
Automated Gameplay Generation
from Declarative World Representations

Justus Robertson and R. Michael Young
Liquid Narrative Group

Department of Computer Science
North Carolina State University

Raleigh, NC 27695
jjrobert@ncsu.edu, young@csc.ncsu.edu

Abstract

An open area of research for AI in games is how to
provide unique gameplay experiences that present spe-
cialized game content to users based on their prefer-
ences, in-game actions, or the system’s goals. The area
of procedural content generation (PCG) focuses on cre-
ating or modifying game worlds, assets, and mechanics
to generate tailored or personalized game experiences.
Similarly, the area of interactive narrative (IN) focuses
on creating or modifying story worlds, events, and do-
mains to generate tailored or personalized story expe-
riences. In this paper we describe a game engine that
utilizes a PCG pipeline to generate and control a range
of gameplay experiences from an underlying IN experi-
ence management construct.

Introduction
Procedural content generation has played a large role in the
video game industry since its early days (e.g. Rogue (Toy
and Wichman 1980), Diablo (Blizzard Entertainment
1996), Dwarf Fortress (Bay 12 Games 2006), Border-
lands (Gearbox 2009), and Galactic Arms Race (Hastings,
Guha, and Stanley 2009)). Recently, Minecraft (Mojang
2011) has become immensely popular in part because of its
expansive worlds procedurally generated from one of 264

numerical seeds. In academia, researchers are working to
combine the power of content generation with models from
AI and human-computer interaction to create algorithms that
not only create varied experiences, but experiences custom-
tailored to specific users (Yannakakis and Togelius 2011).

Similarly, branching story games like the Choose Your
Own Adventure series (Packard 1979) have existed and in-
formed game design since its early years. Recent games like
Mass Effect (BioWare 2007) and The Walking Dead (Tell-
tale Games 2012) have gained popularity for incorporat-
ing user-driven story decisions which affect game events. In
academia, researchers are working to procedurally generate
interesting stories that branch and change according to user
choices without the need for a human author to hand-craft
each path (Riedl and Bulitko 2013). When completed, this
research will create a system that build long chains of plot
events intertwined with and dependent on the user’s actions

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with rich narrative properties to be created by an interactive
story telling agent, called an experience manager.

The combined vision of procedural content generation
and interactive narrative is best exemplified by the holodeck
from Star Trek: The Next Generation. The holodeck is a
fully-immersive 3D environment generated by computers
that can dynamically create and revise world mechanics, as-
sets, states, virtual agents, and plot events. The Enterprise’s
computer acts as an experience manager by taking as in-
put voice commands or programmatic instructions that de-
scribe a desired experience. Using the content generation
modules at its disposal, the system then generates a story
world from the input description and guides the user’s in-
teractions within it. One of the strengths of the holodeck is
its ability to function as a hub for different technologies that
create a single, unified experience.

In this paper we describe a similar hub for connecting
modules that generate world mechanics, assets, states, vir-
tual agents, and plot events that allows an experience man-
ager direct access to the game world in which the player
interacts. This system, called the General Mediation Engine
(GME), functions by layering a procedural content gener-
ation pipeline on top of an experience management frame-
work. This PCG pipeline takes as input sets of atomic for-
mulae maintained by the experience manager that represent
world states and produces an interactive game by instantiat-
ing, controlling, and destroying assets based on the state.

Related Work
GME is an experience management and content generation
pipeline that allows a game world and its dynamics to be
generated from an asset library and an experience manager’s
declarative state model. Our declarative state model is de-
fined with PDDL (McDermott et al. 1998), a formal lan-
guage for specifying planning problems. PDDL representa-
tions consist of an initial state description, a goal state, and
a set of action operators that can be performed by agents to
transform world states based on a set of preconditions, con-
ditions that must hold true in the current state, and effects,
conditions that become true once the action has executed. In
our approach, both preconditions and effects are expressed
as logical atomic formulae.

From the PDDL input we construct a state transition
system that allows the player and other agents to input

Proceedings, The Eleventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15)

72



Figure 1: A simplified, informal description of the Base Case domain and problem. In this figure, preconditions and effects are
described in english-like syntax for readability. Tokens with question marks as their initial character (e.g., ?loc) are variables.
Words that begin with upper-case letters (e.g., Jane) are object constants. This domain includes action descriptions for moving
around a military base, picking up objects, unlocking doors with keys and untying prisoners. The planning problem shown here
involves Jane rescuing Fox, who is held prisoner in the base.

actions whose preconditions are true in the current state.
This state transition system is similar to the game used
by PAST (Ramirez and Bulitko 2014), an experience man-
ager that reasons about player preferences, in its Little Red
Riding Hood evaluation (Sturtevant et al. 2014). This cen-
tral state transition system is connected to a planner ca-
pable of finding paths of actions from the current to the
goal state. The system currently supports versions of Fast
Downward (Helmert 2006), an efficient off-the-shelf plan-
ner successful in planning competitions, and Glaive (Ware
and Young 2014), a specialized narrative planner that rea-
sons about intention and conflict, but any system capable of
producing solutions to PDDL problems can be used.

The system’s underlying experience manager draws
from a tradition of plan-based methods, including Mime-
sis (Young et al. 2004), ASD (Riedl et al. 2008), and
the system used by The Merchant of Venice (Porteous,
Cavazza, and Charles 2010). These systems sense and ef-
fect their game environment according to a narrative plan
and update or generate new plans based on user interaction.
Riedl (2005) gives an overview of how ASD and similar
systems interface with commercial game engines to create
playable experiences.

In contrast, our system generates and updates a game
world layout from the declarative AI formalism given in the
initial PDDL state. This is similar to other generative sys-
tems that use a formal model to create game spaces. Launch-
pad (Smith et al. 2011) is a grammar-based approach to 2D
platforming level generation that pieces together common
elements of the genre into levels, Game Forge (Hartsook et
al. 2011) automatically creates a game world to support a
given story plan by using a genetic algorithm to generate a
world graph according competing design metrics, and Valls-
Vargas, Ontanón, and Zhu (2013) describe a system that gen-

erates world maps which support different arrangements of
plot events and evaluates the world and story configurations.

In addition to an initial world representation, our sys-
tem uses a declarative formalism to generate state dynam-
ics. Other declarative approaches have successfully mod-
eled, analyzed, and generated game mechanics. LUDO-
CORE (Smith, Nelson, and Mateas 2010) is a game engine
built on event calculus (Mueller 2004) that generates game-
play traces using its logical representation of a game world
and mechanics, Zook and Riedl (2014) describe a system for
generating game mechanics using AI planning action repre-
sentations and Answer Set Programming that is shown to
generate avatar-based game mechanics for an RPG and 2D
platformer, and MKULTRA (Horswill 2014) is a detective
game that implements a SHRDLU-like (Winograd 1972)
NPC in Prolog that can interact with the player and answer
questions about its environment.

System Overview
GME is a game engine that, given a formal world state and
transition description in PDDL, produces a state transition
system. This system allows a human player and virtual char-
acters to iteratively take action and update the world ac-
cording to state transition operators described in the for-
mal model. This transition system serves as a central world
model for the system’s experience manager and discourse
generator. The experience manager is a system that main-
tains a desired experience plan, monitors the transition sys-
tem, executes NPC character actions from the plan, and ma-
nipulates the world directly as the player interacts with the
game. The discourse manager monitors the transition system
and generates a playable game world for the user to interact
with based on the underlying state description and a library
of art, animation, and code assets. The discourse manager

73



Figure 2: A possible plan for the initial Base Case problem.

relays player actions from the game model to the transition
system, animates player and NPC actions, and manages lo-
cal NPC behavior outside of plan directives.

The Experience Manager
GME’s experience manager is comprised of a state transi-
tion system, a planner, and a mediator that work together to
maintain world states, update plan information, and execute
NPC actions. The architecture is shown in Figure 3 and is
implemented in the form of mediation game trees (Robert-
son and Young 2014b).

State Transition System
GME’s state transition model is built from a PDDL descrip-
tion of an initial world state and a domain of operators that
specify how the world state can change according to player
and NPC actions. Figure 1 is an informal description of an
example domain and problem called Base Case that we use
as a running example. In order for an action to be performed
by an agent in a state, the action’s set of preconditions must
hold true. If a valid action is performed by an agent in the
state transition system, the action’s effects will be applied to
the current state in order to produce the next world state.

Planner
The system’s planner is an external module that takes as in-
put a domain and planning problem, and returns a set of
steps that transform the problem’s initial state into its goal
state. Figure 2 is one possible solution for the initial Base
Case problem that may be found and returned by the sys-
tem’s planner at the start of execution.

Mediator
The system’s mediator interfaces with the state transition
system and external planner to drive the experience by main-

Figure 3: The three modules that comprise GME’s experi-
ence management framework: a state transition system, a
planner, and a mediator that connects and controls the mod-
ules.

taining the current plan, issuing commands to NPCs, and re-
questing new experience plans when necessary.

Discourse Generation
The narrative theorist Chatman (1980) draws the distinc-
tion between the abstract events that take place in a narra-
tive world, which are part of the story, and the way these
events are arranged and presented to an audience, which is
part of a discourse. We use this distinction between story
and discourse to conceptualize GME’s experience manager
and procedural content generation pipeline. The abstract,
declarative backend that maintains state information and is-
sues high-level commands to game characters is the system’s
story generator and the game world frontend that is created
from the underlying declarative model is the system’s dis-
course generator.

In this section we outline the architecture of a discourse
generator intended for 2D avatar-based games. The genera-
tor is comprised of six modules that create, configure, and
manage the game world based on the underlying declarative
transition system and libraries of code, art, and animation
assets. The experience management interface initializes the
discourse generation system, interfaces with the underlying
transition system, and relays commands from the mediator.
The game state manager accepts a game state description
from the experience manager and is responsible for instanti-
ating, maintaining, and destroying game assets based on the
current state. A user interface generator and level generator
create and configure the interface and world layout at initial-
ization. A player architecture exists to allow local behaviors
not modeled by the experience manager, sense when a state
transition action has been taken, and relay the player’s action
to the experience manager. Finally, an NPC architecture ex-
ists to allow local intelligent behavior, receive instructions
from the mediator, and animate actions in the game world.
Figure 4 is a diagram of the full system pipeline.

In addition to describing the general components of a dis-
course generation system we also provide a running example

74



Figure 4: The full system pipeline from declarative representation and game assets, to discourse generator, to game world.

of an implementation of the pipeline shown in Figure 4 us-
ing the Unity game engine (Unity Technologies 2005 2015).
The implementation is called the Unity General Mediation
Engine, or UGME. The experience management framework,
implemented in C#, is given to UGME as a compiled DLL.
UGME is also provided with a library of prefabs, or object
templates that contain specific properties and assets, for pos-
sible declarative objects it can instantiate in the game world.
Each of these prefabs contains a 32X32 pixel sprite, a fi-
nite state machine that controls animations, and code that
governs local behavior like pathfinding. The game is initial-
ized and maintained from the experience manager’s declar-
ative transition system and a Unity scene that contains the
four discourse generation modules. We discuss UGME in
the context of the game Base Case, a top-down sneaking
game implemented using the input given in Figure 1.

Experience Management Interface
In order to synchronize the interactive game world with the
experience manager’s underlying declarative state, the dis-
course manager must be able to access the current declar-
ative world state description, send actions the player takes
in the game world to the declarative representation, and
send actions prescribed by the experience manager’s plan
to game world NPCs. The experience management inter-
face fulfills these three roles. It exposes the current declar-
ative state description to the discourse manager, sends fully
ground atomic formula that represent player actions to the
experience manager, and sends plan steps from the experi-
ence manager to game world NPCs for execution.

User Interface Generator
Based on the type of game that is being created, non-game
world elements such as user interface displays and camera
behavior will change. The user interface generator is respon-
sible for adding UI elements and configuring camera behav-
ior based on special PDDL formulas. For example, the Base
Case game shown in Figure 4 has the Inventory UI element
in addition to the main game display. The inclusion of this

UI element is triggered by a special formula, (inventory), in
the planning problem’s initial state. When the user interface
generator finds this formula in the initial state description
it decreases the height of the main display, enables a sec-
ond camera for the inventory display, and instantiates and
destroys game objects in the inventory based on the declara-
tive world state.

The user interface generator is also responsible for initial-
izing the game’s camera. For example, the Base Case game
camera behaves similarly to The Legend of Zelda’s (Nin-
tendo 1986), which scrolls whenever the player moves be-
tween screen segments. However, a wide range of 2D cam-
era behaviors can be created from knowledge of the player’s
position and a few other objects (Keren 2015) which can
be implemented as a library and chosen with a declarative
statement, similar to UI elements.

Level Generator
The discourse generator needs a game world in which the
player and NPCs can interact that matches the declarative
environment maintained by the experience manager. The
level generator is responsible for building this game envi-
ronment at initialization from special formulas defined in
the declarative state. The PDDL planning problems used by
the system specify some number of discrete world locations,
called locations, and navigable edges between these loca-
tions, called connections. From this set of locations and con-
nections, the level generator builds a high-level graph that
realizes a possible physical configuration of the locations
given the connections.

From this high-level graph, the level generator creates the
realized game world locations as collections of environment
game objects. Locations are labeled with a type predicate
in the state description that tells the level generator what
method to use when instantiating game objects. For exam-
ple, in the Base Case implementation every location cor-
responds to a room the player can visit. All the rooms are
of type base which tells the system to use the base method
defined in the level generator to create the room. The base

75



generator creates a room to be the size of the user’s screen, it
instantiates specific wall tiles around the room’s perimeter,
creates door objects on the perimeter between connected lo-
cations, and populates the room’s interior with special floor
tiles that enable pathfinding.

Game State Manager
In addition to generating environments, the discourse gener-
ator must create and maintain world objects like the player,
NPCs, and items. The game state manager is responsible for
instantiating, maintaining, and destroying these game ob-
jects based on the current declarative world state. For every
location in the world state, the game state manager stores
a table of the instantiated objects that exist at the location
in the game. Whenever the experience manager’s declara-
tive state is updated, the game state manager refreshes the
instantiated world objects at the player’s location. One way
the game state manager refreshes the world is by instantiat-
ing and destroying game objects.

For example, if the player executes take(Jane, Card, Hub)
from the initial state by walking to the Card and pressing a
button that corresponds to the take(?taker, ?thing, ?loc) ac-
tion, the action will be sent to the experience manager which
will produce a new declarative state where at(Card, Hub) is
no longer true and has(Jane, Card) is true. The game state
manager will refresh the game world by checking the declar-
ative state of the current room against its table of instantiated
game objects. Since the Card no longer exists at the Hub in
the declarative state but a game object representing the Card
exists in the game state manager’s table, it will destroy the
Card object from the game world.

The game state manager also updates the properties of in-
stantiated game objects. For example, if the player takes the
Card, walks to the Cell Door, and presses a button that cor-
responds to the open(?opener, ?key, ?door, ?loc) action, they
will trigger open(Jane, Card, CellDoor, Hub) to be executed
by the experience manager. This will produce a new declar-
ative state where closed(CellDoor) is false.

All objects that may have different properties, such as
doors that can be open or closed, have an animation con-
troller. An animation controller is a Unity asset similar to a
finite state machine that controls a game object’s sprite based
on values maintained by the controller. The door’s animation
controller has a boolean switch called closed that if true will
display a door sprite and if false will display a black floor
tile. Doors also have a script attached to them that allows the
object to be navigable by the player and pathfinding NPCs
only when closed is false.

While refreshing, the game state manager makes sure that
all booleans of an object’s animation controller are toggled
true or false according to the current declarative state. In our
example, the Cell Door game object will become open and
navigable to the player and NPCs after the game state man-
ager’s refresh due to the closed(CellDoor) condition becom-
ing false in the declarative state.

Player Architecture
If the declarative model does not fully account for the game
world mechanics, such as the (x,y) position of the player,

Figure 5: The player and Fox escaping from the Hub while
avoiding the Guard, who has moved from the Dorm.

then local behaviors and animations such as player move-
ment inside the confines of a location must be handled by the
discourse generator. The discourse generator must also map
local actions, such as pressing an action button when collid-
ing with the Card game object, to declarative action requests,
such as the operator take(Jane, Card, Hub). This functional-
ity is handled by scripts attached to the player. These scripts
can be attached at initialization from a library based on the
initial state description, similar to the user interface system.

NPC Architecture
The discourse generator should allow NPCs to exhibit lo-
cal behavior but also receive and execute commands issued
by the experience manager. To this end, NPCs have a set
of baseline behaviors, like pathfinding from one floor tile to
another, that can be sequenced to create more complex be-
haviors like patrolling a room. Local behaviors can be built
and repeated for different types of NPCs, like patrolling a
room and glancing in different directions for enemy guards.
NPCs also maintain a queue of action requests from the ex-
perience manager based on the current plan. When an NPC
detects one or more queued experience management actions,
it uses reflection to invoke a method that corresponds to the
action type from a central method library that describes how
to execute each type of declarative action.

For example, in the Base Case plan pictured in Figure 2
the Guard will move from the Dorm to the Hub as the sev-
enth action. When this happens, the experience manager
interface will send a fully ground action operator object
to the Guard NPC’s action queue. When the Guard next
makes a decision about what action to perform, it will no-
tice that there is an action object, move(Guard, DormDoor,
Hub, Dorm), waiting in its action queue. The Guard will
then invoke the move method in its action library using it-
self and the action object as parameters. The move object
in the Base Case NPC action library finds a path between
the calling NPC and a randomly selected navigable floor tile
that is a child of the game object that shares a name with the
?loc1 term of the action object, which is the Hub. The move
method adds the returned path to the Guard’s pathfinding

76



Figure 6: A demonstration of the computer object that allows the player to toggle conditions in the world true or false. The left
picture shows the initial state of the Base Case world with a computer screen overlay with select conditions that are true in the
state. The right picture shows the game world after the player has deselected one of the conditions and the door to the cell has
opened due to the state manipulation.

queue and the Guard moves to the Hub before resuming its
local patrol routine. The Guard patrolling the Hub after re-
ceiving the move command from the experience manager is
shown in Figure 5.

Base Case: Escape a Recursive Prison
In the Base Case game, the player must free prisoners from a
military compound while avoiding detection from patrolling
guards. Every time the player escapes with a freed prisoner,
the world is reconfigured to a PDDL problem file that serves
as an initial state for a new version of the game. In order
to complete the game and escape the base for good, the
player must find and use a special computer hidden in the
base. This computer is a special-purpose game object that al-
lows the player to toggle conditions in the underlying world
state on and off. The computer works by changing condi-
tions directly in the state manager, which requests for GME
to initialize a new state transition system using the modified
declarative world state. An example of the computer being
used by the player along with the state changes it creates is
presented in Figure 6.

Discussion and Future Work
Given the right library of assets, UGME could be used in
conjunction with a natural language authoring tool to create
game worlds in a manner similar to Inform (Graham Nelson
2014) and other interactive fiction design systems. A game
author could create a game world and choose its mechan-
ics using the authoring tool, which would create PDDL files
from the commands, which would run UGME.

As planning technology grows more powerful, more of
the game’s mechanics such as the game-world position of
characters, can be modeled in the state transition system in-
stead of as a local behavior in the discourse generator. A
method for generating game mechanics automatically from

the PDDL world description, similar to that used by Zook
and Riedl (2014), might also be used to generate the code
that governs the local behavior of players and NPCs.

Another interesting direction for future work is the
development of procedural asset generation. Cook and
Colton (2014) and Hodhod, Huet, and Riedl (2014) both
experiment with querying Sketchup Warehouse, a library of
3D models with standard measurements, to populate a scene
with assets. If an asset generation pipeline could be created
to generate art and animation assets from a PDDL descrip-
tion it would greatly reduce the authoring burden of main-
taining a library of assets.

Experience management strategies such as Robertson and
Young (2014a) and Ware and Young (2010) modify as-
pects of the world to further the audience’s experience. New
strategies for managing player activity can be integrated into
GME’s declarative back-end, change conditions in the state
transition system on the fly. In this manner, the changes will
be automatically integrated into the game world.

Conclusion
The General Mediation Engine is a framework for generat-
ing games from a declarative AI world representation using a
procedural content generation pipeline. The framework has
been implemented in the Unity game engine as the Unity
General Mediation Engine. This game engine has been used
to create a top-down sneaking game called Base Case that is
generated and maintained by a declarative backend.

References
Bay 12 Games. 2006. Dwarf Fortress.
BioWare. 2007. Mass Effect.
Blizzard Entertainment. 1996. Diablo.

77



Chatman, S. B. 1980. Story and Discourse: Narrative Struc-
ture in Fiction and Film. Cornell University Press.
Cook, M., and Colton, S. 2014. Ludus Ex Machina: Build-
ing A 3D Game Designer That Competes Alongside Hu-
mans. In Proceedings of the 5th International Conference
on Computational Creativity.
Gearbox. 2009. Borderlands.
Graham Nelson. 2014. Inform 7.
Hartsook, K.; Zook, A.; Das, S.; and Riedl, M. O. 2011. To-
ward Supporting Stories with Procedurally Generated Game
Worlds. In Computational Intelligence and Games, 297–
304. IEEE.
Hastings, E. J.; Guha, R. K.; and Stanley, K. O. 2009. Auto-
matic Content Generation in the Galactic Arms Race Video
Game. Computational Intelligence and AI in Games, IEEE
Transactions on 1(4):245–263.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hodhod, R.; Huet, M.; and Riedl, M. 2014. Toward Gener-
ating 3D Games with the Help of Commonsense Knowledge
and the Crowd. In Artificial Intelligence and Interactive Dig-
ital Entertainment.
Horswill, I. 2014. Game Design for Classical AI. In Tenth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Keren, I. 2015. Scroll Back: The Theory and Practice of
Cameras in Side-Scrollers. http://gamasutra.com/blogs/
ItayKeren/20150511/243083/Scroll Back The Theory and
Practice of Cameras in SideScrollers.php. Accessed: May
29, 2015.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language.
Mojang. 2011. Minecraft.
Mueller, E. T. 2004. Event Calculus Reasoning Through
Satisfiability. Journal of Logic and Computation 14(5):703–
730.
Nintendo. 1986. The Legend of Zelda.
Packard, E. 1979. The Cave of Time. Choose Your Own
Adventure. Bantam Books.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
Planning to Interactive Storytelling: Narrative Control Using
State Constraints. ACM Transactions on Intelligent Systems
and Technology 1(2):10.
Ramirez, A., and Bulitko, V. 2014. Automated Planning and
Player Modelling for Interactive Storytelling. IEEE Trans-
actions on Computational Intelligence and AI in Games.
Riedl, M., and Bulitko, V. 2013. Interactive Narrative: An
Intelligent Systems Approach. AI Magazine 34(1):67–77.
Riedl, M. O.; Stern, A.; Dini, D. M.; and Alderman, J. M.
2008. Dynamic Experience Management in Virtual Worlds
for Entertainment, Education, and Training. International
Transactions on Systems Science and Applications 4(2):23–
42.

Riedl, M. O. 2005. Towards Integrating AI Story Controllers
and Game Engines: Reconciling World State Representa-
tions. In IJCAI Workshop on Reasoning, Representation and
Learning in Computer Games.
Robertson, J., and Young, R. M. 2014a. Finding
Schrödinger’s Gun. In Artificial Intelligence and Interactive
Digital Entertainment.
Robertson, J., and Young, R. M. 2014b. Gameplay as On-
Line Mediation Search. In Experimental AI in Games.
Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2011. Launchpad: A Rhythm-Based Level
Generator for 2-D Platformers. Computational Intelligence
and AI in Games, IEEE Transactions on 3(1):1–16.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. Ludo-
core: A Logical Game Engine for Modeling Videogames. In
Computational Intelligence and Games (CIG), 2010 IEEE
Symposium on, 91–98. IEEE.
Sturtevant, N. R.; Orkin, J.; Zubek, R.; Cook, M.; Ware,
S. G.; Stith, C.; Young, R. M.; Wright, P.; Eiserloh, S.;
Ramirez-Sanabria, A.; et al. 2014. Playable Experiences at
AIIDE 2014. In Tenth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Telltale Games. 2012. The Walking Dead.
Toy, M., and Wichman, G. 1980. Rogue.
Unity Technologies. 2005-2015. Unity.
Valls-Vargas, J.; Ontanón, S.; and Zhu, J. 2013. Towards
Story-Based Content Generation: From Plot-Points to Maps.
In Computational Intelligence in Games (CIG), 2013 IEEE
Conference on, 1–8.
Ware, S. G., and Young, R. M. 2010. Rethinking Traditional
Planning Assumptions to Facilitate Narrative Generation. In
AAAI Fall Symposium: Computational Models of Narrative.
Ware, S. G., and Young, R. M. 2014. Glaive: A State-Space
Narrative Planner Supporting Intentionality and Conflict. In
Artificial Intelligence and Interactive Digital Entertainment.
Winograd, T. 1972. Understanding Natural Language. Cog-
nitive Psychology 3(1):1–191.
Yannakakis, G. N., and Togelius, J. 2011. Experience-
Driven Procedural Content Generation. IEEE Transactions
on Affective Computing 2(3):147–161.
Young, R. M.; Riedl, M. O.; Branly, M.; Jhala, A.; Martin,
R. J.; and Saretto, C. J. 2004. An Architecture for Integrat-
ing Plan-Based Behavior Generation with Interactive Game
Environments. Journal of Game Development 1(1):51–70.
Zook, A., and Riedl, M. O. 2014. Automatic Game Design
via Mechanic Generation. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence.

78




