UPF for help in running the exper-
iments, and Nir Lipovetzky and Miquel Ramirez for ideas
and feedback.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-

28



form for general agents. Journal of Artificial Intelligence
Research 47(47):253–279.
Biere, A.; Heule, M.; and van Maaren, H. 2009. Handbook
of satisfiability. IOS Press.
Chaslot, G.; Winands, M.; Herik, H.; Uiterwijk, J.; and
Bouzy, B. 2008. Progressive strategies for monte-carlo
tree search. New Mathematics and Natural Computation
4(3):343.
Coles, A.and Coles, A.; Olaya, A. G.; Jimenez, S.; Linares,
C.; Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33(1):83–
88.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Geffner, H. 2014. Artificial Intelligence: From programs to
solvers. AI Communications 27(1):45–51.
Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in uct. In Proc. ICML, 273–280.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Proc. ECML-2006, 282–293. Springer.
Lipovetzky, N., and Geffner, H. 2012. Width and serial-
ization of classical planning problems. In Proc. ECAI, 540–
545.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical planning algorithms on the atari video games. In Proc.
of IJCAI-2015.
Perez, D.; Samothrakis, S.; Togelius, J.; Schaul, T.; Lu-
cas, S. M.; Couetoux, A.; Lee, J.; Lim, C.-U.; and
Thompson, T. 2015. The 2014 general video game
playing competition. IEEE Transactions on Computional
Intelligence and AI in Games. Forthcoming. At ju-
lian.togelius.com/Perez20152014.pdf.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of
constraint programming. Elsevier.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In Proc. IEEE Compu-
tational Intelligence in Games (CIG-2013), 1–8.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-replan: A base-
line for probabilistic planning. In Proc. ICAPS-07, 352–359.
Younes, H.; Littman, M.; Weissman, D.; and Asmuth, J.
2005. The first probabilistic track of the international plan-
ning competition. J. Artif. Intell. Res.(JAIR) 24:851–887.

29




