
A Hierarchical MdMC Approach
to 2D Video Game Map Generation

Sam Snodgrass and Santiago Ontañón
Drexel University, Department of Computer Science

Philadelphia, PA, USA
sps74@drexel.edu, santi@cs.drexel.edu

Abstract

In this paper we describe a hierarchical method for proce-
durally generating 2D game maps using multi-dimensional
Markov chains (MdMCs). Our method takes a collection of
2D game maps, breaks them into small chunks and performs
clustering to find a set of chunks that correspond to high-level
structures (high-level tiles) in the training maps. This set of
high-level tiles is then used to re-represent the training maps,
and to fit two sets of MdMC models: a high-level model cap-
tures the distribution of high-level tiles in the map, and a set of
low-level models capture the internal structure of each high-
level tile. These two sets of models can then be used to hi-
erarchically generate new maps. We test our approach using
two classic games, Super Mario Bros. and Loderunner, and
compare the results against other existing map generators.

Introduction
Generating video game maps algorithmically (called proce-
dural content generation, or PCG) allows players to experi-
ence new and unique content. Unlike most PCG methods,
which include carefully encoded design and domain knowl-
edge (Togelius et al. 2011), we are interested in using ma-
chine learning methods to automatically extract latent design
knowledge from expert-crafted maps. By creating content
generators that are directly shaped by training examples, we
explore an important new way of controlling PCG systems.

In our previous work (Snodgrass and Ontañón 2014a),
we introduced an approach based on training a statistical
model from a set of given human-authored maps that could
then be used to sample new maps with the same statistical
properties. Specifically, we showed that multi-dimensional
Markov chains (MdMCs) could be used to sample maps
for two-dimensional platformers such as Super Mario Bros.
One drawback of such approach is that, unless an unrea-
sonable amount of training data is available, MdMCs can
only capture small-scale structure in the maps. To address
this problem, we proposed a hierarchical approach using
used hand-authored high-level blocks to represent the high-
level structure in the training maps (Snodgrass and Ontanon
2014b). This provided great improvement over the non-
hierarchical approach, but required too much domain knowl-
edge. This paper focuses on the automatization of that man-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ual hierarchical approach, including an extension to a more
complex domain, as well as a significant extension to the
evaluation methodology. We introduce a method that auto-
matically finds the high-level structures of a map through
clustering. Once we find the high-level structures, we au-
tomatically annotate the input maps with tiles representing
the found structures. We then fit a high-level and a low-level
model to the annotated maps and input maps, respectively.
Afterwards, we sample a high-level map using the learned
high-level model, and a low-level map using both the learned
low-level model and the newly sampled high-level map.

We validate our approach using two different domains:
Super Mario Bros. and Loderunner. Additionally, we com-
pare the Super Mario Bros. maps sampled by our method
against those created by the top performing generators from
the 2011 Mario AI Championship (Shaker et al. 2011).

Background
Procedural Map Generation
Procedural content generation (PCG) methods are used to
create content algorithmically instead of manually (Togelius
et al. 2011). For a more complete introduction to PCG the
reader is referred to Hendrikx et. al. (2013).

Many PCG systems work by pairing a search technique
with an evaluation function that judges the output (To-
gelius et al. 2011; Smith and Mateas 2011). In our ap-
proach, we are interested in generators that learn statisti-
cal properties from a set of given maps, and use them to
sample new maps. Such generative methods have already
been used for text and music generation (Shannon 2001;
Conklin 2003); we are interested in seeing how well they
translate to map generation. Shaker et. al. (2011) describe
a level generation competition in which several systems em-
ployed models learned from data. However, these systems
learned models of the players, not the map characteristics.

Tile grids, used in our work, are common in PCG systems
as they correlate strongly to the map representations in many
games. Some commercial games, for example Civiliza-
tion IV1 and Spelunky2, include map generators that work
by assembling tiles on a grid. There has also been some
academic research exploring learning to generate tile-based

1http://www.2kgames.com/civ4/
2http://www.spelunkyworld.com/

Proceedings, The Eleventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15)

205



S4,1 

S4,2 

S1,1 S2,1 S3,1 

S1,2 S2,2 S3,2 

P(St,r | St-1,r , St,r-1, St-1,r-1) 

S4,3 S1,3 S2,3 S3,3 

… 

… 

… 
… … … … 

Figure 1: A two-dimensional Markov chain of order three
(three incoming dependence arrows for each node).

maps from examples (Dahlskog, Togelius, and Nelson 2014;
Snodgrass and Ontanon 2014b).

Markov Chains
Markov chains (Markov 1971) are a method for modeling
probabilistic transitions between states. A Markov chain is
defined as a set of states S = {s1, s2, ..., sn} and the condi-
tional probability distribution (CPD) P (St|St−1), represent-
ing the probability of transitioning to a state St ∈ S given
that the previous state was St−1 ∈ S.

Higher-order Markov chains account for d previous states,
where d is a finite natural number (Ching et al. 2013). The
CPD defining a Markov chain of order d can be written as:
P (St|St−1, ..., St−d). That is, P is the conditional proba-
bility of transitioning to a state St, given the past d states of
the Markov chain.

Although Markov random fields (MRFs) have been used
to reason about and synthesize textures (Levina and Bickel
2006), sampling from such models is computationally com-
plex. Multi-dimensional Markov chains (MdMCs), such as
the two-dimensional Markov chains in our work (an exam-
ple of which can be seen in Figure 1), are an extension of
higher-order Markov chains that have been shown to pro-
duce qualitatively similar texture outputs, while reducing the
sampling complexity drastically (Levina and Bickel 2006).

Methods
In our previous work (Snodgrass and Ontanon 2014b) we
showed that a two-layered hierarchical approach to map gen-
eration can greatly improve the quality of the sampled maps
over sampling using a single low-level Markov chain, by
capturing dependencies beyond immediate neighbors. How-
ever, that approach requires the manual identification of a set
of high-level tiles capturing prototypical structures. In this
paper, we present an approach which learns such high-level
tiles from examples through clustering. We also show that
our approach performs as well as the manual approach.

Specifically, the approach presented in this paper com-
bines MdMCs and k-medoids clustering (Kaufman and
Rousseeuw 1987) for hierarchical game map generation.
Given a set of two-dimensional maps for a given video
game, our method works as follows: first, we break each
of the maps into chunks of a certain size. Then, we perform
clustering on all of the resulting chunks, taking the centroids
of the clusters to be the high-level tiles. Next, we use those

high-level tiles to re-represent the input maps, and train a
MdMC that can sample such high-level maps. We then train
a low-level MdMC for each high-level tile. All these steps
are described in turn below.

Map Representation
A map is represented by an h × w two-dimensional array,
M, where h is the height of the map, and w is the width.
Each cell of M is mapped to an element of S, the set of tile
types which correspond to the states of the MdMC. Figure 2
shows a section of a Super Mario Bros. map (1) and how that
section is represented as an array of tiles (2). Notice that we
added sentinel tiles to the map to signify the boundaries.

Identifying High-Level Map Structures
In order to extract common high-level structures from the
input maps, first we split each input map into chunks of a
given size (e.g., 6 × 6), and then we cluster them using k-
medoids. k-medoids clustering is an unsupervised learning
algorithm that can group data into k clusters, using some
distance metric (Kaufman and Rousseeuw 1987). The best
value of k is dependent on the domain. We experimented
with k ∈ {6, ..., 16}. We use the centroids of the result-
ing clusters as our high-level tiles. An interesting property
of k-medoids is that it does not require averaging sets of
instances (as k-means does), and is thus, applicable to do-
mains, like ours, where instances are not real-valued vectors.

Once the high-level tiles have been found, we annotate
each input map with high-level tile types. Each chunk in
an input map is converted into a tile representing the most
similar high-level tile type using the same distance metric
used during clustering. Therefore, a high-level map is repre-
sented by a two-dimensional array H of size (h/T )×(w/T ),
where T is the size of the high-level tiles. Figure 2 shows a
low-level map (2) and its high-level representation (3).

We experimented with the following distance metrics:
• Direct: Compares the two chunks tile by tile, and counts

the number of tiles that are different.
• Shape: Slides one chunk over the other, and applies the

Direct metric on the overlapping area of the two chunks,
looking for the position in which the Direct distance is
minimized after normalization by the overlapping area.

• WeightedDirect: Similar to Direct, but using manually
defined costs to determine the penalty of matching tiles.
For example, matching a “?-block” to a “breakable block”
has a lower cost than matching it to an “empty space.”

• Markov: Learns a tile distribution for each chunk using a
standard Markov chain. Distance is then computed as the
Manhattan distance between the resulting distributions.

• Histogram: Performs a simple count for each low-level
tile type in both chunks. Distance is computed as the
Manhattan distance between the resulting vectors.

Learning the Model
Given a set of input maps, and a set of k high-level tiles (ex-
tracted as described above), our method trains k+1 MdMCs.
A high-level chain captures the distribution of high-level

206



S E E E E E E E E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E E E
S E E E E ? E E E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E E E
S E E B ? B ? B E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E p P
S E E E E E E E E E E p P
S G G G G G G G G G G G G
S S S S S S S S S S S S S

S h1 h1 
S h2 h3 
S S S 

S h1 h1 
S h2 h2 
S S S 

S X X X X X X X X X X X X
S X X X X X X X X X X X X
S X X X X X X X X X X X X
S E E E E E E E E C X X X
S E E E ? E E E E E E E E
S E E E E E E E E E E E E
S E E E E E E E B ? B ? B
S E E E E E E E E E E E E
S E B ? B E E E E E E E E
S E E E E E E E E E E E E
S E E E E E E E E E E E E
S G G G G G G G G G G G G
S S S S S S S S S S S S S

Represent 
as low-
level tiles!

Generator!

Re-represent 
as high-level 
tiles!

Cluster to find high-
level tile types!

Train 
model!

Generate 
high-level 
map!

Generate 
low-level 
map using 
high-level 
map as 
guidance!

(1)! (2)! (3)! (4)! (5)! (6)!

Figure 2: A visualization of the pipeline our approach follows. First, we represent the training maps with a set of low-level tiles
(1 and 2). Next, we split the maps into T × T sized sections and perform clustering to identify high-level tiles, with which we
re-represent the training maps (2 and 3). We then train a collection of MdMC models (4). A high-level map is sampled (5), and
finally, we sample a corresponding low-level map (6).

tiles, and a set of k chains capture the distribution of low-
level tiles within each high-level tile. The high-level model
is able to capture long range dependencies by compressing
many low-level tiles into a few high-level structures, while
the low-level models only capture immediate dependencies.

To train a Markov chain, we need two things: 1) the de-
pendencies between the state variables and 2) training data.
Figure 3 shows the different dependency structures we use
in our experiments. D0 learns the frequency of each tile, ir-
respective of the neighbors; D1 takes into account one tile to
the left; D2 takes into account one tile to the left, and one tile
below; and D3 learns the distribution of tiles given the tile
to the left, the one below, and the one to the left and below.

The high-level Markov chain is trained with the input
maps re-represented using high-level tiles, and the low-level
Markov chain corresponding to a given high-level tile is
trained with each of the chunks in the input maps that cor-
responds to that high-level tile. Thus, each chain receives a
set of training maps, represented with tiles from a vocabu-
lary S = {s1, ..., sn}, and a given dependency structure D.
Training happens in two steps: Absolute Counts and Proba-
bility Estimation. First, given the dependency structure, the
number of times each tile follows each previous tile config-
uration is counted. Next, the probabilities are set to the fre-
quencies of the observations in the training data. For more
details on this process see (Snodgrass and Ontanon 2014b).

Map Generation
Our method first samples a high-level map, then samples a
low-level map. In both cases our method sample one tile at
a time, starting in the bottom left corner, and completing an
entire row of tiles, before moving to the next row. Low-level
maps are sampled using a high-level map as guidance in the
following way (as illustrated in Figure 2 (5,6)):

• Given a desired map size h × w, and a set of trained
MdMCs as described above.

• A high-level map is sampled using the high-level chain.

• The low-level map is sampled using the low-level chains.
To sample a given tile in the low-level map, we check

S1,1 

P(St,r) 

D0 :! S1,1 S2,1!

P(St,r | St-1,r) 

D1 :!

S2,2!

S1,1! S2,1!

P(St,r | St-1,r , St,r-1) 

D2 :! S1,1 S2,2!

S1,2! S2,1!

P(St,r | St-1,r , St,r-1, St-1,r-1) 

D3 :!

Figure 3: The dependency structures used in our experi-
ments. Notice that D0 is a histogram, D1 is a standard
Markov chain, and D2 and D3 are examples of MdMCs.

the corresponding high-level tile in the high-level map,
which determines which of the low-level chains to use. In
the example shown in Figure 2 (5,6), the current low-level
tile will be sampled using the low-level chain trained for
the high-level tile, “h1.”

While sampling, our method may encounter a set of previ-
ous tiles that was not encountered during training. The prob-
ability estimation for this configuration would thus have not
been properly estimated (absolute counts would be 0). We
call this an unseen state. We assume unseen states are un-
desirable, because many correspond to ill-formed structures
in our application domains. We incorporate two strategies
from our previous work (Snodgrass and Ontanon 2014b) to
help us avoid unseen states: look-ahead and fallback. These
methods attempt to sample with the condition that no un-
seen states are reached. The look-ahead process attempts
to sample a fixed number of tiles in advance, making sure
that no unseen state is reached. If the look-ahead is unsuc-
cessful, and a tile cannot be found that results in no unseen
states, then our method falls back to a simpler (i.e., lower or-
der) dependency structure. More details of how this process
works can be found in (Snodgrass and Ontanon 2014b).

207



Experiments
We chose to use the platformer game Super Mario Bros. and
the puzzle game Loderunner as our application domains3.
Both games feature two-dimensional tile-based maps, but
Super Mario Bros. maps are linear (in the sense explored by
Dahlskog et. al. (2014)), while Loderunner maps are highly
non-linear, and contain many maze-like characteristics.

Super MarioBros.: For our experiments, we used 12 out-
door Super Mario Bros. maps to train our models. We repre-
sent each Super Mario Bros. map using a set of 7 low-level
tiles. S is a sentinel tile referring to the outer boundary of a
map. The remaining tiles correspond to components of the
maps: E represents empty space, B is a breakable block, ? is
a ?-block, p represents the left portion of a pipe, P represents
the right portion of a pipe, and G is the ground.

Loderunner: This is a puzzle game where the player must
collect treasure while avoiding guards. The player is able
to dig holes to trap guards and reach different areas. For
our experiments we used 150 Loderunner maps to train our
models. We represent each Loderunner map using a set of 9
low-level tiles. S is a sentinel tile. The remaining tiles are
defined as follows: E represents empty space, b and B are
sections of ground that can and cannot be dug by the player,
respectively, H is a ladder, T is treasure, G is a guard, R is a
rope, and P represents the player’s starting point.

Experimental Setup
We applied our method to the two games above, experimen-
tally varying the following parameters:

• Number of Clusters (k): map chunks are clustered into
k groups, and we use the medoids of those groups as the
high-level tiles. Therefore, k gives the number of high-
level tiles. We experimented with k ∈ {6, ..., 16}.

• Distance Metric (C): C is used to determine the
distances between different level chunks for cluster-
ing, and translate the input maps into a high-level
tile representation. We experimented with C ∈
{Direct ,Histogram,Markov ,Shape,WeightedDirect}.

• Tile Size (T ): high-level tiles are T × T chunks of low-
level tiles. We experimented with T ∈ {3, 4, 6}.
To test these configurations, we chose a baseline configu-

ration of T = 4, k = 15, and C = WeightedDirect based
on observed performance over some preliminary tests. A
section of a map sampled using the baseline configuration
can be seen in Figure 4. We compare against other config-
urations where only one of the above variables is changed
from the baseline. For all configurations, we use D2 as the
high-level dependency structure, which falls back to D1, and
then to D0. We use D3 as the low-level dependency struc-
ture, which falls back to D2, then to D1, and then to D0. We
evaluated the results using the following metrics:

• Playability: For Super Mario Bros., we loaded the maps
into the 2009 Mario AI competition software (Togelius,

3Super Mario Bros. and Loderunner training sets
are available for download from the author’s website at:
https://sites.google.com/site/sampsnodgrass

Figure 4: A section of a Super Mario Bros. map sampled
using the WeightedDirect metric, k = 15, and T = 4.

Karakovskiy, and Baumgarten 2010) and had Baum-
garten’s A∗ agent play them. For Loderunner, we check
for the existence of a path between all treasures (collect-
ing all treasures completes the level). For each configu-
ration we recorded the percentage of playable maps. No-
tice, that if our methods were to be used for a released
game, we could easily set up a failsafe that simply rejects
any unplayable map, and samples a new map in its place.
However, for the sake of understanding the performance
of our methods, we don’t use such failsafe in this paper.

• Linearity: This metric is used to evaluate the Super
Mario Bros. maps. Linearity refers to the general trend
of the vertical positions of platforms and ground in the
level (Smith and Whitehead 2010). Linearity is measured
by treating each platform and ground section as a point
and using linear regression to find a best-fit line for those
points. The sum of distances between each point and the
line is normalized into [0,1], giving us the linearity value
for that map. The linearity value is inversely proportion-
ate to how linear a map is.

• Leniency: This metric is used to evaluate the Super Mario
Bros. maps. Leniency corresponds to how forgiving a
map is (Smith and Whitehead 2010). That is, how likely a
player is to be harmed. Leniency is measured by counting
the number of places in the map where a player can die.
We did not annotate enemies in our training maps, and
thus, our method does not place enemies, therefore, we
only count the gaps which result in death if not cleared.
We weight each of these gaps by its length.

Playability is measured using 100 sampled maps in Super
Mario Bros. with each configuration, and 50 maps in each
configuration for Loderunner. Linearity and leniency are
computed for 1000 maps with each configuration. We com-
pare the linearity and leniency with those obtained by the
top three competitors from the level generation track of the
2011 Mario AI competition: Takahashi, Baumgarten, and
Mawhorter (Mawhorter and Mateas 2010)(generating 1000
maps with each of them). For Super Mario Bros., we sam-
pled maps that were 12×210, and 32×28 Loderunner maps.

Results
In this section we discuss the results obtained by varying
the number of clusters, distance metric, and tile size. The
baseline of our approach is marked with an asterisk.

208



Figure 5: An example set of high-level tiles extracted using
C = Histogram (left) and C = WeightedDirect (right),
with k = 6, and T = 4.

Table 1: Playability
Super Mario Bros. Loderunner

Histogram 38% 22%
Direct 44% 10%

Markov 60% 16%
Shape 44% 26%

Weighted* 66% 28%

3× 3 44% 22%
4× 4* 66% 28%
6× 6 28% 18%

Non-Hier 49% 34%
Auto-Hier* 66% 28%

Manual-Hier 80% -
Mawhorter 94% -
Takahashi 84% -

Baumgarten 2% -

Number of Clusters. Figure 6 shows the percentage of
maps sampled that are playable for Super Mario Bros. and
for Loderunner, using the playability metrics described pre-
viously. Notice that as the number of clusters increases,
there is a general increase in the percentage of playable Su-
per Mario Bros. maps, whereas the percentage of playable
Loderunner maps remains near 20%. Super Mario Bros. is
not a structurally complex game, that is, many of the chunks
found in the training set are similar, if not identical. Alterna-
tively, Loderunner has a much larger variety of chunks, due
in part to a larger training set, but also because Loderunner
maps rely more on maze-like structures and puzzles in the
level design. Therefore, we hypothesize that when learning
a model for Loderunner a much larger number of clusters
may be needed to model the space.

Distance Metric. The top section of Table 1 shows the ef-
fect of changing the distance metric. Notice that when using
the Histogram distance metric for Super Mario Bros., we
achieve the lowest percentage of playable maps. This is be-
cause there are many structures composed of just a few tile
types, and the Histogram is unable to create an appropriate
cluster for each structure. Notice also, that the Weighted-
Direct metric achieves a high percentage of playable maps
(66%). This is due to the metric being able to cluster similar
structures together. Figure 5 shows the medoids generated
by our system using the Histogram and WeightedDirect
distance measures with k = 6. For Loderunner, the Di-
rect and the Markov distance metric both perform worse than
the other metrics. The Direct metric is unable to create the

��

���

���

���

���

����

�� �� ��� ��� ��� ���

������������������

����������������

�����������������
����������

Figure 6: A graph showing the percentage of playable sam-
pled maps, for Super Mario Bros. and Loderunner, as a
function of the number of clusters.

Figure 7: A Loderunner map sampled using the the non-
hierarchical approach. The blue areas denote the starting
area and treasure areas. The arrows indicate a possible solu-
tion path between the areas.

proper clusters because there are too many different chunks
for meaningful structures to be extracted using a direct tile
by tile comparison. The Markov metric performs poorly be-
cause the maps are not sequential.

Tile Size. The second section of Table 1 shows the effect
of varying the size of the high-level tiles. In terms of playa-
bility we can see that 4 × 4 tiles achieve the best results in
both domains. Complete high-level structures are difficult to
capture in a small 3×3 tile. In Super Mario Bros. this can be
seen empirically. When using the 3 × 3 tile, maps are often
sampled that have multiple high-level tiles corresponding to
a pipe stacked on top of one another. This leads to structures
that are too tall to pass. Using a 6 × 6 tile exponentially in-
creases the possible number of tile configurations that can be
seen, and therefore the number of high-level structures that
need to be found. Without an equal increase in the train-
ing data, we are unable to find all such structures, leading to
clusters that do not properly model the space.

209



Figure 8: Plots of the expressive range of each genera-
tor obtained by plotting leniency against linearity for 1000
maps for each generator. The brightness of a point repre-
sents the number of maps sampled with those linearity (hor-
izontal axis) and leniency (vertical axis) values. A) train-
ing maps; B) non-hierarchical method; C) manual hierar-
chical method; D) and E) automatic hierarchical method us-
ing the Markov and WeightedDirect distance metrics, re-
spectively; F) Baumgarten’s; G) Mawhorter’s; and H) Taka-
hashi’s.

Comparison. The last section of Table 1 shows a compar-
ison between the best results using a non-hierarchical ap-
proach, the best results using the approach outlined in this
paper (achieved using the WeightedDirect distance metric,
k = 15, and T = 4), the best results obtained using hand
crafted high-level tiles, and the results using the three top
performers of the 2011 Mario AI competition level gen-
eration track (Shaker et al. 2011). It is important to note
that the difference in the playability results of our approach
(66%) applied to Super Mario Bros. is statistically signifi-
cant as compared to results of our non-hierarchical approach
(49%). Additionally, the difference in playability between
our automatic hierarchical approach and our manual hierar-
chical approach (80%) is not statistically significant (both
tested using a one-tailed t-test with p = 0.1). That is to
say, our approach performs significantly better than the non-
hierarchical approach, and statistically the same as the man-
ual hierarchical approach for Super Mario Bros. Further,
notice that our approaches do not sample as many playable
maps as the Mario AI competitors, excluding Baumgarten,
whose generator consistently placed large sections of break-
able blocks that the agent was unable to navigate (which
doesn’t necessarily mean the maps are not playable). How-
ever, our approach is general and applicable to multiple do-

mains, whereas the Mario AI competitors are specialized to
Super Mario Bros. and cannot be used in other domains
without significant changes. Notice, the playability results
achieved with our approach for Loderunner and those of
the non-hierarchical approach are not statistically significant
(tested using a one-tailed t-test with p = 0.1). This may be
because Loderunner maps are not structured sequentially in
a way our MdMC model can model. Figure 7 shows a map
sampled using the non-hierarchical approach, and one po-
tential solution path to that map.

Expressive Range. The expressive range refers to the va-
riety of maps a generator is able to produce. In our ex-
periments we measure the expressive range of a generator
by plotting each map sampled, using linearity and leniency
as the axes. Figure 8 shows the expressive ranges of our
method using the Markov (D) and WeightedDirect (E) dis-
tance metrics, our method using the manually defined high-
level tiles (C), our non-hierarchical approach (B), the top
three competitors of the Mario AI competition (F, G, H), and
the original twelve Super Mario Bros. maps that our meth-
ods use for training (A). Notice that the expressive ranges of
our approaches roughly match that of the training set, which
is to be expected. The expressive range of Mawhorter’s
generator (center) has a more constrained leniency than the
other generators. Mawhorter’s generator creates difficulty
in its levels more by placing enemies rather than by plac-
ing holes. Our evaluations ignore enemies, making these
levels appear to be more lenient. Baumgarten’s generator
places large pre-authored sections together, which explains
its fragmented expressive range. Lastly, Takahashi’s gen-
erator’s expressive range looks similar to our approaches’
expressive ranges, albeit shifted and scaled slightly.

Conclusions

This paper presented a hierarchical approach to generating
video game maps using multi-dimensional Markov chains
(MdMCs) for learning and sampling, and clustering for find-
ing high-level structures. Our approach explores the con-
cept of controlling a content generator with training data
instead of domain knowledge. We found that a hierarchy
of MdMCs provides a significant improvement over a sim-
ilar non-hierarchical approach without a significant loss as
compared to the manual hierarchical approach. We want
to investigate whether using Markov random fields in place
of MdMCs can provide further improvements, and at what
cost. Markov random fields would be especially interesting
in games such as Loderunner, where the maps are not lin-
ear, but exhibit complex maze-like structures. We are also
interested in determining how much the training data shapes
the expressive range of our approach, and how the amount
of training data might affect the types of maps sampled.

Acknowledgments

We would like to thank Michael Ashmore for collecting the
Loderunner dataset.

210



References
Ching, W.-K.; Huang, X.; Ng, M. K.; and Siu, T.-K. 2013.
Higher-order markov chains. In Markov Chains. Springer.
141–176.
Conklin, D. 2003. Music generation from statistical models.
In Proceedings of the AISB 2003 Symposium on Artificial
Intelligence and Creativity in the Arts and Sciences, 30–35.
Citeseer.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. Proceedings of the 18th Interna-
tional Academic MindTrek.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: a survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMCCAP) 9(1):1.
Kaufman, L., and Rousseeuw, P. 1987. Clustering by means
of medoids. North-Holland.
Levina, E., and Bickel, P. J. 2006. Texture synthesis and
nonparametric resampling of random fields. The Annals of
Statistics 1751–1773.
Markov, A. 1971. Extension of the limit theorems of prob-
ability theory to a sum of variables connected in a chain.
Mawhorter, P., and Mateas, M. 2010. Procedural level
generation using occupancy-regulated extension. In Com-
putational Intelligence and Games (CIG), 2010 IEEE Sym-
posium on, 351–358. IEEE.
Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P.; Takahashi, G.; et al. 2011. The 2010 mario
AI championship: Level generation track. TCIAIG, IEEE
Transactions on 3(4):332–347.
Shannon, C. E. 2001. A mathematical theory of communi-
cation. ACM SIGMOBILE Mobile Computing and Commu-
nications Review 5(1):3–55.
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. Computational Intelligence and AI in Games, IEEE
Transactions on 3(3):187–200.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 4.
ACM.
Snodgrass, S., and Ontañón, S. 2014a. Experiments in map
generation using markov chains.
Snodgrass, S., and Ontanon, S. 2014b. A hierarchical ap-
proach to generating maps using markov chains. In Tenth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. Computational Intelligence and AI in
Games, IEEE Transactions on 3(3):172–186.
Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 mario AI competition. In Evolutionary Computation
(CEC), 2010 IEEE Congress on, 1–8. IEEE.

211




