
A Lightweight Algorithm for Procedural Generation of
Emotionally Affected Behavior and Appearance

Yathirajan Manavalan1 and Vadim Bulitko1 and Marcia Spetch2

Departments of Computing Science1 and Psychology2
University of Alberta

Edmonton, Alberta, T6G 2E8, CANADA
{yathi.bm|bulitko|mspetch}@ualberta.ca

Abstract

Displaying believable emotional reactions in virtual
characters is required in applications ranging from
virtual-reality trainers to video games. Manual scripting
is the most frequently used method and enables an arbi-
trarily high fidelity of the emotions displayed. However,
scripting is labour intense and greatly reduces the scope
of emotions displayed and emotionally affected behav-
ior in virtual characters. As a result, only a few virtual
characters can display believable emotions and only in
pre-scripted encounters. In this paper we implement and
evaluate a lightweight algorithm for procedurally con-
trolling both emotionally affected behavior and emo-
tional appearance of a virtual character. The algorithm
is based on two psychological models of emotions: con-
servation of resources and appraisal. The former com-
ponent controls emotionally affected behavior of a vir-
tual character whereas the latter generates explicit nu-
meric descriptors of the character’s emotions which can
be used to drive the character’s appearance. We imple-
ment the algorithm in a simple testbed and compare it to
two baseline approaches via a user study. Human partic-
ipants judged the emotions displayed by the algorithm
to be more believable than those of the baselines.

1 Introduction
Emotionally affected behavior of virtual characters in video
games and training environments can significantly impact
the user’s experience. In movies and books characters are
often remembered by their emotional reactions. We expect
James Bond to be confident and suave, Master Yoda to
be mysterious and wise and Sherlock Holmes to be calm
and rational. Similarly, the witty and narcissistic antago-
nist GLaDOS from the Portal video game series (Valve
2007) stays with the player long after the game is over. The
emotional reveal by Pagan Min at the climax of Far Cry
4 (Ubisoft 2014) brings a resolution to the player’s strug-
gle during the forty-some hour campaign. The cool and col-
lected acknowledgment “Moving to position” of the non-
playable special-force companions in Tom Clancy’s Ghost
Recon 2 (Ubisoft 2004) becomes the strained “Move accom-
plished!” as the game’s combat heats up. And how can one

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

forget the gleeful “Yest, Kapitan!” of a battle station offi-
cer acknowledging a torpedo launch aboard a Russian attack
submarine in Sub Command (Strategy First 2001)?

Similarly, virtual reality trainers have long attempted to
incorporate emotionally believable characters in their train-
ing simulations. In the early nineties, the US Navy IDCTT
trainer used live acting recordings to create the emotion-
ally charged atmosphere of damage control aboard a ship
under attack (Johnson 1994). In the mid two thousands, an
Iraqi police captain Farid, a non-playable character in a vir-
tual reality trainer by the Institute for Creative Technolo-
gies, would be offended by the player’s inappropriate chit-
chat (Solomon et al. 2008).

As the graphical fidelity of virtual characters have in-
creased substantially, the gap between their realistic ap-
pearance and unrealistic behaviors has widened. This is in
part due to two trends currently seen in the video game
industry. First, modern video games are moving towards
giving the player more agency. While most commercial
video games still do not allow the player to free type like
Façade (Mateas and Stern 2003) or use their voice like The
Restaurant Game (Orkin and Roy 2007), more options are
becoming available (e.g., the interaction wheel of the Mass
Effect series). Second, even the traditionally story-oriented
studios such as BioWare are making their games more open-
world (Campbell 2014) where the player is actively encour-
aged to roam massive worlds and interact with hundreds of
AI-controlled virtual characters in them (Pramath 2015).

Combined, the two trends result in a progressively larger
number of AI-controlled non-playable characters (NPCs)
the player can interact with and a larger number of ways
to do so. As a result, even with tens of millions of dollars
in development budgets, it is impossible to hand-script emo-
tionally affected reactions and appearances of each charac-
ter in response to each possible way the player may inter-
act with them. Thus, a handful of characters may be fully
scripted for the specific ways the player is allowed to in-
teract with them whereas hundreds of others will deliver
generic one-line reactions to actions the player takes toward
them. The discrepancy breaks immersion and reminds the
player that she is playing a game. For instance, Amita, a key
story character in Far Cry 4, becomes a generic in-world
NPC after the single-player champaign ends and the game
transitions to an endless open-world simulator. Previously

Proceedings, The Eleventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15)

142



talkative and emotional, Amita now idly walks around the
world, cycling through generic animations, mute and obliv-
ious of her prior interactions with the player. While merely
immersion-breaking in a video game, such lack of realism
may be intolerable in a VR trainer (Traum et al. 2003).

We propose to address the content bottleneck by procedu-
rally generating both emotionally affected actions and emo-
tional appearance descriptors of computer-controlled char-
acters in video games and virtual reality trainers. Proce-
dural generation is a promising approach with advances
made in level generation (Valtchanov and Brown 2012),
NPC population (Booth 2009) and gameplay difficulty ad-
justment (Hunicke and Chapman 2004). Furthermore, work
exists on visualizing emotions via procedurally animated fa-
cial expressions (Nvidia 2013) and body language (Desai
and Szafron 2012). In this paper we implement and evaluate
a recent algorithm that can procedurally generate emotion-
ally charged NPC actions and explicit emotional descriptors
for visualization. While procedural models of emotional re-
actions have been explored over the past few years, this al-
gorithm is intentionally lightweight for an easy integration
in video games and trainers, especially running on mobile
hardware and consoles.

The rest of the paper is organized as follows. We formu-
late the problem in Section 2 and follow with a discussion of
related work in Section 3. We present details of our imple-
mentation of the algorithm in Section 4. We then present the
results from a user study comparing the algorithm against
two baseline models in Section 5. We discuss the limitations
of the algorithm and possible future work Section 6.

2 Problem Formulation
Our problem is to procedurally generate NPC emotions that
can be used to drive the NPC appearance and behavior. The
criterion of success is whether such displays of emotions are
deemed believable by a human observer. As more and more
games are moving towards the open-world model with hun-
dreds to thousands of AI-controlled characters, an ideal so-
lution to the problem will be computationally lightweight,
allowing a number of NPCs to be driven simultaneously
on modest hardware such as game consoles. Additionally,
the procedural methods should minimize character author-
ing time and, ideally, be accessible to a non-programmer.

3 Related Work
There have been three primary approaches to achieving
emotionally believable artificial characters in video games
and other settings. The first is manual scripting, where the
designers script the actions, facial expressions and dialogue
of a virtual character for every possible in-game interac-
tion. As a result, the designers have complete control on
how the virtual character is going to behave and emote in
each scenario. This can yield realistic movie-like experience
but requires a substantial amount of time and effort on the
part of the designers. Consequently, most video games and
virtual training environments necessarily limit the number
of characters the player/trainee can interact with and/or the
scope of the interactions available. For instance, BioWare’s

Mass Effect series (Bioware 2007) constrains the player’s
actions with a dialogue wheel and quicktime events and
only fleshes out the primary characters in specific encoun-
ters. Other characters tend to utter generic one-liners and
behave less believably when the player attempts to interact
with them. Even the primary characters exhibit emotionally
unbelievable behavior beyond pre-scripted encounters: the
implausibly repetitive “Wrex. Shepard.” dialogue from Mass
Effect has become an Internet meme (Linguica 2008).

The second approach replaces hand-scripted emotional
NPC responses with a procedural model that takes in the
context and the player’s actions and outputs a numerical de-
scriptor of the NPC emotions. A few representatives of this
approach use an appraisal model of emotions which postu-
lates that emotions arise from the character’s appraisal of the
current state with respect to the character’s goals (Scherer,
Schorr, and Johnstone 2001). For instance, when achieving
a desirable goal is uncertain the character may experience
hope. A looming undesirable state elicits fear and so on. A
well known computational implementation of this approach
is EMotion and Adaptation (EMA) (Gratch and Marsella
2001; 2004a; 2004b; Marsella and Gratch 2009) which can
be expensive to run and daunting for game developers to im-
plement at its full scale. A lightweight subset of EMA has
been proposed (Bulitko et al. 2008) but it can only produce
emotional descriptors (e.g., the amount of fear an NPC is
feeling) and not the related coping actions.

The third approach forgoes procedural generation of emo-
tion descriptors and instead generates emotion-related ac-
tions. For instance, an NPC fearing for its life may run
away, causing the player to attribute the emotion of fear to
it (Isla 2005). The psychological theory of resource con-
servation (Hobfoll 1989) suggests that character actions
stem from protecting and gaining resources that the charac-
ter deems valuable. Computational implementations of this
approach (e.g., COR-E (Campano et al. 2013) and Thes-
pian (Si, Marsella, and Pynadath 2005)) have been pro-
posed. While computationally lightweight and less daunt-
ing to embed into a game, COR-E does not generate ex-
plicit emotional descriptors and therefore is unable to drive
facial (MOVA 2009; Nvidia 2013) and non-facial (Desai and
Szafron 2012) NPC emotional displays or modulate the NPC
voice (Black and Lenzo 2003).

4 Implementing ACORE
In this paper we adopt a recent combination of COR-E and
EMA known as ACORE (Manavalan and Bulitko 2014).
Similarly to COR-E, ACORE uses a representation of re-
sources valuable to the NPC. This allows ACORE to gener-
ate actions that the player can interpret as the NPC’s displays
of emotions (e.g., fleeing from danger may be attributed to
fear). Like CEMA and unlike COR-E, ACORE also uses an
appraisal model of emotions to compute explicit emotion de-
scriptors. For instance, if a valuable resource is threatened,
ACORE will generate a numeric value for the emotion of
fear which can be used to drive the NPC appearance and
even color a display of the protective action.

To make this paper more self-contained, we will now al-
gorithmically describe ACORE. In-game non-playable char-

143



acters, NPCs, are controlled by Algorithm 1. Lines 1 through
3 initialize the NPCs’ data. Then, as long as the game is
not over (line 5), we model each NPC’s action selection
by invoking the resource conservation module ACOREaction
(line 7, detailed in Section 4.2). We then compute NPC’s
emotional descriptors by invoking the appraisal module
ACOREemotion (line 8, detailed in Section 4.3). Resource val-
ues are updated using the actions of this and other NPCs
(line 9). Emotion descriptor values decay over time (line 10).

Algorithm 1: ACORE
1 for each NPC do
2 initialize: resources r̄1, resource weights w̄1

3 initialize ē1 = (0, 0, 0, 0)

4 t← 1
5 while game running do
6 for each NPC do
7 act: at ← ACOREaction(r̄t, w̄t, At)
8 display emotions: ēt+1 ← ACOREemotion(r̄t, w̄t, ēt)
9 update resources: r̄t+1 from r̄t, at and other NPCs’

actions
10 decay the emotion values: ēt+1 ← ēt+1/2

11 t← t+ 1

4.1 Resources
ACORE associates a set of valuable resources (e.g., health,
reputation, gold) with each NPC. Mathematically, each NPC
has a vector of resources, which at time t is denoted by
r̄t = (r1t , . . . , r

N
t ) where each rit ∈ R is a scalar repre-

senting the value of i-th resource at time t. The NPC as-
signs different importance or value to each resource and
this is represented by N -dimensional weight vector w̄t =
(w1

t , . . . , w
N
t ) ∈ (0, 1]N . A higher weight indicates higher

importance of the resource to the NPC. Generally speaking,
the weights may change over time but remain in (0, 1].

To illustrate we will walk through the algorithm on a con-
crete example. Consider an NPC standing in a line of other
NPCs, waiting to purchase a product (Figure 2). Each of
the NPCs has three resources: health, reputation and rank,
which is inversely proportional to the NPC’s place in line.
Assume that at some time t, the resources of our NPC are
r̄t = (1, 1, 0.5). Suppose the NPC values the health resource
at 0.26, the reputation resource at 0.17 and the rank resource
at 0.44: w̄t = (0.26, 0.17, 0.44). We will now run the NPC
step-by-step through ACORE.

4.2 Computing NPC Actions
Each NPC has a set of actions (called behaviors in COR-E)
available to it at time t, denoted by At. The actions can be
primitive or complex, consisting of a control policy. Each
action can affect the resources the NPC holds (e.g., getting
into a fight may negatively affect the NPC’s health). NPCs
select actions that are expected to increase their cumulative
weighted resource value (lines 2 and 3 of Algorithm 2).

The value of an action is the sum of the resource value
deltas weighted by the resource weights, conditional on the

Algorithm 2: ACOREaction

inputs : current resources r̄t, resource weights w̄t, available
actions At

outputs: selected action: at
1 for a ∈ A do
2 compute action value: V (a)← w̄t × (E[r̄t+1|a]− r̄t)T

3 select action: at ← arg maxa∈At V (a)

action. In our example, an NPC standing in line has two ac-
tions available for it: At = {apass, await}. By taking the apass

action, the NPC will attempt to pass the NPC standing in
front of it, thus improving its rank in the line but possibly
losing reputation or even health (if the NPC being passed
physically protests the pass). Suppose that by passing the
NPC expects its resources to change from r̄t = (1, 1, 0.5) to
E[r̄t+1|apass] = (0.95, 0.6, 1). Weighting the expected delta
E[r̄t+1|apass]− r̄t by w̄t = (0.26, 0.17, 0.44) the NPC com-
putes the value of passing as V (apass) = 0.139 (line 2).

An alternative action is to wait in line which does not im-
mediately change the resource vector. Hence V (await) = 0.
Then, in line 3, the NPC will select the action with the max-
imum value: at = apass. Note that a different set of resource
weights (e.g., w̄t = (0.5, 0.5, 0) for an NPC that cares about
its health and reputation but not about its place in the line)
would have made the value of the passing action negative
and led to the NPC selecting the wait action instead.

4.3 Computing NPC Emotions
ACORE simplifies the emotion model of EMA (Gratch and
Marsella 2001; 2004a) by assuming that each NPC has only
a single goal: to improve its weighted resource values. The
appraisal process is thus limited to considering changes in
the resource vector. In line with CEMA (Bulitko et al. 2008),
ACORE models only four emotions: hope, joy, fear and
distress. At time t, the NPC represents its emotional state
as a four-dimensional vector ēt =

(
ejoy
t , ehope

t , edistress
t , efear

t

)
where each et represents the intensity of the corresponding
emotion. The initial emotion vector ē1 is (0, 0, 0, 0), set in
line 3 of Algorithm 1.

The intensity of each emotion with respect to a resource
is computed as the product of the NPC’s desirability α of
the change in the resource caused by the action selected by
ACOREaction (Section 4.2) and the certainty of the change
β. The desirability is the product of the resource weight and
the expected change in the value of a resource caused by the
action (line 3, Algorithm 3). The certainty of the change is
the probability of the change in the direction specified by α
(lines 5 and 7). A desirability of zero leads to no changes to
the agent’s emotions.

The total intensity of each emotion is the sum of its inten-
sity for each resource i (the loop in line 2). Which emotion
gets the update depends on the relation between the desir-
ability and certainty. Desirable but uncertain changes in a
resource contribute to hope (lines 10 and 11), desirable and
certain changes contribute to joy (lines 8 and 9). Likewise,
undesirable resource changes contribute to fear (when they

144



are uncertain, lines 14 and 15) or distress (when they are
certain, lines 12 and 13).

Algorithm 3: ACOREemotion

inputs : current resources r̄t, resource weights w̄t, selected
action at, current emotion ēt

output: emotion ēt+1 =
(
ejoy
t+1, e

hope
t+1, e

distress
t+1 , efear

t+1

)
1 start with the current emotion ēt+1 ← ēt
2 for resource index i = 1, . . . , N do
3 compute desirability: α← wi

t · (E[rit+1|at]− rit)
4 if α > 0 then
5 compute certainty: β ← Pr(rit+1 > rit | at)
6 else
7 compute certainty: β ← Pr(rit+1 < rit | at)
8 if α > 0 & β = 1 then
9 compute joy: ejoy

t+1 ← ejoy
t+1 + α

10 else if α > 0 & β < 1 then
11 compute hope: ehope

t+1 ← ehope
t+1 + α · β

12 else if α < 0 & β = 1 then
13 compute distress: edistress

t+1 ← edistress
t+1 − α

14 else if α < 0 & β < 1 then
15 compute fear: efear

t+1 ← efear
t+1 − α · β

We will now illustrate the operation of ACOREemotion with
specific numbers, continuing our example from the previous
section. Starting with the current emotion values ēt (line 1),
our NPC computes an update to its new emotional state ēt+1

for each resource in the loop in line 2. Suppose the current
value of the NPC’s health is rhealth

t = 1. Under the action
at = apass selected by ACOREaction in Section 4.2, the health
resource is expected to decrease (E[rhealth

t+1 |apass] = 0.95)
due to a possible physical opposition from the NPC be-
ing passed. The decrease in health in undesirable because
health is positively weighted (w = 0.26). Thus, α = w ·(
E[rhealth

t+1 |apass]− rhealth
t

)
= 0.26 · (0.95− 1) = −0.013.

The certainty β of the undesirable health decrease is then
computed as Pr

(
rhealth
t+1 < rhealth

t | apass
)

(line 7) which, gen-
erally speaking, depends on the action the NPC being passed
will take. We model this in two stages. At the first stage we
assume that our NPC has not yet observed the actions of
other NPCs and thus uses a prior for the certainty values. We
compute the resulting changes to the emotion model which
can then be visualized with the NPC’s appearance. In stage
two, the NPC has observed the actions of the affected NPCs
and updates its emotion model accordingly. The emotional
appearance can then be visualized once again.

For the health resource before the NPC is able to observe
actions of the NPC being passed, it uses the prior β = 0.95.1
With this value, the conditions in line 14 will be satisfied
and the intensity of emotion fear will be updated as efear

t+1 ←
efear
t+1 − α · β = efear

t+1 − (−0.013) · 0.95 = efear
t+1 + 0.0123 in

line 15. In other words, our NPC is now slightly more afraid
of the prospects of losing some of its health.

1In our implementation of ACORE we hand-coded expected re-
source changes and certainty values (Table 1).

The for loop in Algorithm 3 will then consider the next
resource, reputation. The reputation is also predicted to de-
crease under the pass action: E[rreputation

t+1 |apass] = 0.6 be-
cause cutting in front of other people in line is disreputable
thing to do. Our NPC cares about its reputation (w = 0.17)
and so α = w ·

(
E[rreputation

t+1 |apass]− rreputation
t

)
= 0.17 ·

(0.6 − 1) = −0.068. The prior probability of this unde-
sirable loss of reputation is β = 0.95 which adds an extra
−α ·β = −(−0.068) ·0.95 = 0.0646 to the emotion of fear.

The final resource is the rank in line whose current value
is rrank

t = 0.5 (i.e., the NPC is second in line). Under the pass
action, the new value is expected to be E[rrank

t+1|apass] = 1.
Our NPC cares about its rank (w = 0.44) which means that
α = w ·

(
E[rrank

t+1|apass]− rrank
t

)
= 0.44 · (1 − 0.5) = 0.22.

The prior probability of this desirable gain of rank is β =
0.95 which adds α · β = 0.22 · 0.95 = 0.209 to the emotion
of hope (lines 10 and 11). Thus, at the end of the first stage,
the NPC’s fear is increased by 0.0123 + 0.0646 = 0.0769
and the hope is increased by 0.209. The new emotion vector
is then visualized via the NPC appearance.

Suppose then the NPC being passed protests the pass.
Thus, in stage two, the passing NPC observes the protest
and updates its α and β values. Retrieving the values from
Table 1, ACORE computes the new increase of fear as
−α · β = −(−0.013) · 0.5 = 0.0065.

In stage two, the change in the reputation resource re-
mains the same leading to α = 0.17. However, since the
NPC is now aware of its pass action being protested, the
expectation that the reputation will decrease is reduced to
β = 0.5. Thus, the stage-two increase in fear due to possible
change in reputation is −α · β = −(−0.068) · 0.5 = 0.034.

For the rank resource, the expected value of the resource
change remains the same as in stage one which leads to α =
0.22. The certainty is now reduced to β = 0.5. Thus at stage
two the NPC’s hope is increased by α·β = 0.22·0.5 = 0.11.
Thus, at the end of the second stage, the NPC’s the NPC’s
fear is increased by 0.0065 + 0.034 = 0.0405 and its hope
is increased by 0.11. The new emotion vector is visualized.
It should be noted that the β values for certainty of change
in Table 1 are for the moment in time the actions are taken.
Once the outcome of an action is known the β of a change
can be 1. For instance, once an NPC has successfully passed
another NPC, it will experience joy since its position in line
(the rank resource) has improved.

5 Evaluation
We evaluated our implementation of ACORE with a user
study in which we compared ACORE with COR-E and a
random emotion model as baselines.

5.1 Experimental Testbed
Adapting the scenario from COR-E studies (Campano et al.
2013) we considered a line of six people waiting to purchase
a video game (Figure 2). Each person in line is represented
by an NPC controlled by ACORE and has three resources:
health, reputation and rank. Each person has two basic ac-
tions available to them at each time step: pass the person in

145



Table 1: Domain dynamics.

Resource rt Action at Expected resource change E[rt+1|at]− rt The other Certainty of change β
NPC’s action

health pass −0.05 wait 0.95
reputation pass −0.4 wait 0.95

rank pass 1/(1/rrank
t − 1)− rrank

t wait 0.95

health pass −0.05 protest 0.5
reputation pass −0.4 protest 0.5

rank pass 1/(1/rrank
t − 1)− rrank

t protest 0.5

health protest −0.05 pass 0.5
reputation protest −0.1 pass 0.5

rank protest 1/(1/rrank
t + 1)− rrank

t pass 0.5

health wait 0 wait 0.95
reputation wait 0 wait 0.95

rank wait 0 wait 0.95

health wait 0 pass 0.5
reputation wait 0 pass 0.5

rank wait 1/(1/rrank
t + 1)− rrank

t pass 0.5

Figure 1: Neutral expressions of the 18 individuals whose portraits were used in the user study.

front of them (if he/she exists) or wait in line. Additionally, a
person being passed can choose to protest the passing action
or allow it to happen (i.e., continuing waiting in line).

At every time step, the person at the head of the line pur-
chases the video game and leaves the line. The simulation
was stopped when the line becomes empty. Visually, each
person in line was represented with a photograph showing
their facial expression (only the highest intensity emotion
was shown; Figure 3), their name and the three resources.
Health was visualized with a bar underneath the image. The
reputation was shown by the color of frame around their por-
trait. The rank was shown by the position of the person in
line (Figure 2). Additionally, people in line uttered one-line
remarks shown as text above their heads (Table 2).

There were eighteen individuals (Figure 1) from which a
line of six was randomly populated (without repetition).

5.2 The Experiment
For the user study we recruited 94 participants (30 males, 64
females; mean age 20). For their participation, each partic-
ipant received a partial credit in an undergraduate psychol-
ogy course. After a briefing and signing a consent form, each
participant was exposed to each of the following conditions.

Figure 3: An individual showing hope (top left), joy (top
right), fear (bottom left) and distress (bottom right).

Experimental condition (E) presented a participant with
a line of people whose actions and appearances were con-
trolled by the ACORE algorithm.

Control condition (C) was identical to E except the ap-
pearances were not controlled. Thus each person in line
maintained their neutral expression throughout the simula-

146



Figure 2: Individuals standing in line to purchase a video game. Jim is attempting to pass Vince.

Table 2: One-line utterances.

Condition Utterance
At the head of the line Can I get a copy of Destiny?

Stop!
Being passed Where are you going?

You shall not pass!

Having been just passed Not fair!
I will get back at you!

tion. This condition approximates COR-E which modeled
NPC actions but not their emotional appearances.

Random condition (R) was identical to E except the
facial expressions were uniformly randomly selected from
four images we had for each character.

Each participant saw one of the six possible permutations
of the conditions (i.e., ECR, ERC, CER, CRE, REC, RCE).
Then he/she saw the same permutation again. For instance,
one participant may have seen ECRECR whereas another
may have seen RCERCE. The permutation order was as-
signed randomly to participants. After each of the six condi-
tions each participant saw, he/she was required to fill out a
questionnaire. The primary statement the participants were
asked to respond to was “The virtual characters showed be-
lievable emotions.” The answers were on a 1 (strongly dis-
agree) to 7 (strongly agree) point scale.

5.3 Analysis and Discussion
Table 3 shows the believability rating for each condition av-
eraged over all participants and both presentations of that
condition to the participant.

Table 3: Mean believability of the conditions.

Condition Mean ± standard error
Experimental 4.87± 0.12

Control 3.28± 0.14
Random 4.09± 0.13

A one-way repeated-measures analysis of variance
(ANOVA), with Believability as the dependent measure and
Condition (E, C, R) as the independent variable revealed
a significant effect of Condition, F (2, 358) = 39.51, p <
0.001, η2p = 0.181. Bonferroni-corrected pair-wise compar-
isons confirmed that all three conditions were significantly
different from each other.

The participants found the experimental condition to be
more believable than the control or the random condition.
Thus, explicitly computing (via an appraisal model) and vi-
sualizing (via facial expressions) emotions appears to add to
the believability our control condition that approximated the
previous algorithm (COR-E).

Interestingly, the participants rated the random condition
as more believable than the control condition which appears
to suggest that even random facial expressions, unrelated to
the actions and utterings of people in the simulation, are bet-
ter than a constant neutral expression.

6 Current Limitations and Future Work
Our implementation of ACORE used ad hoc hand-coded
values for expected resource changes as well as the asso-
ciated certainty values. They had not been validated and
may have had a negative impact on the overall believability
of our ACORE implementation. Future work will generate
such values procedurally via stochastic simulation.

Second, we used static images for the facial expressions
which were photographs of actors acting out the emotions.
Future work will investigate the effectiveness of procedu-
rally generated facial expressions (MOVA 2009; Nvidia
2013), driven by ACORE.

Finally, our simulations were non-interactive as the partic-
ipants watched the simulation unfold on a computer screen.
We are currently working on incorporating ACORE into a
video game where it will control actions and appearances of
NPCs interacting with the player’s avatar.

7 Conclusions
This paper presented the first implementation and evalua-
tion of ACORE, a recent lightweight computational model
of emotions. The results of a user study suggest that ACORE
can increase believability of AI-controled virtual characters
relative to the previous model, COR-E.

8 Acknowledgments
We would like to gratefully acknowledge the funding pro-
vided by the Natural Sciences and Engineering Research
Council of Canada (NSERC), the time volunteered by the
actors of Die Nasty: The Live Improvised Soap Opera, the
valuable feedback provided by members of the IRCL Re-
search Group and the help volunteered by Mathew Fritze in
developing the experimental setup.

147



References
Bioware. 2007. Mass Effect Series. http://masseffect.
bioware.com/.
Black, A. W., and Lenzo, K. A. 2003. Building synthetic
voices. Language Technologies Institute, Carnegie Mellon
University and Cepstral LLC.
Booth, M. 2009. The AI Systems of Left 4
Dead. http://www.valvesoftware.com/publications/2009/ai
systems of l4d mike booth.pdf.
Bulitko, V.; Solomon, S.; Gratch, J.; and van Lent, M. 2008.
Modeling culturally and emotionally affected behavior. In
The Fourth Artificial Intelligence for Interactive Digital En-
tertainment Conference, 10–15. The AAAI Press.
Campano, S.; Sabouret, N.; de Sevin, E.; and Corruble, V.
2013. An Evaluation of the COR-E Computational Model
for Affective Behaviors. In Proceedings of the 2013 in-
ternational conference on Autonomous agents and multi-
agent systems, 745–752. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Campbell, C. 2014. How Skyrim is
helping to shape Dragon Age: Inquisition.
http://www.polygon.com/2014/11/3/7151567/
how-skyrim-is-helping-to-shape-dragon-age-inquisition.
Desai, N., and Szafron, D. 2012. Enhancing the Believ-
ability of Character Behaviors Using Non-Verbal Cues. In
The Eigth Artificial Intelligence for Interactive Digital En-
tertainment Conference, 130–135. The AAAI Press.
Gratch, J., and Marsella, S. 2001. Tears and fears: Mod-
eling emotions and emotional behaviors in synthetic agents.
In Proceedings of the fifth international conference on Au-
tonomous agents, 278–285. ACM.
Gratch, J., and Marsella, S. 2004a. A Domain-independent
Framework for Modeling Emotion. Journal of Cognitive
Systems Research 5(4):269–306.
Gratch, J., and Marsella, S. 2004b. Evaluating the model-
ing and use of emotion in virtual humans. In Proceedings
of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 1, 320–327. IEEE
Computer Society.
Hobfoll, S. E. 1989. Conservation of resources: A new
attempt at conceptualizing stress. American psychologist
44(3):513.
Hunicke, R., and Chapman, V. 2004. AI for dynamic diffi-
culty adjustment in games. In Challenges in Game Artificial
Intelligence AAAI Workshop, 91–96. sn.
Isla, D. 2005. Handling Complexity in the Halo 2 AI. In
Game Developers Conference, volume 12.
Johnson, M. S. 1994. Validation of an active multimedia
courseware package for the integrated damage control train-
ing technology (IDCTT) trainer. Master’s thesis, Naval Post-
graduate School, Monterey, California.
Linguica. 2008. Wrex. Shepard. https://www.youtube.com/
watch?v=u5Fjc1hBwuE.
Manavalan, Y. B., and Bulitko, V. 2014. Appraisal of Emo-
tions from Resources. In Interactive Storytelling. Springer.
224–227.

Marsella, S., and Gratch, J. 2009. EMA: A process model of
appraisal dynamics. Journal of Cognitive Systems Research
10(1):70–90.
Mateas, M., and Stern, A. 2003. Façade: An Experiment
in Building a Fully-Realized Interactive Drama. In Game
Developers Conference (GDC03).
MOVA, O. 2009. Geni4. https://www.youtube.com/watch?
v=0fF2pAsaaiw.
Nvidia. 2013. Nvidia Faceworks. https://www.youtube.
com/watch?v=CvaGd4KqlvQ.
Orkin, J., and Roy, D. 2007. The restaurant game: Learn-
ing social behavior and language from thousands of players
online. Journal of Game Development 3(1):39–60.
Pramath. 2015. This Is The Full World Map
for the Witcher 3: Wild Hunt. http://gamingbolt.com/
this-is-the-full-world-map-for-the-witcher-3-wild-hunt.
Scherer, K. R.; Schorr, A. E.; and Johnstone, T. E. 2001. Ap-
praisal Processes in Emotion: Theory, Methods, Research.
Oxford University Press.
Si, M.; Marsella, S.; and Pynadath, D. V. 2005. Thes-
pian: Using multi-agent fitting to craft interactive drama.
In Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, 21–28. ACM.
Solomon, S.; van Lent, M.; Core, M.; Carpenter, P.; and
Rosenberg, M. 2008. A Language for Modeling Cultural
Norms, Biases and Stereotypes for Human Behavior Mod-
els. In Proceedings of the 17th Behavior Representation in
Modeling & Simulation (BRIMS) Conference, Providence,
RI.
Strategy First. 2001. Sub Command. http://en.wikipedia.
org/wiki/Sub Command.
Traum, D.; Rickel, J.; Gratch, J.; and Marsella, S. 2003.
Negotiation over tasks in hybrid human-agent teams for
simulation-based training. In Second International Joint
Conference on Autonomous Agents and Multiagent Systems,
441–448. ACM.
Ubisoft. 2004. Tom Clancys Ghost Recon 2. http://en.
wikipedia.org/wiki/Tom Clancy’s Ghost Recon 2.
Ubisoft. 2014. Far Cry 4. https://www.ubisoft.com/en-GB/
game/far-cry-4/.
Valtchanov, V., and Brown, J. A. 2012. Evolving dungeon
crawler levels with relative placement. In Proceedings of the
Fifth International C* Conference on Computer Science and
Software Engineering, 27–35. ACM.
Valve. 2007. Portal. http://www.valvesoftware.com/games/
portal.html.

148




