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Abstract

Video game worlds are getting increasingly large and
complex. This poses challenges to the game AI for both
pathfinding and strategic decisions, not least in real-
time strategy games. One way to alleviate the prob-
lem is to manually pre-label the game maps with infor-
mation about regions and critical choke points, which
the game AI can then take advantage of. We present a
method for automatically decomposing game maps into
non-uniform sized regions. The method uses a flood-
ing algorithm at its core and has the benefit, in addition
to its effectiveness, to be relatively intuitive both con-
ceptually and in implementing. Empirical evaluation on
game maps shows that the automatic decomposition re-
sults in intuitive regions of a comparable standard to
human-made labeling. Furthermore, we show that our
automatic decomposition, when used by a pathfinding
algorithm capable of taking advantage of pre-labeled re-
gions, significantly improves search effectiveness.

Introduction
Real-Time Strategy (RTS) games pose interesting challenges
for computer-controlled (and human) players. Artificial in-
telligence (AI) constructed agents must in real-time cease-
lessly take a wide range of non-trivial decisions pertaining
to both short and long term planning issues. For example, in
addition to micro-managing multiple units, an effective AI
agent also needs to consider questions such as: how to effec-
tively gather in-game resources, in which order to build units
and advance technology, how to secure the home-base, and
how to attack the opponents – to name a few. Such decisions
are more often than not strongly influenced by geospatial at-
tributes of the game-world terrain, thus requiring some kind
of a spatial reasoning. Terrain analysis is thus a vital part of
any successful RTS game AI.

Terrain analysis for RTS (and other) video games has thus
received considerable research attention in the past (Pot-
tinger 2000; Forbus, Mahoney, and Dill 2002; Brobs, Saran,
and van Lent 2004; Björnsson and Halldórsson 2006; Hale,
Youngblood, and Dixit 2008; Perkins 2010; Si, Pisan, and
Tan 2014). Typically one of the most important steps in such
analysis is the decomposition (or partitioning) of the game
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map into strategic regions. This is useful for the game AI not
only for spatial reasoning at a higher abstraction level than
otherwise possible, but also to speed up pathfinding. Com-
puting paths for multiple units in real-time on large game
maps is computationally demanding, even for modern-day
computer hardware. Furthermore, pathfinding queries are
not only useful for unit navigation, but also for assisting with
answering some of the aforementioned queries pertaining to
strategic planning (e.g., how far to an important resource).

The main contribution of the paper is a new algorithm
for decomposing game maps. One key advantage of our al-
gorithm, in addition to its effectiveness, is how intuitive it
is conceptually, thus resulting in predominantly human-like
partitions. This is a valuable quality as the partitions are
more likely to harmonize with the objectives and intentions
of the game-map designer(s). Furthermore, using a standard
test-suite of game maps from commercial RTS (and role-
playing) games (Sturtevant 2012), we provide empirical ev-
idence of the algorithm’s effectiveness by visualizing and
contrasting the resulting map partitions to both computer-
and human-made ones, as well as by demonstrating how the
partitions improve pathfinding efficiency.

The paper is structured as follows. In the next section we
introduce relevant background material and the terminology
used throughout. The subsequent sections describe the auto-
matic map decomposition algorithm and its empirical eval-
uation, respectively. Finally, we give an overview of related
work before concluding and discussing future work.

Background
We assume grid-based maps of any width and height consist-
ing of tiles. A tile can be either traversible or non-traversible
(also referred to as empty or wall, respectively). A region (or
zone) is a set of connected traversible tiles of any size or
shape. The process of decomposing (or partitioning) a map
is to cluster the tiles into meaningful regions. Although ad-
jacent regions may initially have irregular boundaries, we
refine them to be line segments (connecting walls), called
gates. Gates are represented by their end points. The core
output of the decomposition algorithm is a list of gates.

In our setting, a meaningful decomposition ideally creates
zones that help the game AI make strategic and pathfinding
decisions. Conversely, it should avoid creating zones influ-
enced by irrelevant textures and aesthetic structures.
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Figure 1: Here we see four images of maps during intermediate stages of the algorithm. The first image is the original map with
traversible tiles in white and non-traversible wall tiles in black. The other images show the maps corresponding to the output of
Algorithms 1, 2 and 3, respectively.

Decomposition
Our decomposition algorithm is conceptually easy to under-
stand. First, we create a depthmap from the original map,
where each non-traversible tile is at a ground level and
each traversable tile at a sub-ground level: the further its
distance to the nearest non-traversable tile the deeper its
level. This depthmap forms a carved out 3D landscape where
the traversable tiles form valleys of different depths, possi-
bly separated by ridges. These ridges form candidates for
boundaries between regions. Second, our algorithm locates
the (most prominent) ridges, for which it uses a technique
simulating a rising ground-water level. As the water level
rises, lakes start to form and grow in the valleys and gradu-
ally start to unite, overflowing ridges. This amalgamation of
lakes is used to identify the ridges. The contours of the iden-
tified ridges can, as in nature, have some twists and turns.
The final step of the algorithm is thus to approximate the
ridges by straight line segments, which are easier for the
game AI to work with.

Algorithm
We start by building a depthmap where the depth of each tile
is a function of its distance to the nearest wall. The further
away from any wall a tile is, the deeper its level.

Algorithm 1 Depth mapping
for all tiles (x, y) in map do

determine depth of tile (see Algorithms 4 & 5)
write depth into depthmap at (x, y)

end for

After building the depthmap we begin building a zone
map as well as a gate cluster map. The zone map is a grid
where each tile has a label; zones are composed of every tile
with the same label and the gate cluster map is just used to
keep track of which tiles are right on the boundaries between
adjacent zones.

The water level starts at the maximum depth found during
depth mapping and labels each tile at that depth; a unique
label is given to tiles that stand alone, but tiles adjacent to
previously labelled tiles inherit their neighbor’s label. If a

tile has two or more neighbors with different labels then it is
located where two zones meet (on a ridge); the tile is marked
as a gate tile and becomes part of a gate cluster.

Algorithm 2 Water level decomposition
currentWaterLevel← maxDepth
while currentWaterLevel ≥ 0 do

for all tiles (x, y) at depth currentWaterLevel do
if (x, y) has > 1 labelled neighbors then

if neighbors have different labels then
mark (x, y) as gate tile

end if
give (x, y) same label as any neighbor

else if tile has 1 labelled neighbor then
give tile same label as neighbor

else
give tile new label

end if
end for
currentWaterLevel← currentWaterLevel − 1

end while

The final step is building gates from the irregularly shaped
gate clusters and adding them to the gate list. Two end points
are detected for each gate cluster . Having found these end
points we can rasterize straight lines between them and use
these to flood-fill the zones again for our final zone mapping,
if needed.

Implementation Details
The depth map structure is in fact two structures: a) the
depth map; a map indexed on grid position to find the depth
of each tile, and b) the depth tile list; a vector indexed on
depths where each element is a list of grid positions that
have the same depth. This way the depth map can be ac-
cessed in near constant time from any part of the algorithm,
whether it needs the depth of particular coordinates or the
set of coordinates at a particular depth.

To aid in building this depth map faster we use a tempo-
rary structure which is indexed on octile distances and has
elements which list all (x,y)-grid offsets that add that partic-
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Algorithm 3 Build gate list
for all tiles (x, y) in map do

if (x, y) is marked as gate tile then
FloodFill cluster of connected gate tiles
Remove all tiles not adjacent to wall
Select one tile from each remaining connected clus-
ter
Build gate from two selected tiles
Add gate to list of gates
Remove remaining tiles from cluster

end if
end for

ular octile distance. When mapping the depth of each tile we
check each octile distance, starting at zero, add each offset in
that distance’s list to the current tile coordinates and check
if there is a wall at that location. A further optimization is
to not start this offset at zero distance each time, but at one
horizontal movement less than the previous depth found.

Algorithm 4 Determine depth of tile - simple version
(x, y)← tile
currentDepth← lastFoundDepth− 1 (0 first pass)
while depth not found do

for all offsetCoord of currentDepth do
if (x, y) + offsetCoord is wall tile then
depth(x, y)← currentDepth
break while

end if
end for
currentDepth← currentDepth+ 1

end while

Refinements
One artifact of the algorithm is that it detects gates that close
off tiny spaces that have little or no effect on the search strat-
egy, especially in noisy maps and maps with wavy or uneven
walls. To reduce this noise we chose to add parameters to the
algorithm for tweaking the depth-mapping. The wall thresh-
old is used to average out the depths by not registering the
depth of a tile as soon as the search finds a wall, but rather
after finding a number of walls equal to the threshold. This
adds several more iterations of the grid-offset search, but the
smoothness in the output outweighs the performance con-
serns. To further smooth the output we group depth values
together by dividing by a distance denominator and flooring
the result. This makes each depth line wider and helps even
out noise in the depth mapping.

Instead of manually setting these parameters, we opted for
a fully automated approach by tuning them dynamically at
runtime.

This also prevents erratic results when maps are unusually
tight and crowded or wide and open. The algorithm dynami-
cally sets the wall threshold for each tile when processing it.
The value is a function of the distance to the first wall found
and the map size.

The dynamic distance denominator is set to the base 2
logarithm of the distance, floored, resulting in depth areas
that are progressively wider the further they are away from
walls. This way the algorithm is less likely to close off lit-
tle useless pockets in the map, but still retaining meaningful
details of small and intricate areas within the maps.

Algorithm 5 Determine depth of tile - refined version
(x, y)← tile
currentDepth← lastFoundDepth− 1 (0 first pass)
while depth not found do

for all offsetCoord of currentDepth do
if (x, y) + offsetCoord is wall tile then

if first time a wall tile is found then
wallThreshold ← (maxDepth −
currentDepth)/28 + 1

end if
if wall tile has been found wallThreshold times
then
depth(x, y)← blog2(currentDepth) + 1c
break while

end if
end if

end for
currentDepth← currentDepth+ 1

end while

(Björnsson and Halldórsson 2006) describes a heuristic
function for A* pathfinding search that uses precalculated
data derived from a decomposition of the map to quickly
and closely estimate path distances between locations in the
map. It uses gates to separate zones, however, the gates must
be either vertical, horizontal, or 45◦ diagonal. On the other
hand, our decomposition method can generate gates of any
orientation. Thus, to make our partitioning compatible, we
added a pre-processing phase where all gates are rotated so
that they have either 0◦, 45◦ or 90◦ orientation. In each ro-
tation step the the algorithm selects a line-segment end to
move such that there is as little change as possible needed to
the length and overall position of the gate.

Empirical Evaluation
The effectiveness of our decomposition method is evaluated
in three ways, as reported in the following subsections. First,
we collect various logistics about the decomposition pro-
cess. Second, we visualize the resulting partitions and con-
trast them with those generated by other computerized meth-
ods reported in the literature, as well as with those generated
by skilled humans. Third, and last, we show the usefulness
of the automated decomposition when used with an existing
pathfinding algorithm capable of taking advantage of pre-
labeled partitions.

Table 1 lists the maps we use for our experiments. They
are all, with the exception of the last one, from the Grid-
Based Pathfinding Benchmark Test-Suite (Sturtevant 2012).
The last map is the demo map used throughout the (Perkins
2010) paper and is included to allow for a direct compari-
son to that work. The entire pathfinding test-suite contains
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Table 1: Map decomposition statistic. The first column is
the name of the map, the second column the time in sec-
onds it takes to decompose the map, the third column is
the map size, the forth column the number of gates the de-
composition algorithm generates, and the last column shows
the relative speedup compared to (Perkins 2010). The maps
are taken from StarCraft (the first group, 17 maps), Baldur’s
Gate II (the second group, 2 maps) and Starcraft II (the third
group, 1 map).

Map Time Size Gates Speedup
AcrosstheCape 7.71 768x768 57 4.1
ArcticStation 10.15 768x768 82 2.8
Backwoods 3.59 768x512 79 4.2
BigGameHunt 2.26 512x512 20 3.1
BlackLotus 5.01 768x768 63 6.9
BlastFurnace 9.55 768x768 68 3.5
BrokenSteppes 12.23 768x768 86 2.8
Brushfire 1.14 512x512 29 4.9
CatwalkAlley 4.56 512x512 98 1.1
Cauldron 18.70 1024x1024 140 7.9
Crossroads 8.91 768x768 54 2.8
DarkContinent 4.92 512x768 46 2.9
Elderlands 10.54 768x768 42 2.0
Enigma 4.16 768x768 64 5.6
FireWalker 1.35 512x384 16 4.3
FloodedPlains 8.83 768x768 85 3.6
GladiatorPits 6.49 768x512 76 3.9
AR0205SR 1.31 512x512 41 -
AR0406SR 0.73 512x512 60 -
Byzantium 3.0 2.35 512x512 29 -

hundreds of maps from various games, but we use only a
small subset of those to make it feasible for us to visu-
ally inspect all partition results. Most of the maps are from
Stracraft, but we also included a few others maps used in
other work (Björnsson and Halldórsson 2006; Perkins 2010)
to allow for a more direct comparison.

All the experiments were run on a computer with
a Quad Core Intel i5 CPU with 16 GB of memory
(one core used). We used the offline BWTA2 module at
https://bitbucket.org/auriarte/bwta2 to run and time Perkins’
algorithm. For fairness, we timed only the map decomposi-
tion relevant parts of the BWTA analysis (that is, generation
and pruning Voronoi diagrams and the subsequent detection
of chokepoints and regions).

Decomposition Statistics
Table 1 shows, for each map, the run-time of the decomposi-
tion and the number of gates generated. First, we note that it
typically takes only a few seconds to decompose a map, and
no more than 10-20 seconds for the larger and more compu-
tationally demanding maps. This is a sizable speedup com-
pared to (Perkins 2010), where our method runs on average
more than four times faster and close to eight times faster on
the largest map. Such a fast decomposition approach opens
up for the possibility of using the decomposition in real-time
settings for dynamically changing maps; for example, when

new regions become reachable (e.g., as in Warcraft when
foresting connects new regions) or when regions become
non-reachable (e.g., when a bridge collapses). Of course, it
is not feasible to run the decomposition too frequently dur-
ing gameplay, but such partition-altering events only occur
sporadically. Second, we note that the number of gates per
map is relatively small, which is preferred for these maps in
terms of creating human-intuitive regions.

Decomposition Output
We contrasted the partitioning output of our algorithm to
that of the partition algorithm’s introduced in (Björnsson and
Halldórsson 2006) and (Perkins 2010), as well as to human-
made partitioning. Figure 2 shows representative results
from that comparison. Essentially, our partitioning looks
more intuitive than that of (Björnsson and Halldórsson 2006)
and yields very similar partitions to both (Perkins 2010) and
the human-made ones.

It is not surprising that we do better than the decom-
position method introduced in (Björnsson and Halldórsson
2006), because it was steered towards room-like maps. Also,
the focus of that work was primarily on a pathfinding algo-
rithm that uses the partitions, as opposed to the map decom-
position algorithm itself. What is more of an interest is that
our method generates almost identical partitions to those of
Perkin’s state-of-the-art method, despite being both simpler
and more computationally efficient. We also recruited a few
avid RTS players among our students, all with some game-
development background, and asked them to partition four
different game maps into regions of interest for a game AI.
Not only were the humans surprisingly consistent with their
labeling among them selves, but the partitions were also al-
most identical to the ones produced by our automated de-
composition method. The bottom rightmost map in Figure 2
shows one human-made partition and Figure 3 pictures an-
other example.

Decomposition Used by Pathfinding
Finally, we implemented the pathfinding method described
in (Björnsson and Halldórsson 2006), which is capable of
taking advantage of map partitioning to speed up pathfind-
ing, and ran it on the aforementioned game maps parti-
tioned by our decomposition methods (using the pathfinding
benchmark searches provided in the maps scenario files).
This resulted in 43% savings in terms of node expansions
and 32% saving in run-time, compared to 41% and 17%,
respectively, as reported in the (Björnsson and Halldórsson
2006) paper. We report only relative improvements of each
individual decomposition, as a comparison based on abso-
lute values would not make much sense because of different
implementations, hardware, and maps used. Even so, this
comparison needs to be taken with some scepticism as the
original paper uses smaller maps on average. However, if we
look at their most favorable reported result, where they look
only at the top 10% largest paths on their largest map, their
decomposition yields 35% runtime speedup. This is close
to our average over all paths and maps, with our best case
maps and batches saving close to 50%. We can thus (con-
servatively) conclude that the run-time savings are at least in
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Figure 2: The decomposition of the maps in the top row are done by our method, but the maps in the bottom row are done by
contrasting decomposition methods: the one on the left by (Björnsson and Halldórsson 2006), the one in the middle by (Perkins
2010), and the one to the right by humans.

the same ballpark for both decompositions, meaning that our
partitioning scheme seems equally well-suited for speeding
up pathfinding despite not being specifically designed for
that purpose.

Discussions
The empirical evaluations clearly demonstrate the viability
of our method for automated map decomposition. Not only
does it generate partitions that are intuitive and human-like,
but it also compares favorably with an existing state-of-the-
art automated decomposition method; that is, it produces
similar quality partitions, but in a more computationally ef-
ficient manner. The resulting partitioning can also be used to
speed up pathfinding.

Related Work
The following two works are the most related to the work
we present here. The former is focused on map decomposi-
tion for improving strategic decisions and detecting choke-
points, whereas the latter introduces both a map decompo-
sition method and a pathfinding algorithm for taking advan-

tage of the decomposition.

In (Perkins 2010) a method is presented for detecting
choke points and decomposing a game map into region poly-
gons. It starts by recognizing separate obstacle polygons, us-
ing them to build a Voronoi Diagram that is then pruned and
evaluated in order to find regions and choking points in the
traversible area of the map. These choking points represent
the shortest distances between obstacle polygons where con-
gestions could happen when moving great numbers of units
through. This method yields a similar result to our algorithm
but seems very intricate. It requires the reduction of map tile
clusters into polygons before building its decomposition and
also needs to prune its results and finally convert back into
the original format of the map.

(Björnsson and Halldórsson 2006) describes a search
heuristic that uses a decomposition of a grid-based map to
better evaluate path lengths and speed up optimal pathfind-
ing searches. By precalculating distances between gates in
the decomposed map a better informed search heuristic for
A* is constructed, resulting in significant speedup of the
pathfindig searches. Whereas the partition-based pathfinding
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Figure 3: Side by side comparison of the decomposition done by our algorithm (left) and a manual decomposition (right).

algorithm is general and seemingly has a wide applicability,
then the decomposition algorithm introduced seems overly
targeted towards maps with rectangular structures, such as
rooms and hallways. Consequently, it does not seem well-
suited for landscape-like maps as seen by it creating an ex-
cessive number of regions and gates.

Conclusions and Future Work
We introduced a fully automated method for map decompo-
sition that is both computationally efficient and yields intu-
itive partitions comparable in quality to the state-of-the-art.
Also, an added appeal of the new method is its simplicity
and good run-time efficiency.

The effectiveness of our decomposition method was eval-
uated in three ways: firstly we showed its runtime efficiency
and that it typically takes only a few seconds to decompose
a map; secondly we showed that the partitions it generates
are of a comparable quality to both manual decompositions
and that of other state-of-the-art automated methods; finally
we demonstrated its usefulness for speeding up pathfinding
searches.

As for future work, we plan to empirically test our method
on a larger set of more disparate maps to better map the
method’s strengths and weaknesses. Also, an optimization
of the decomposition with specific objectives in mind is an
interesting avenue of further research. For example, we no-
ticed that even though the efficiency of the partition-based
pathfinding algorithm is not affected by the total number of
gates in a map, it is quite sensitive to the maximum num-
ber of gates individual zones have (the reason being that the
improved heuristic function using the gate information has
a time complexity of O(g2), where g is the number of gates
a zone has). Thus, decomposing a map with the objective of
creating only zones with a small number of gates could po-
tentially yield additional pathfinding speedups. On similar
notes, by profiling usage data from in-game pathfinding and
AI decision making one would get a better sense of which
zones are the least and most relevant; one could then use the
insights gained from the profiling to further refine the auto-

mated decomposition.
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