
Automatic Learning of Combat Models for RTS Games

Alberto Uriarte and Santiago Ontañón
Computer Science Department

Drexel University
{albertouri,santi}@cs.drexel.edu

Abstract

Game tree search algorithms, such as Monte Carlo Tree
Search (MCTS), require access to a forward model (or
“simulator”) of the game at hand. However, in some
games such forward model is not readily available. In
this paper we address the problem of automatically
learning forward models (more specifically, combats
models) for two-player attrition games. We report ex-
periments comparing several approaches to learn such
combat model from replay data to models generated by
hand. We use StarCraft, a Real-Time Strategy (RTS)
game, as our application domain. Specifically, we use a
large collection of already collected replays, and focus
on learning a combat model for tactical combats.

Introduction
A significant number of different artificial intelligence (AI)
algorithms that play Real-Time Strategy (RTS) games, like
Monte Carlo Tree Search (MCTS) (Browne et al. 2012) or
Q-Learning (Jaidee and Muñoz-Avila 2012), assume the ex-
istence of a forward model that allows predicting the state
that will be reached after executing a certain action in the
current game state. While this assumption is reasonable in
certain domains, such as Chess or Go where simulating the
effect of actions is trivial, forward models are not readily
available in other domains where precise descriptions of the
effect of actions is not available.

In this paper we study how to automatically learn forward
models for RTS games from game replay data. We argue
that while forward models might not be available, logs of
previous games might be available, from where the result
of applying specific actions in certain situations can be ob-
served. This is the case in most Real-Time Strategy (RTS)
games. For example, consider the StarCraft game, where
precise definitions of the effects of unit actions is not avail-
able, but large collections of replays are available. Auto-
matically acquiring forward models from observation is of
key importance to RTS game AI, since it would allow the
application of game tree search algorithms, such as MCTS,
to real-world domains, for which, forward models are, obvi-
ously, not available.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Specifically, in this paper, we focus on learning forward
models for a subset of a full RTS game: combat situations.
We use StarCraft, a popular RTS game, as our testbed, and
exploit the large collection of readily available replays to
extract a collection of combat situations and their results.
We use this data to train a combat model (or “simulator”)
to predict the outcomes of combat situations. In order to
learn the forward model, we model a combat situation as an
attrition game (Furtak and Buro 2010). An attrition game
is a combat simulation game where individual units cannot
move, and only their damage and hit points are considered.
Thus, our approach is based upon learning the parameters of
the attrition game from replay data, and use this to simulate
the evolution of a given combat situation over time.

The remainder of this paper is organized as follows. First
we provide background on combat models in RTS games
and their applications. Then we propose a high-level ab-
straction representation of a combat state and two combat
models using this abstraction. After that, we explain how to
extract combat situations from replay data and how to train
our combat model to simulate combats. Finally, we present
our experiments in forwarding the state using our proposed
simulators, and compare there against existing hand-made
state-of-the-art simulators.

Background
Real-Time Strategy (RTS) games in general, and StarCraft
in particular, have emerged as a fruitful testbed for new AI
algorithms (Buro 2003; Ontañón et al. 2013). One of the
most recurrent techniques for tactical decisions are those
based on game tree search, like alpha-beta search (Churchill,
Saffidine, and Buro 2012) or MCTS (Balla and Fern 2009;
Churchill and Buro 2013; Uriarte and Ontañón 2014; Juste-
sen et al. 2014).

Of particular interest to this paper is the MCTS family of
algorithms (Browne et al. 2012), which build a partial game-
tree in an incremental and asymmetric manner. At each iter-
ation, the algorithm selects a leaf of the current search tree
using a tree policy and expands it. This tree policy is used
to balance the exploration (look in areas of the tree that have
not been sufficiently explored yet) and exploitation (confirm
that the most promising areas of the tree are indeed promis-
ing). Then, a default policy is used to simulate a game from
the selected leaf, until a terminal node is reached. The out-

Proceedings, The Eleventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15)

212



come of this simulation (a.k.a. playout or rollout) is then
used to update the expected utility of the corresponding leaf
in the tree. In order to generate the tree and to perform these
playouts, MCTS requires a forward model that given a state
and an action, predicts which will be the resulting state af-
ter executing the action. The long term goal of the research
presented in this paper is to allow the application of MCTS
and other game tree search techniques to domains where no
such forward model is available.

This is not the first attempt to create a combat model for
RTS games. Balla and Fern (2009) used a hand-crafted
simulator in order to deploy UCT (a variant of MCTS) in
the Warcraft II RTS game. Churchill and Buro (2013) de-
veloped SparCraft, a low level StarCraft combat simulator.
SparCraft was developed using a large human effort observ-
ing the behavior of different StarCraft units frame by frame.
Despite being extremely accurate for small combat scenar-
ios, SparCraft does not cover all situations (like collisions)
nor units (like spell casters or dropships), due to the tremen-
dous amount of effort that it would take to model the com-
plete StarCraft game. Uriarte and Ontañón (2014) defined
a simplified model were each squad deals their maximum
DPF (Damage Per Frame) until one army is destroyed to ap-
ply MCTS to StarCraft. Soemers (2014) proposed another
model based on Lanchester’s Square Law were each indi-
vidual unit is killed over time during a battle also to apply
MCTS to StarCraft. Finally, Stanescu et al. (2013) used
SparCraft to predict the outcome of a combat, but only fo-
cusing on which player will be the winner instead of the
exact outcome of the battle.

High-level Abstraction in RTS Games
The proposed approach does not simulate the low-level,
pixel-by-pixel movement of units in a RTS game, but rather
the high-level outcome of a combat scenario. Thus, we will
use the abstraction described in (Uriarte and Ontañón 2014),
which we describe below:
• An RTS map is modeled as a graph M where each node

is a region, and edges represent paths between region.
In the experiments presented in this paper, we employed
Perkin’s algorithm (Perkins 2010) to transform StarCraft
maps into this representation.

• Instead of modeling each unit individually, we con-
sider groups of units, where a group is a 4-tuple g =
〈player, type, size, loc〉 with the following information:
– Which player controls this group.
– The type of units in this group (e.g., marines).
– Number of units forming this group (size).
– The position in the map (loc), which corresponds to

which region in the graph M the group is located.
Notice that we do not record the hit points or shield of

the units.. Additionally, we assume that all combats happen
inside one of the regions, and never across multiple regions.
Thus, we will drop loc from the group representation in the
remainder of this paper (since all groups in a given combat
have the same value for loc). As a result, our forward model
works as follows:

Figure 1: StarCraft combat situation with two players.

Table 1: Groups in the high-level abstraction of Figure 1.

group Player Type Size
g1 red Worker 1
g2 red Marine 2
g3 red Tank 3
g4 blue Worker 2
g5 blue Marine 4
g6 blue Tank 1

Input: A set of groups G = {g1, ...gn} (the initial state of
the combat).

Output: A set of groups G′ (the final state of the combat),
and the length t of the combat (in game time).

We require that all groups in G′ belong to the same player,
in other words, only one army stands. Figure 1 shows a
combat situations and Table 1 its corresponding high-level
representation.

Learning a Combat Forward Model
Many variables, such as weapon damage of a unit or the cool
down of a weapon are involved in the dynamics of combats
in RTS games like StarCraft. Moreover, other factors such
as maneuverability of units, or how the special character-
istics of a given unit type makes them more or less effec-
tive against other types of units or combinations of units are
harder to quantify. The following subsections propose two
approaches to simulate combats based on modeling the way
units interact in two different ways.

Sustained DPF Model (simDPF sus)
simDPF sus is the simplest model we propose and assumes
that the amount of damage a player can do does not decrease
over time. Given the initial state G, where groups belong to
players A and B, the model proceeds as follows:

1. First, the models computes how much time each army
needs to destroy the other. In some RTS games, such as
StarCraft, units might have a different DPF (damage per
frame) when attacking to different types of units (e.g., air
vs land units), and some units might not even be able to
attack certain other units (e.g., walking swordsmen can-
not attack a flying dragon). Thus, for a given player, we
can compute her DPFair (the aggregated DPF that units

213



of a player that can attack only air units), DPFground

(DPF that the player can perform only to ground units)
and DPFboth (aggregated DPF of the units that can at-
tack both ground and air). After that, we can compute the
time required to destroy all air and land units separately:

tair(A,B) =
HPair(A)

DPFair(B)

tground(A,B) =
HPground(A)

DPFground(B)

where HP (A) is the sum of the hit points of the units in
all the groups of player A. Then, we compute which type
of units (air or ground) would take longer to destroy, and
DPFboth is assigned to that type. For instance, if the air
units take more time to kill we recalculate tair as:

tair(A,B) =
HPair(A)

DPFair(B) +DPFboth(B)

And finally we compute the global time to kill the other
army:

t(A,B) = max(tair(A,B), tground(A,B))

2. Then, the combat time t is computed as:
t = min(t(A,B), t(B,A))

3. After that, the model computes which and how many units
does each player have time to destroy of the other player
in time t. For this purpose, this model takes as input a tar-
get selection policy, which determines the order in which
a player will attack the units in the groups of the other
player. The final state G′ is defined as all the units that
were not destroyed.
simDPF sus has three input parameters: the DPF of each

unit type to each other unit type, the maximum hit points of
each unit type, and a target selection policy. Later in this
paper we will propose different ways in which these three
input parameters can be defined or learned from data.

Decreased DPF Model (simDPF dec)
simDPF dec is more fine grained than simDPF sus, and con-
siders that when a unit is destroyed, the DPF that a player
can do is reduced. Thus, instead of computing how much
time it will take to destroy the other army, we only com-
pute how much time it will take to kill one unit, selected by
the target selection function. Then, the unit that was killed
is subtracted from the state, and we recompute the time to
kill the survivors and which will be the next targeted unit.
This is an iterative way to remove units and keep updating
the current DPF of the armies. The process is detailed in
Algorithm 1, where first the model determines which is the
next unit that each player will attack using a target selection
policy (lines 4-7); after that we compute the expected time
to kill the selected unit using TIMEKILLUNIT(u,G,DPF );
and the target that should be killed first is eliminated from
the state (only one unit of the group), and the HP of the sur-
vivors is updated (lines 18-25). We keep doing this until one
army is completely annihilated or we cannot kill more units.

Notice that simDPF dec has the same three input param-
eters as simDPF sus. Let us now focus on how can those
parameters be acquired for a given RTS game.

Algorithm 1 Combat Simulator using decreased DPF over
time.

1: function SIMDPFDEC(G,DPF, targetSelection)
2: E ← {g ∈ G|g.player = p1} . enemy units
3: F ← {g ∈ G|g.player = p2} . friendly units
4: SORT(E, targetSelection)
5: SORT(F, targetSelection)
6: e← POP(E) . pop first element
7: f ← POP(F )
8: while true do
9: te ← TIMEKILLUNIT(e, F,DPF )

10: tf ← TIMEKILLUNIT(f,E,DPF )
11: while te =∞ and E 6= ∅ do
12: e← POP(E)
13: te ← TIMEKILLUNIT(e, F,DPF )

14: while tf =∞ and F 6= ∅ do
15: f ← POP(F )
16: tf ← TIMEKILLUNIT(f,E,DPF )

17: if te =∞ and tf =∞ then break . to avoid a
deadlock

18: if te < tf then
19: if E = ∅ then break . last unit killed
20: e← POP(E)
21: f.HP ← f.HP − DPF(E)× te
22: else
23: if F = ∅ then break . last unit killed
24: f ← POP(F )
25: e.HP ← e.HP − DPF(F )× tf
26: return E ∪ F

Model Parameters
As we can observe our two proposed models have three main
parameters.
• Unit hit points. The maximum hit points of each unit is

something we know beforehand and invariant during the
game. Therefore there is no need to learn this parameter.

• Unit DPF. There is a theoretical (maximum) DPF that
a unit can deal, but this value is highly affected by the
time between shots, which heavily depends on the ma-
neuverability and properties of units as compared to the
targets, and on the skill of the player to control the units.
Therefore we encode this as a n× n DPF matrix, where
DPF (i, j) represents the DPF that a unit of type i usually
deals to a unit of type j. We call this the effective DFP.

• Target selection. When two groups containing units of
different types face each other, determining which types
of units to attack first is key. In theory, determining the
optimal attack order is an EXPTIME problem (Furtak
and Buro 2010). Existing models of StarCraft such as
SparCraft model this by having a portfolio of handcrafted
heuristic strategies (such us attack closest or attack unit
with highest DPF / HP) which the user can configure for
each simulation. We propose to train the target selection
policy from data. In order to obtain a forward model that
predicts the expected outcome of a combat given usual
player behavior.

214



Thus, the parameters that we are tying to learn are the
DPF matrix and the target selection policy. To do so, we
collected a dataset which we describe below. We argue that
these two parameters are enough to capture the dynamics of
a range of RTS games to a sufficient degree for resulting in
accurate forward models.

Dataset
The parameters required by the models proposed above can
automatically be acquired from data. In particular, the
dataset can be generated directly by processing replays,
a.k.a. game log files. StarCraft replays of professional
player games are widely available, and several authors have
compiled collections of such replays in previous work (We-
ber and Mateas 2009; Synnaeve and Bessière 2012).

Since StarCraft replays only contain the mouse click
events of the players (this is the minimum amount of infor-
mation needed to reproduce the game in StarCraft), we don’t
know the full game state at a given point (no information
about the location of the units or their health). This small
amount of information in the replays is enough to learn many
aspects of RTS game play, such as build orders (Hsieh and
Sun 2008) or the expected rate of unit production (Stanescu
and Certicky 2014). However, it is not enough to train the
parameters we require in our models.

Thus, we need to run the replay in StarCraft and record
the required information using BWAPI1. This is not a triv-
ial task since if we record the game state at each frame we
will have too much information (some consecutive recorded
game state can be the same) and we will need a lot of space
to store all this information. Some researchers proposed to
capture different information at different resolutions to have
a good trade-off of information resolution. For example,
Synnaeve and Bessière (2012) proposed recording informa-
tion at three different levels of abstraction:
• General data. Records all BWAPI events (like unit cre-

ation, destruction, discovery, ...). Economical situation
every 25 frames and attack information every frame. It
uses a heuristic to detect when an attack is happening.

• Order data. Records all orders to units. It is the same
information you will get parsing the replay file outside
BWAPI.

• Location data. Records the position of each unit every
100 frames.

On the other hand, Robertson and Watson (2014) proposed
a uniformed information gathering, recording all the infor-
mation every 24 frames or every 7 frames during attacks to
have a better resolution than the previous work.

In our case we only need the combat information, so we
decided to use the analyzer from Synnaeve and Bessière, but
with an updated heuristic for detecting combats (described
below), since theirs was not enough for our purposes. There-
fore we implemented our own method to detect combats2.
Since, we are interested in capturing the information of when

1https://github.com/bwapi/bwapi
2Source code of our replay analyzer can be found at https://

bitbucket.org/auriarte/bwrepdump

and where a combat started, what units were destroyed, and
the initial and final army composition. We define a com-
bat as a tuple C = 〈ts, tf , R, U0, U1, A

0
s, A

1
s, A

0
f , A

1
f ,K〉,

where:

• ts is the frame when the combat started and tf the frame
when it finished,

• R is the reason why the combat finished. The options are:

– Army destroyed. One of the two armies was totally
destroyed during the combat.

– Peace. None of the units were attacking for the last
x frames. In our experiments x = 144, which is 6
seconds of game play.

– Reinforcement. New units participating in the battle.
This happens when units, that were far from the battle
when it started, begin to participate in the combat. No-
tice that if a new unit arrives but never participates (it
does not attack another unit) we do not consider it as a
reinforcement.

– Game end. Since a game can end from one of the play-
ers surrendering, at the end of the game we close all the
open combats.

• Ui is a list of upgrades and technologies researched by
player i at the moment of the combat. U = {u1, . . . , un}
where uj is an integer denoting the level of the upgrade
type j.

• Ap
w where w ∈ {s, f} is the high-level state of the army

of player p at the start of the combat (Ap
s) and at the end

(Ap
f ). An army is a list of tuples A = 〈id, t, p, hp, s, e〉

where id is an identifier, t is the unit type, p = (x, y) is a
position, hp the hitpoints, s the shield, and e the energy.

• K = {(t1, id1), . . . (tn, idn)} is a list of game time and
identifier of each unit killed during the combat.

In Synnaeve and Bessière’s work the beginning of a com-
bat is marked when a unit is killed. For us this is too late
since one unit is already dead and several units can be in-
jured during the process. Instead, we start tracking a new
combat if a military unit is aggressive or exposed and not
already in a combat. Let us define some terms in our context.
A military unit is a unit that can attack or cast spells, detect
cloaked units, or a transporter. We call a unit is aggressive
when it has the order to attack or is inside a transport. A unit
is exposed if it has an aggressive enemy unit in attack range.

Any unit u belonging to player p0 meeting these condi-
tions at a time t0 will trigger a new combat. Let us define
inRange(u) to be the set of units in attack range of a unit u.
Now, let A = ∪u′∈inRange(u)inRange(u

′). A0
s is the subset

of units of A belonging to player p0 and A1
s is the subset

of units of A belonging to the other player (p1). Figure 2
shows a representation of a combat triggered a unit u (the
black filled square) and the units in the combat (the filled
squares). Notice that a military unit is considered to take
part in a combat even if at the end it does not participate.

By processing a collection of replays and storing each
combat found, a dataset is built to train the parameters of
our models.

215



u

A

attack
range

Figure 2: Black filled square triggers a new combat. Only
filled squares are added to the combat tracking.

Learning the DPF Matrix
The main idea is to estimate a DPF matrix of size n × n,
where n is the number of different unit types (in StarCraft
n = 163). For each combat in our dataset, we perform the
following steps:

1. First, for each player we count how many units can at-
tack ground units (sizeground), air units (sizeair) or both
(sizeboth).

2. Then for each kill in (tn, idn) ∈ K we compute the to-
tal damage done to the unit killed (idn) as: damage =
idn.HP + idn.shield where HP and shield are the hit
points and shield of the unit at the start of the combat.
This damage is split between all the units that could have
attacked idn. For instance, if idn is an air unit the damage
is split as:

damageSplit =
damage

sizeair + sizeboth

notice that the damage is split even if some of the units did
not attack idn, since in our dataset we do not have infor-
mation of which units actually did attack idn. After that,
for each unit idattack that could attack idn, we update two
global counters:

damageToType(idattack, idn)+ = damageSplit

timeAttackingType(idattack, idn)+ = ts − tn

3. After parsing all the combats, we compute the DPF that a
unit of type i usually deals to a unit of type j as:

DPF (i, j) =
damageToType(i, j)

timeAttackingType(i, j)

Even if this process has some inaccuracies (we might be as-
signing damage to units who did not participate, not con-
sidering HP or shield regeneration or friendly damage), our
hypothesis is that with enough training data, these values
should converge to realistic estimates of the effective DPF.

Learning Target Selection
To learn the target preference we use the Borda count
method to give points towards a unit type each time we make
chose. So, the idea is to iterate over all the combats and each
time we kill for the first time a type of unit we give that type
n − i points where n is the number of different unit types
in the group and i the order the units were killed. For ex-
ample, if we are fighting against marines, tanks and workers
(n = 3) and we killed first the tank then the marines and last
the workers, the scores will be: 3−1 = 2 points for the tank,
3 − 2 = 1 point for the marines and 3 − 3 = 0 points for
the workers. After analyze all the combats we compute the
average Borda count and this is the score we use to sort our
targets in order of preference.

Experimental Evaluation
In order to evaluate the performance of each simulator
(simDPF sus, simDPF dec and SparCraft), we used dif-
ferent configurations (with hardcoded parameters and with
trained parameters). We compare the generated predic-
tions with the real outcome of the combats collected in our
dataset. The following subsections present our experimental
setup and the results of our experiments.

Experimental Setup
We extracted the combats from 49 Terran vs Terran and 50
Terran vs Protoss replay games. This resulted in:

• 1,986 combats ended with one army destroyed,

• 32,975 combats ended by reinforcement,

• 19,648 combats ended in peace,

• 196 combats ended by game end.

We are only interested on the combats ended by one army
destroyed, since those are the scenarios that are most infor-
mative. We also removed combats with Vulture’s mines (to
avoid problems with friendly damage) and with transports.
This resulted in a dataset with 1,565 combats.

We compared different configurations of our
simDPFsus and simDPFdec combat forward mod-
els to compare the results:

• DPF: we experimented with two DPF matrices.
DPF data: calculated directly from the weapon damage
and cooldown of each unit in StarCraft. DPF learn

learned from traces, as described above.

• Target selection: we experimented with three target selec-
tion policies. TS random: randomly selecting the next unit
(made deterministic for experimentation by using always
the same seed). TSks: choosing always the unit with the
highest kill score (this is an internal StarCraft score based
on the resources needed to produce the unit). TS learn:
automatically learned from traces, as described above.

We evaluate our approach using a 10-fold cross-
validation. After training is completed we simulate each
test combat with our models using different configurations.
Once we have a combat prediction from each simulator, we
compare it against the real outcome of the combat from the

216



Table 2: Average Jaccard Index of the combat models with
different configurations over 1,565 combats.

DPFdata

TSrandom

DPFdata

TSks

DPFlearn

TSlearn

simDPFsus 0.861 0.861 0.848
simDPFdec 0.899 0.905 0.888

dataset. This comparison uses a modified version of the Jac-
card index, as described below. The Jaccard index is a well
known similarity measure between sets (the size of their in-
tersection divided by the size of their union).

In our experiments we have an initial game state (A), the
outcome of the combat from the dataset (B), and the re-
sult of our simulator (B′). As defined above, our high-level
abstraction represents game states as a set of unit groups
A = {a1, . . . , an}, where each group has a player, a size
and a unit type. In our similarity computation, we want to
give more importance if a unit from a small group is miss-
ing than another from a bigger group (two states are more
different if the only Siege tank was destroyed, than if only
one out of 10 marines was destroyed). Thus, we compute a
weight for each unit group ak in the initial state A, as:

wk =
1

ak.size+ 1

The similarity between the prediction of our forward model
(B′), and the actual outcome of the combat in the dataset
(B) is defined as:

J(A,B′, B) =

n∑
k=1

(min(bk.size, b
′
k.size)× wk)

n∑
k=1

(max(bk.size, b′k.size)× wk)

As mentioned before, we use SparCraft to have another
baseline to compare our proposed combat models. Spar-
Craft comes with several scripted behaviors. In our exper-
iments we use the following: Attack-Closest (AC), Attack-
Weakest (AW), Attack-Value (AV), Kiter-Closest (KC), Kiter-
Value (KV), and No-OverKill-Attack-Value (NOK-AV).

Results
Table 2 shows the average similarity (computed using the
Jaccard index described above) of the predictions generated
by our combat models with respect to the actual outcome
of the combats. The first thing we see is that the predic-
tions made by all our models are very similar to the ground
truth: Jaccard indexes higher than 0.86, which are quite
high similarity values. There is an important and statis-
tically significant difference (p-value of 3.5 × 10−10) be-
tween simDPFsus and simDPFdec. While the different
configurations of simDPFdec achieve similar results. Us-
ing a predefined DPF matrix and a kill score-based target
selection achieves the best results. However, we see that in
domains where DPF information or target selection criteria
(such as kill score) is not available, we could learn them
from data, and achieve very similar performance (as shown
on the right-most column).

Table 3: Average Jaccard Index and time of different combat
models over 328 combats.

Combat Model Avg. Jaccard Time (sec)
simDPFsus

(DPFlearn, TSlearn)
0.874 0.03321

simDPFdec

(DPFlearn, TSlearn)
0.885 0.03919

SparCraft (AC) 0.891 1.68190
SparCraft (AW) 0.862 1.36493
SparCraft (AV) 0.874 1.47153
SparCraft (NOK-AV) 0.875 1.35868
SparCraft (KC) 0.846 6.87307
SparCraft (KV) 0.850 6.95467

To compare our model to previous work we also run our
experiments in SparCraft. Since SparCraft does not support
all units we need to filter our initial set of 1,565 combats
removing those that are incompatible with SparCraft. This
results in a dataset of 328 combats where the results can be
shown at Table 3. This shows that our combat simulator
simDPFdec has similar performance to the SparCraft con-
figuration (AC) that achieves better results, but it is 43 times
faster. This can be a critical feature if we are planning to ex-
ecute thousands of simulations like it will happen if we use
it as a forward model in a MCTS algorithm. Also, notice
that simDPFsus performs better in this dataset than in the
complete dataset, since the 328 combats used for this second
experiments are simpler.

Conclusions
The long-term goal of the work presented in this paper is to
design game-playing systems that can automatically acquire
forward models for new domains, thus making them both
more general and also applicable to domains where such
forward models are not available. Specifically, this paper
presented two alternative forward models for StarCraft com-
bats, and a method to train the parameters of these models
from replay data. We have seen that in domains where the
parameters of the models (damage per frame, target selec-
tion) are available from the game definition, those can be
used directly. But in domains where that information is not
available, it can be estimated from replay data.

Our results show that the models are as accurate as hand-
crafted models such as SparCraft for the task of combat out-
come prediction, but much faster. This makes our proposed
models suitable for MCTS approaches that need to perform
a large number of simulations.

As part of our future work we would try to improve our
combat simulator. For example, we could incorporate the
ability to spread the damage done through different group
types instead of all our groups attacking the same group
type. Additionally, we would like to experiment using the
simulator with different configurations inside a MCTS tac-
tical planner in the actual StarCraft game, to evaluate the
performance that can be achieved using our trained forward
model, instead of using hard-coded models.

217



References
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In International Joint
Conference of Artificial Intelligence (IJCAI 2009), 40–45.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. Transactions on Computational
Intelligence and AI in Games (TCIAIG) 4(1):1–43.
Buro, M. 2003. Real-time strategy games: a new ai research
challenge. In International Joint Conference of Artificial
Intelligence (IJCAI 2003), 1534–1535. Morgan Kaufmann
Publishers Inc.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In Sym-
posium on Computational Intelligence and Games (CIG
2013). IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In Artificial In-
telligence and Interactive Digital Entertainment Conference
(AIIDE 2012). AAAI Press.
Furtak, T., and Buro, M. 2010. On the complexity of two-
player attrition games played on graphs. In Youngblood,
G. M., and Bulitko, V., eds., Artificial Intelligence and In-
teractive Digital Entertainment Conference (AIIDE 2010).
AAAI Press.
Hsieh, J.-L., and Sun, C.-T. 2008. Building a player strategy
model by analyzing replays of real-time strategy games. In
Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint
Conference on, 3106–3111. IEEE.
Jaidee, U., and Muñoz-Avila, H. 2012. CLASSQ-L: A q-
learning algorithm for adversarial real-time strategy games.
In Artificial Intelligence and Interactive Digital Entertain-
ment Conference (AIIDE 2012). AAAI Press.
Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script- and cluster-based UCT for StarCraft. In Sympo-
sium on Computational Intelligence and Games (CIG 2014).
IEEE.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game Ai research and competition in star-
craft. Transactions on Computational Intelligence and AI
in Games (TCIAIG) 5:1–19.
Perkins, L. 2010. Terrain analysis in real-time strategy
games: An integrated approach to choke point detection and
region decomposition. In Artificial Intelligence and Interac-
tive Digital Entertainment Conference (AIIDE 2010). AAAI
Press.
Robertson, G., and Watson, I. 2014. An improved dataset
and extraction process for starcraft ai. In The Twenty-
Seventh International Flairs Conference.
Soemers, D. 2014. Tactical planning using MCTS in the
game of StarCraft. Master’s thesis, Department of Knowl-
edge Engineering, Maastricht University.

Stanescu, M., and Certicky, M. 2014. Predicting opponent’s
production in real-time strategy games with answer set pro-
gramming. Transactions on Computational Intelligence and
AI in Games (TCIAIG).
Stanescu, M.; Hernandez, S. P.; Erickson, G.; Greiner, R.;
and Buro, M. 2013. Predicting army combat outcomes in
starcraft. In Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE 2013). AAAI Press.
Synnaeve, G., and Bessière, P. 2012. A dataset for Star-
Craft AI & an example of armies clustering. In Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence (AIIDE 2012). AAAI Press.
Uriarte, A., and Ontañón, S. 2014. Game-tree search over
high-level game states in RTS games. In Artificial Intel-
ligence and Interactive Digital Entertainment Conference
(AIIDE 2014). AAAI Press.
Weber, B. G., and Mateas, M. 2009. A data mining approach
to strategy prediction. In Symposium on Computational In-
telligence and Games (CIG 2009). IEEE.

218




