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Abstract

Flow is a psychological state that is reported to improve peo-
ple’s performance. Flow can emerge when the person’s skills
and the challenges of their activity match. This paper ap-
plies this concept to artificial intelligence agents. We equip a
decision-making agent with a metacontrol policy that guides
the agent to activities where the agent’s skills match the ac-
tivity difficulty. Consequently, we expect the agent’s perfor-
mance to improve. We implement and evaluate this approach
in the role-playing game of Angband.

1 Introduction
Traditionally, decision making within artificial intelligence
(AI) is framed as an action-perception loop: an AI agent ob-
serves the state of the environment and then uses its con-
trol policy to select and execute an action. The agent then
perceives the new state resulting from the action, and the
cycle repeats. One can also design AI agents that reason
about their own decision making (Anderson and Oates 2007;
Cox and Raja 2007). Such metacontrol (or metareasoning) is
the monitoring and control of the decision-making cycle. It
represents a higher layer of control that perceives and acts
on the underlying decision-making process rather than just
on the environment.

In this paper, we consider metacontrol based on the psy-
chological concept of flow. Csikszentmihalyi (1975) defined
flow as the highly enjoyable psychological state that humans
experience when they are fully immersed in an activity. A
key condition of the emergence of the flow state is a match
between the person’s skills and the difficulty of the activity.
When the match is violated, boredom (skills exceed diffi-
culty) or frustration (difficulty exceeds skills) sets in.

Not only is being in a state of flow intrinsically rewarding
but the person’s performance on the activity is also increased
or even optimized (e.g., Carli, Fave, and Massimini 1988,
Mayers 1978, Nakamura 1988). Thus, seeking flow is a form
of metacontrol guiding people towards activities whose dif-
ficulty matches their skills, thereby optimizing their per-
formance on the activity. In line with Bulitko and Brown
(2012), we apply this metacontrol strategy to AI agents that
can choose the activity they engage in.
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As an illustration, consider the video game Angband (Cut-
ler et al. 1990). Angband is a dungeon exploration game di-
vided into discrete levels. The player starts on level 0 and
progresses into the dungeon with the objective of reaching
the final level (100) and defeating a boss monster. Higher
levels of the dungeon are more complex to negotiate and
require higher player character skills. Each successful ac-
tion (e.g., slaying a monster) gains the player experience
points that can be used to level up, upgrading the skills of
the player’s in-game character. Players in Angband compete
on their game score. Each slain monster adds to the score,
but monsters whose in-game level is higher than the player’s
add more points to the score. Thus, in a given fixed amount
of game time, progressing through the dungeon quickly and
fighting difficult monsters can improve the player’s score if
the player manages to survive the difficult encounters. Score
accumulation ends when the player’s character dies.

In line with Bulitko and Brown (2012), we define flow as a
continuous scalar variable (called the degree of flow) whose
higher values indicate a better match between the agent’s
skills and the activity difficulty. We then conjecture that in
certain environments, such as the game of Angband, seeking
flow leads to improved performance. Indeed, in Angband the
player needs to progress quickly to gain a higher score but
not so quickly that they die before finishing the game. Thus,
Angband appears to be well suited to a flow-maximizing
metacontrol strategy. By choosing the dungeon level based
on maximizing its flow, an AI agent will pace its descent
through the dungeons, hopefully leading to a higher score.

This paper contributes the first empirical evaluation of a
recent computational model of flow. The rest of the paper is
organized as follows. Section 2 formally describes the prob-
lem. We then review related work on metacontrol policies in
Section 3. Our flow-maximizing metacontrol is detailed in
Section 4 and empirically evaluated in Section 5. We con-
clude the paper with directions for future work.

2 Problem Formulation
We model our problem as a stochastic decision-making pro-
cess, defined by a tuple 〈S,A,P,S†, s0〉. Here, S is a fi-
nite set of states; A is a finite set of actions; P(s′|s, a) :
S × A × S → [0, 1] is a transition probability function that
gives the probability of moving from state s to state s′ by
executing action a; S† is a set of absorbing terminal states
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Figure 1: A state space partitioned into levels.

that is composed of a goal state sg and death state sd. The
agent starts in the state s0.

We consider state spaces partitioned into discrete levels
(Figure 1). Following Bulitko (2014), we assume the state
space, except the death state, is partitioned into a sequence
of levels L0, . . . ,LN : S \ {sd} =

⋃N
i=0 Li. The levels are

non-empty, non-overlapping sets of states. The initial state
s0 ∈ L0, and the goal state sg ∈ LN .

The set of all actions A is partitioned into two sets of ac-
tions: the set of inter-level actionsA and the set of intra-level
actions Ã. Inter-level actions intend to move the agent to a
specific level. This can include the current level, but then it
keeps the agent in its current state. Intra-level actions move
the agent only within a level. The agent may reach the death
state after any action.

The agent’s policy is a mapping from the states to ac-
tions. Bulitko (2014) proposed that, for level-based envi-
ronments, we decompose the policy of the agent into two
parts. The ground policy π̃ is restricted to intra-level actions:
π̃ : S → Ã, and the metacontrol policy π is restricted to
inter-level actions π : S → A. Generally speaking, ground
and metacontrol policies need not share the same environ-
ment. For instance, the ground policy itself can be a part of
the metacontrol’s environment. In this paper, we assume the
state space encompasses the full state of both the metacon-
trol and ground policy environments so that both policies
map from S to their sets of actions.

The agent traverses the state space in the following fash-
ion (Algorithm 1, adapted from (Bulitko 2014)). At a time
step t, the agent performs two actions. First, the agent ob-
serves the current state st and performs an action a′t selected
by its metacontrol policy (line 3). The environment transi-
tions to the new state s′ (line 4). In that state, the agent
performs an action at (line 5) selected by the ground pol-
icy. The environment transitions to the state st+1 (line 6).
The process continues until the agent either reaches the goal
sg ∈ LN or transitions to the death state sd (line 2).

In this paper, we only consider finding the best metacon-
trol policy (π) for a given fixed ground policy (π̃). We will
evaluate such metacontrol policies using three performance
measures. Given a metacontrol policy π, we will measure (1)
the expected time that agents controlled by π take to reach
the goal sg , (2) the failure rate, that is, the probability of
reaching the death state before reaching the goal, and (3) the
expected life-time reward.

The third performance measure requires that the agent

Algorithm 1: Agent Operation
inputs : A stochastic decision-making process

〈S,A,P,S†, s0〉, ground policy π̃, and metacontrol
policy π

output: trajectory (s0, s1, . . . , sT ), sT ∈ S†

1 initialize t← 0, st ← s0
2 while st /∈ S† do
3 apply the metacontrol policy a′t ← π(st)

4 observe the next state s′
P(s′|st,a′

t)←−−−−−−− st
5 apply the ground policy at ← π̃(s′)

6 observe the next state st+1
P(st+1|s′,at)←−−−−−−−−− s′

7 advance time t← t+ 1

collect rewards during its lifetime. For example, in Angband
the reward rt received at time t can be defined as the expe-
rience points received for the actions a′t and at.

For an agent controlled by the metacontrol policy π, the
reward the agent is expected to accumulate starting from a
state s ∈ S is defined as:

V π(s) = Eπ

[
T−1∑
t′=t

rt′ |st = s

]
(1)

where T is the time point when the agent enters a terminal
state sT ∈ S†. The expected life-time reward performance
measure is then V π(s0).

3 Related Work
Stochastic Shortest Path. If there is no death state, then
optimizing the expected time to reach the goal state (first
performance measure above) is a stochastic shortest path
problem (Bertsekas 1995). In the case when there is a non-
zero probability of the agent reaching the death state under
any metacontrol policy, a family of algorithms has been pro-
posed (Kolobov, Mausam, and Weld 2012). The algorithms
in Kolobov, Mausam, and Weld’s approach extend an algo-
rithm by Bonet and Geffner (2003) by adding to each itera-
tion a step for eliminating traps: the states where taking the
shortest path to the goal is likely to end in the death state.

The drawback of using these algorithms for metacontrol
is that they require knowing the combined transition proba-
bilities of the environment and the ground policy, which may
not be readily available. For instance, in Angband the tran-
sition probability function P is encoded implicitly in some
one hundred thousand lines of the game code. Likewise, the
ground policy of one AI player, called Borg (White 1995),
is some fifty thousand lines of C code.

Hierarchical Reinforcement Learning considers meta-
control at the level of activities: policies on subsets of the
state space (levels in our case). The metacontrol learns a
policy that maps the agent’s states to these activities instead
of primitive actions in the environment. At each point, the
metacontrol selects an activity, and the agent acts according
to that activity until it terminates and a new activity is se-
lected. The MAXQ method (Dietterich 2000) describes each
activity as a separate Markov Decision Process by defining
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for each one a local reward function. The algorithm acquires
the hierarchical policy by jointly learning a locally optimal
policy for each activity with respect to these local reward
functions. In the option framework of Sutton, Precup, and
Singh (1999), each activity is defined as an option composed
of a policy and a termination condition. The option policies
are generally provided, or learned a priori, by treating each
activity as a separate reinforcement learning problem. The
Hierarchy of Abstract Machines (Parr and Russell 1998) de-
fines each activity as a stochastic finite-state machine where
state transitions cause actions to be taken in the environment.

One drawback of hierarchical reinforcement learning is
that it requires an appropriate reward signal. Given several
objectives, the scalar reward signal must encode an appro-
priate trade-off. Furthermore, the signal needs to be deliv-
ered fairly frequently for otherwise the agent is effectively
random in the early stages of learning.

Metacontrol through Intrinsic Rewards. A curiosity-
motivated AI agent learns a model of its environment. The
original reward signal is then augmented with intrinsic cu-
riosity rewards based on the current mismatch between
predictions of the agent’s model and reality. This type of
metacontrol is based on the agent’s assessment of its own
knowledge. In the initial version, the curiosity rewards were
directly proportional to the predictor error (Schmidhuber
1990). This leads the agent to levels where prediction error is
high and the model needs improvement. A drawback of this
approach is that the agent will also seek out the levels where
the environment is less predictable (i.e., the prediction error
is high even with the best predictor). Schmidhuber (1991)
based the curiosity rewards on the change in the predictor
error over time. This leads the agent to the levels where the
predictor improves the most. Later work (Storck, Hochreiter,
and Schmidhuber 1995) similarly introduced rewards based
on information gain: the difference between the model’s es-
timated transition probability distribution before and after a
state transition is observed.

Bulitko and Brown (2012) introduced similar intrinsic re-
wards to reinforcement learning agents through a computa-
tional model of flow. In their framework, the degree of flow
experienced by the agent was an intrinsic reward, much like
the curiosity rewards. However, instead of augmenting the
reward stream directly, their agents learned a value function
for the expected extrinsic return and attempted to maximize
a linear combination of such a value function and a flow
reward (a reciprocal of the absolute difference between the
agent’s skill and the environmental difficulty).

Using intrinsic rewards in the ways described above is
restricted to a reinforcement-learning setting. Additionally,
augmenting the original reward signal with intrinsic rewards
may make the new optimal policy suboptimal for the original
problem (Ng, Harada, and Russell 1999; Wiewiora, Cottrell,
and Elkan 2003).

Dynamic Difficulty Adjustment. Using a metacontrol
policy to select a level in the environment is related to dy-
namic difficulty adjustment: the process of automatically
changing aspects of a video game as it is played to avoid the
player’s becoming bored or frustrated with the game (i.e., to
keep them in flow). The ground policy is a human player.

Many approaches use game features to predict the player’s
state. Hunicke and Chapman (2004) used probabilistic meth-
ods to predict inventory shortfalls (e.g., lack of specific
weapons or ammunition) by observing trends in the damage
taken by the playable character and inventory expenditure in
a first-person shooter game. When shortfall is predicted, a
handcrafted policy adjusts the game environment. Magerko,
Stensrud, and Holt (2006) modeled players using a vector of
competence levels for different skills. The approach individ-
ualizes training by finding the best match between character-
istics of available training scenarios and the current state of
the skill vector. Lankveld and Spronck (2008) measured skill
in a role-playing game based on incongruity, the distance be-
tween the actual dynamics of the game and the mental model
the player has built. They estimate this incongruity by con-
sidering the avatar’s health relative to the progress made in
the game, modifying game difficulty to enforce a given level
of incongruity.

Similar techniques have been applied in commercial
video games. For instance, the game Left4Dead adjusts its
difficulty by estimating the emotional intensity of the play-
ers from their interaction with the game (Booth 2009). If
the intensity is deemed too high, the enemy production is
reduced, and major threats are not produced, lowering the
game difficulty. Conversely, if the player’s intensity falls too
low, the enemy production is increased, increasing the chal-
lenge level of the game.

Other approaches learn from player feedback. Pedersen,
Togelius, and Yannakakis (2009) trained a neural network
to predict the player’s ratings of fun, challenge, and frustra-
tion based on the player’s behaviour and in-game content.
Yannakakis, Lund, and Hallam (2007) used evolving neural
networks to predict the player’s self-reported interest based
on game features. Zook and Riedl (2014) used tensor fac-
torization to correlate time-varying measures of the player’s
performance in adventure role-playing games to the player’s
self-reported difficulty. This enabled forecasts of players’
skill mastery by taking into account trends in the player’s
performance over time.

These approaches have the drawback of collecting and re-
lying on reports from human players, usually in the form
of user studies which can be cost-intensive. Another draw-
back of dynamic difficulty adjustment in general is that the
techniques are usually tailored to improving the player’s ex-
perience of the game (e.g., the feeling of enjoyment), which
may not be the same as optimizing the player’s performance
(e.g., finishing a game level as quickly as possible).

4 Maximizing Flow as a Meta-Control
We will now introduce our approach to metacontrol based
on maximization of flow. This is an extension of the work
of Bulitko and Brown (2012), for multidimensional skills
which allows us to consider as skills many different factors
that impact the performance of a player.

4.1 Agent Skills
The goal of our metacontrol is to guide the agent to the
right level of the state space given its skills. Skills are rep-
resented as a d-dimensional vector of real numbers; the
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agent in state s ∈ S has skills σ̄(s) ∈ Rd. Notationally,
σ̄(s) = (σ1, σ2, . . . , σd), where each scalar σk represents a
single skill. We abbreviate σ̄(st) to σ̄t which represents the
agent’s skills at time t.

In a game such as Angband, given a fixed ground pol-
icy, the agent’s skills can be described by the character’s at-
tributes. For instance, the agent’s skills may be represented
by the armor class (AC) of 10 and the hit points (HP) of 20
so that σ̄ = (10, 20).

4.2 Level Complexity
Intuitively, the difficulty of a level in the environment is the
minimum skill the agent needs to reliably survive the level
and achieve the goal state (i.e., win). Algorithmically, the
level’s difficulty can be approximated by placing agents with
widely different skills in the level and noting the ones that
survive to the goal. Taking the per-component minimum of
the survivors’ skill vectors estimates the level’s difficulty.
To illustrate, suppose two agents whose skills at level 7 of
Angband were (10, 17) and (8, 20) survived to the end of
the game. Then the difficulty of level 7 would be estimated
as (min{10, 8},min{17, 20}) = (8, 17).

If the environment is stochastic, then some agents may
reach the goal purely by luck, lacking sufficient skills to do
so reliably. We adjust for that by removing the bottom ρ%
of the agents in each skill dimension. As an illustration, con-
sider the plot in Figure 2 which shows a single skill value
for all agents observed on level 5 of an environment. The
agents that went on to reach the goal (i.e., won the game)
are shown as black circles. To estimate the difficulty of level
5, we eliminate all agents who died before reaching the goal
(red crosses on the left) as well as the bottom ρ = 10% of
the winners, since they are deemed to have been underqual-
ified and have won purely by luck (red crosses inside black
circles on the right). The resulting difficulty estimate (16.65)
is shown as the black horizontal bar in the figure.

The level difficulty is thus a bar below which any agent
is deemed to be underqualified and having reached the goal
by luck. We deem winners underqualified if the chances of
having a skill value as low as theirs and yet reaching the goal
are below a threshold ρ. Mathematically, the probability of
having a skill value below a certain bar and yet reaching the
goal are given by:

plk(x) = Pr{σlk < x | agent reached the goal} (2)
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Figure 2: Level difficulty estimation.

where σlk is the value of the k-th skill dimension the agent
had at level l, and x is the position of the bar. We say that, if
plk(x) < ρ, then x is below the level difficulty and any agent
with a lower skill value than x was underqualified, even if
they reached the goal. Conversely, if plk(x) ≥ ρ, then x is
above the level difficulty.

Thus, we define the level difficulty as the minimum skill
value x where plk(x) ≥ ρ:

ck(l) = inf{x | plk(x) ≥ ρ}. (3)

In the example in Figure 2, k = 1 and l = 5. The proportion
of winners with a skill value below 16.65 at level 5 is 10%
so we estimate that plk(16.65) = 0.1.

The difficulty is estimated individually for each dimen-
sion k of the skill vector. The full difficulty of level l is then
the vector c̄(l) = (c1(l), . . . , cd(l)), for a given threshold ρ.

4.3 Degree of Flow
Extending (Bulitko and Brown 2012; Bulitko 2014), we de-
fine the degree of flow experienced by an agent at time t on
level l as:

F (σ̄t, c̄(l)) =
1

||σ̄(st)− c̄(l)||+ ε
(4)

where ε > 0 is a real-valued constant that bounds the flow
and || · || is the Euclidean distance. The degree of flow, F ,
takes on a maximum of 1/ε when the skills of the agent, σ̄t,
and the difficulty of the level, c̄(l), are equal.

To illustrate, consider an agent in the game of Angband
with two skills: armour class and hit points, σ̄t = (10, 20).
If the difficulty of level 1 is c̄(1) = (4, 20) while then the de-
gree of flow experienced by the agent there is 1/(||(10, 20)−
(4, 20)||+ ε) = 1/(6 + ε).

4.4 A Flow-maximizing Metacontrol Policy
Our flow-maximizing metacontrol policy operates as fol-
lows. When the metacontrol is called (line 3 in Algorithm 1),
it considers all inter-level actions available to it and com-
putes the degree of flow on the resulting level. It then selects
the action that maximizes this degree of flow:

a = argmax
a′∈A

F (σ̄t, c̄(la′)) (5)

where la′ is the intended level of the inter-level action, a′.

5 Empirical Evaluation
We evaluated our flow-maximization metacontrol policy in
the game of Angband, a dungeon crawler with well-defined
discrete dungeon levels. Angband is a complex environment.
Each dungeon level is 198× 66 grid with about 1200 differ-
ent terrain features, objects and monsters leading to an ap-
proximate upper bound of 1040438 number of states in the
game. The number of actions depends on the state but on
average the player has access to between 10 and 50 actions.
However a metacontrol policy was responsible only for se-
lecting whether to stay at the agent’s current level or go to
a higher-level dungeon. The ground policy, extracted from
an existing AI Angband player, Borg (White 1995), was re-
sponsible for all other actions.
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We defined the goal state as the entry state of dungeon
level 30 since reaching the actual end of the game (level 100)
was not achievable for the Borg. Only approximately 10%
of Borg agents reach level 30.

5.1 Defining Agent Skills
The Borg agent uses 202 attributes of the environment and
the agent to make decisions. 20 of those are used by the
Borg’s inter-level control code to decide on whether to ad-
vance to a higher-level dungeon. We used these 20 attributes
for one of two skill sets in our experiment (Borg skillset).

The other skill set was determined using correlation fea-
ture selection (Hall 1999) from the 202 attributes. The pro-
cedure looked for the attributes that correlate with reaching
the goal state but correlate weakly among themselves.

We ran 3000 Borg agents and recorded the values of the
202 attributes upon entry to each dungeon level. We also
recorded whether the agent reached the goal or not. The data
was input to Weka’s CfsSubsetEval method (Hall et al.
2009), yielding a subset of 26 attributes, which comprised
the second skill set (CFS skillset).

5.2 Computing Level Complexity
To estimate the difficulty of each level we first ran 833 Borg
agents modified as follows. Each agent was guided by the
Borg policy (both ground and metacontrol) until it reached
a pre-specified level m. After that, the Borg’s metacontrol
was replaced with the always-go-to-a-higher-level-dungeon
policy. The parameter m was selected uniformly randomly
in [0, 30]. We then used the difficulty estimation procedure
described in Section 4.2 with ρ = 10%.

5.3 Experiments
We compared our flow-maximizing metacontrol policy
(Section 4.4) using two different skill sets to two baseline
policies: the full Borg agent and a random metacontrol (as
detailed in Table 1).

We ran 750 agents for each of the four metacontrols. All
four agent types used the same ground policy. Each trial con-
sisted of an agent starting from the initial state of the game
and proceeding until they died or reached the goal.

We used the three performance measures defined in Sec-
tion 2: the number of steps to reach the goal, the failure rate,
and the mean life-time score. We computed means for all
three measures as well as dispersion values in the form of
the 95% normal-based confidence intervals (CI).

Comparison of failure rates was done using a chi-squared
test with Marascuilo post-hoc test (Marascuilo 1966). To
compare the mean score and time steps among different

Table 1: Metacontrol contestants.
Metacontrol Description
FlowDesigned Flow maximization with Borg skill set.
FlowAuto Flow maximization with CFS skill set.
Borg The Borg metacontrol.
Random Uniformly random inter-level action se-

lection.
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Figure 3: The average time (in steps) to reach goal and the
failure rate (with 95% CI).
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Figure 4: Mean score with the 95% CI. Horizontal lines at
the top span the bars that were not significantly different
from each other (pairwise permutation test).

metacontrols, we used a permutation F -test with along
Holm-Bonferroni adjusted pairwise permutation post-hoc
tests (Higgins 2004) using 5000 permutations chosen at ran-
dom without repetition. For all statistical tests, the signifi-
cance level was chosen a priori to be α = 0.05.

5.4 Results
Metacontrol had a significant effect on both average time to
reach the goal (permutation F -test, p < 0.001) and failure
rate (chi-squared test, χ2 = 15.15, df = 3, p = 0.0017) as
shown in Figure 3.

Pairwise permutation tests with Holm-Bonferroni ad-
justed alpha levels indicated that FlowDesigned agents
reached the goal faster than textttBorg agents and Random
agents (p < 0.001). The FlowAuto metacontrol was
significantly slower than the other three (p < 0.001).

The FlowDesigned metacontrol had a failure rate that
was 6.28% higher than that of the FlowAuto metacon-
trol (Marascuilo critical range 5.58%) and 4.55% higher
than that of the Borg metacontrol (Marascuilo critical range
4.36%). The failure rate of Random agents was also 5.87%
higher than the FlowAuto agent failure rate (Marascuillo
critical range 4.82%).
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Metacontrol had a significant effect on the score (permu-
tation F -test, p = 0.012) as shown in Figure 4. Pairwise
permutation tests with Holm-Bonferroni adjusted alpha
levels indicated that the average score of Borg agents was
significantly higher than that of Random (p = 0.0126)
and FlowDesigned agents (p = 0.0054). In addition, the
average score of the FlowAuto agents was significantly
higher than that of FlowDesigned agents (p = 0.0084).

5.5 Follow-up Experiments
Surviving FlowAuto agents took around 20 million steps
longer to reach the goal than with other metacontrols. This
may have been because they spent an average of 8.4 ± 2.5
million steps on level 7 far exceeding their overall per-level
average of 0.5 ± 0.3 million steps. By contrast, Borg’s av-
erage time on level 7 was only 0.66± 0.08 million steps.

This unusually long stay at level 7 appeared related to a
decrease in level difficulty for the character strength skill
from 18 (at level 7 and below) to 17 (at level 8). The de-
crease in the difficulty estimate goes against our assumption
that higher skills are needed in higher levels. It is possible
that we overestimate the difficulty of levels 7 and below due
to the fact that all agents used to estimate the difficulty (Sec-
tion 5.2) started their life with the skill value at 18. At level
8, their interactions with the game sometimes reduced their
skill level to 17, which was then recorded as the difficulty.

The character strength is a skill that only the FlowAuto
agents considered. It was not in the skill set of FlowDe-
signed which may explain the great difference in perfor-
mance of the two flow-maximizing metacontrols. To investi-
gate this possible difficulty overestimate, we artificially low-
ered the strength difficulty of levels 1 through 7 from 18
to 17. In a 300 trial experiment, the resulting metacontrol
FlowAuto* became indistinguishable (based on 95% CI)
from FlowDesigned on any measure (Table 2).

Additionally, preventing the Random metacontrol from
descending to level 8 until at least 5 million steps after first
entering level 7 (which we call slowed Random) decreased
its failure rate by 8%, although the difference in score is not
significant (based on 95% CI) (Table 3).

Together these two findings lead us to suspect that the bet-

Table 2: Mean steps to goal, failure rate, and score of the
FlowAuto* and FlowDesigned metacontrols with 95% CI.
The values for FlowAuto from the previous experiment are
included for comparison.

Mean steps Failure rate Score
[millions] [%] [thousands]

FlowAuto* 6.14± 0.16 92.2± 3.0 61± 28
FlowDesigned 6.33± 0.20 90.7± 2.6 79± 21
FlowAuto 26.09± 0.65 85.5± 2.1 118± 21

Table 3: Mean steps to goal, failure rate, and score of the
Random and slowed Random metacontrols with 95% CI.

Mean time Failure rate Score
[millions] [%] [thousands]

slowed Random 13.02± 0.35 82.0± 4.3 140± 40
Random 7.97± 0.47 90.0± 3.4 88± 30

ter failure rate of FlowAuto relative to FlowDeigned is
merely due to its unusually long stay on level 7.

5.6 Discussion
The results suggest that a flow-maximizing metacontrol is an
improvement over a random metacontrol. Indeed, FlowDe-
signed metacontrol was faster and at least as reliable as
Random. Likewise, FlowAuto metacontrol was more reli-
able and higher scoring than random but slower. However,
the hand-engineered Borg metacontrol appeared to be the
best. It was more reliable and higher scoring than FlowDe-
signed and faster and at least as reliable as FlowAuto.

The FlowAuto agents showed the most improvement
over the Random metacontrol, but this may be due merely
to a decrease in the mined difficulty of a single skill from
level 7 to level 8. We speculate that this decrease does not
represent the actual difficulty profile in Angband and is an
artifact of our difficulty estimation algorithm.

6 Future Work Directions
Future research will theoretically and empirically explore
the properties of the domains in which matching the agent
skills and the environment difficulty preserves an optimal
policy. In Reinforcement Learning environments, this is con-
nected to work on reward shaping (Ng, Harada, and Russell
1999; Wiewiora, Cottrell, and Elkan 2003).

Another direction is to improve the difficulty estimation
algorithm. Its current per-component minimum assumes that
skills are independent from each other. We have started a
preliminary investigation into clustering of the skill vectors
recorded from different agents and then selecting the per-
component minimum only within each cluster.

One potential application of the method is for incremental
evolution (Gomez and Miikkulainen 1997) where complex
behavior is learned incrementally, by starting with simple
behavior and gradually making the task more challenging.
Our metacontrol policy could be used to decide when to in-
crease the complexity of the task.

Finally, our definition of the flow degree is simplistic in
treating all skills and difficulty dimensions equally. Future
work will investigate more advanced computational models
of flow (Moneta 2012). It will also apply flow-maximizing
metacontrol to human Angband players to see if their feeling
of flow is indeed improved with the metacontrol.

7 Conclusions
This paper considered a level-based environment and pre-
sented a metacontrol algorithm based on matching level dif-
ficulty with level skill, thereby maximizing the degree of
flow the agent is experiencing. We evaluated the algorithm in
the game of Angband by proposing automatic ways of defin-
ing the agent’s skills and the environment difficulty. Flow-
maximizing agents reached the goal the fastest but were no
more reliable or higher scoring than a random metacontrol
and worse than the existing hand-coded metacontrol. With
a different skill set, flow-maximizing agents had the same
reliability and scores as the existing hand-coded agents but
were slower to reach the goal.
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