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Abstract

Avatar customization systems enable players to repre-
sent themselves virtually in many ways. Research has
shown that players exhibit different preferences and mo-
tivations in how they customize their avatars. In this
paper, we present a data-driven analytical approach to
modeling player behavioral patterns exhibited during
the avatar customization process. We used our data min-
ing tool AIRvatar to analyze telemetry data obtained
from 190 players using an avatar creator of our own
design. Using non-negative matrix factorization (NMF)
and N-gram models, we demonstrate how our approach
computationally models behavioral patterns exhibited
by players such as “regular shopping,” “engaged shop-
ping,” or “bored browsing”. Our models obtained sig-
nificant effect sizes (0.12 <= R? <= 0.54) when val-
idated with multiple linear regressions for players’ time
spent engaging in activities within the avatar creator.
The NMF model had comparably high performance and
ease of interpretation compared to control models.

Introduction

In videogames, players often construct virtual identities in
the form of characters and avatars. Despite being virtual,
these identities can reveal aspects of a player’s real-world
identity (e.g., preferences, control, appearance, understand-
ing of social categories, etc.,) by being projected onto the ac-
tual implemented avatars in what is termed a “blended iden-
tity” (Harrell 2013). Research has demonstrated that the way
players behave in both the real and virtual worlds can be in-
fluenced by these virtual avatars (Harrell and Harrell 2012;
Yee and Bailenson 2007; Yee et al. 2012). Given the im-
portance of these virtual representations to players, we thus
seek to model and better understand the behavioral patterns
of players during the avatar customization process.

In this paper, we used our data mining tool AIRvatar to
analyze telemetry data obtained from players using an avatar
creator of our own design. Our approach computationally
models interpretable behavioral patterns exhibited by users
using non-negative matrix factorization and N-gram models.
To the best of our knowledge, using data-driven approaches
to model behavioral patterns during avatar customization to
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gain insight into players’ values and preferences for their
virtual representations has not been previously undertaken.

Previous Work In our previous work, we studied “infras-
tructural values” that were built into systems by analyzing
the end-product of constructed avatars, including how statis-
tical attributes and visual characteristics reflected social phe-
nomena potentially symptomatic of developer bias or im-
plicitly shared worldviews (Lim and Harrell 2015a; 2015b;
2015c¢). Building on those findings, here we focus on model-
ing “user values” through behaviors enacted out within sys-
tems, which particularly include the temporal properties of
performing sequences of actions within a given system.

Related Work

We discuss related work useful for better understanding and
distinguishing our aims and approaches used in this paper.

Avatars and Identity

A study of player behaviors in avatar customization for three
virtual worlds conducted in (Ducheneaut et al. 2009) used
self-reported surveys and timing-related data. It showed that
players exhibited preferences for different features of their
avatars (e.g., more importance on hair versus body.) Other
studies on players’ behavioral characteristics in avatar cus-
tomization have shown various motivations for customiza-
tion such as virtual exploration, social navigation, contex-
tual adaptation, and identity representation (Lin and Wang
2014). Related studies in (Yee and Bailenson 2007; Yee et
al. 2011) covered the behavioral effects that virtual identi-
ties had on the players and their real-world identities, such
as conforming to expectations of their avatars appearance
and correlations with personalities (e.g., conscientious play-
ers explored more of the game world). We hypothesize that,
before immersion within the game world, behaviors exhib-
ited during the customization can be computationally mod-
eled to provide insight on players’ identities and preferences.

Player Modeling and Game Telemetry Data Mining
Game telemetry data mining is used to provide informa-
tion to help designers gain insight into player behaviors ex-
hibted within the game. These data are used to construct
player models and we use the taxonomy proposed in (Smith
et al. 2011), which are: domain (game actions or human



reactions), purpose (generative or descriptive), scope (in-
dividual, class, universal, or hypothetical), and source (in-
duced, interpreted, analytic, or synthetic). As detailed later,
the models we develop are universal, descriptive models of
game actions from both induced, interpreted, and synthetic
sources. We use data clustering, which categorizes large data
of players into smaller discrete categories, enabling design-
ers to model patterns of players and use them for tasks like
dynamically adapting to different styles, quantitatively eval-
uating user performance, and improving player experience
and satisfaction (Drachen et al. 2012; Yannakakis and Hal-
lam 2009; Yannakakis and Togelius 2011).

A study of common clustering methods of World of War-
craft characters in (Drachen et al. 2014) found that clusters
differed in (1) whether they were easily interpretable, (2)
how distinct they were from each other, (3) whether they
depicted legal/valid states in the game, and (4) how repre-
sentative of the original data set they were. We used non-
negative matrix factorization (NMF) for its interpretable and
distinct clusters (Hoyer 2004). NMF has been successfully
applied to images (e.g., parts of faces), text (e.g., topic mod-
eling), procedural content generation (e.g., level generation),
and modeling players’ identities and values (Lee and Se-
ung 1999; Shaker and Abou-Zleikha 2014; Lim and Harrell
2015a). For analysis of sequences of actions performed by
players, we used N-gram models, which have been effective
in modeling sequences of player actions, solution features,
and platformer level styles (Harrison and Roberts 2014;
Butler et al. 2015; Dahlskog, Togelius, and Nelson 2014).

AIRvatar

The AIRvatar system collects analytical data as players in-
teract with a given customization system. The two main
types of data are (1) timing-related data (e.g., time dura-
tion spent interacting with aspects of the system) and (2)
interaction-related data (e.g., item selection mouse clicks.)

Case-study: Heroes of Elibca

We developed an avatar customization system set in the con-
text and style of a traditional computer role-playing game
(RPG) called Heroes of Elibca. Resources and assets were
obtained from publicly available sources (Mack Looseleaf
Creator 2015; Liberated Pixel Cup 2015). A text-based in-
troductory story provided players with the motivation of cre-
ating a character for a fantasy-style setting and game genre.

Customization Interface A screen shot of the customiza-
tion interface is shown in Figure 1. Players first choose a
gender for their character out of two! available choices:
male and female. Customization options then appear for
players to select appearance options across five categories:
hair, head (face), body, arms, and legs. For each category,
several sub categories provide more fine-grain selection op-
tions, for example, the “head” category may provide “eye
color”, “eye shape” and “facial hair” sub-categories. The im-
age of each customization item is shown, which the players

"'We recognize the distinction between gender and sex, but fol-
low RPG conventions here. Other models of gender go far beyond
male/female gender binary and is an important area for future work.
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Figure 1: The customization interface of Heroes of Elibca.

can click to select. For some items, a color palette appears,
whereby clicking on them refreshes the avatar with different
color variations of the currently selected item. An animated
preview of the character in a walk-cycle is shown against
a backdrop. Players can use the animation-control buttons
to cycle through the four directional views of the character:
right, left, back, and front, and to start or stop the animation.

User Study We conducted a user study, approved by the
human subjects research committee at our institution, with
participants from the social news and discussion site Red-
dit. Participants were informed its research nature and that
analytical data would be anonymously collected. 104 par-
ticipants (54%) identified as “Male”, 81 (43%) identified as
“Female”, and 6 (3%) listed “Other.” 154 participants (80%)
were between “18-217 years old, 32 (17%) were between
“25-34” years old, and the other age groups were < 1%.

Methods

We describe how the data collected on behaviors exhibited
during customization were computationally modeled.

Constructing Interaction Sequence Vectors

Interaction sequences were modeled using only the top-
level click event (e.g., “color-selection”) without the spe-
cific choice being made (e.g., “blue”). With five types of
click events, a player who starts of by (1) selecting a
“male” gender, (2) choosing to customize the “hair” cat-
egory, (3) picking a choice of hair fringe style, (4) se-
lecting a red variant of the hair fringe, (5) then pick-
ing a choice of the top of the hair, and (6) selecting a
blue variant of the top of the hair would have a interac-
tion sequence of: <gender, category, item, color,
item, color>. The interaction sequence is converted into
numeric vector using the 1-of-k encoding scheme. Thus,
the vector of the previous interaction sequence would be:
<00010 01000 00001 00100 00001 00100>.

Developing the NMF Model

Non-negative matrix factorization (NMF) is an algorith-
mic process for representing data as a combination of de-
rived factors. Given data points V = {x1,z9,...,2,}, V €
R, xm, NMF results in an approximation V that is the prod-
uct of two matrices W € R,,«x and H € Ry,,, with el-



ements v;; € V, w;; € W, and hy; € H all > 0. The
value k is the number of sub components desired (k<n,m).
NMF minimizes the difference ||V — V||%, where || X||% =

n m

>~ > |zi;/? is the Frobenius norm of the matrix X . Each
i=1j=1

row in matrix H is an m-dimension basis vector and each

column in matrix W relates each sample in v; with each

basis vector with coefficients w;; € W, representing the

weight of basis vector j in sample x;.

The data set of all interaction sequences is represented by
the matrix V' € R,, xn, where n = 190 participants and m is
the maximum interaction sequence length of the data set. In
model construction, we specify the number k of desired ba-
sis vectors, each represented by rows in matrix H € R, x.
The matrix W € R,,« represents the weights of each in-
teraction sequence in terms of the £ basis vectors. Because
the result of the matrix decomposition may yield basis vec-
tors h; € R™ with multiple non-zero values, we used the
digit with the maximum value to perform the inverse trans-
formation from a vector to an event sequence, enabling each
basis vector to be meaningful represented as an interaction
sequence. We minimized the Frobenius norm by increasing
k, but also considered the performance of each basis vector
when modeled as N-grams, which we describe next.

Pattern Discovery using N-grams

Let a sequence of n events from 4 to j be si* and a single
event at ¢ be s;. The probability of observing a given se-
quence is given as P(s}') = P(s,|s}!). An N-gram model
uses the Markov assumption that the probability of observ-
ing an event at a given point of sequence depends only pre-
vious N — 1 events. Thus, P(s,|s! ') ~ P(sn|w2:}v+1).
Given an interaction sequence, we used an N-grams to iden-
tify patterns in behaviors for interpretation and to assess its
effectiveness. We varied 2 < N < 6 during model construc-
tion and used the following steps decide find optimal values:
1. Created k N-gram models M using each basis vector.

2. Selected the top three individuals with the highest weight

coefficient w;; from NMF for each basis vector.
3. Identified the top five N-gram patterns to appear in them.
4. Evaluated each model M} by calculating the probabilities
of generating each of the top five N-gram patterns.

Optimal values of NV and k£ were determined based on the
best average performance of the N-gram models. N-gram
model interpretation for each base vector h; used the top
five N-gram patterns (1) occurring in its sequence and (2) in
the sequences of its top three individuals.

Correlations between NMF Model and Variables

We calculated Pearson’s correlations between the weights in

matrix I/ and each of the following data variables:

® tr,1q; (total session duration)

® tCategory; (time spent customizing a item category)
Category; € {Hair, Head, Body, Arm, Leg}

® tGender; (time spent customizing with avatar gender)
Gender; € {Female, Male}

® tOrientation; (time spent in rotation orientation)
Orientationy, € {Front, Right, Left, Right}
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Model Validation with Multiple Linear Regressions

Multiple Linear Regression (MLR) was performed for each
of the above dependent data variables. Backward-selection
and t-tests were used to identify the basis vectors that con-
tributed most to each model. The adjusted goodness-of-fit
R? was used to evaluate the performance of each NMF
model and demonstrating its explanatory power with the val-
ues 0.1 being low, 0.3 being medium, and 0.5 being high.

Control Models and Comparisons

In order to provide a comparison of our approach using NMF

models, we conducted two sets of control experiments:

e Control #1 - Archetypal Analysis’ (AA) (Cutler and
Breiman 1994): Performs a similar matrix decomposition
of a data set to NMF, but imposes convexity constraints on
the resultant weight matrix W and basis vectors H, such
that archetype h € H lies on the convex hull.

e Control #2 - Principal Component Analysis (PCA) (Jol-
liffe 2005) performs a matrix decomposition such that H
is set to the eigenvectors of the data covariance.

The criteria for comparing the models were the (1) ease of

interpretation of basis vectors and (2) explained variance

when validated with MLR on dependent variables.

Results & Analysis

We present the results from the analyzing the data collected
and assessing the constructed NMF and N-gram models.

Descriptive Statistics

Table 2 shows the frequency distributions of the collected
events and the histogram in Figure 2 shows the distribution
of interaction sequence lengths. We omitted one user with an
unusually long sequence length and had N=190 remaining.

Click Event | min | max | mean | sd

€Gender 1 15 1.5 1.6
€Category 4 53 8.7 | 6.2
€Icon 4 342 77 56
€Color 3 280 57 48
t Animation 0 240 28 40

Table 2: The frequency distributions of different event data.

NMF and N-gram Model Selection

From a scree plot of the Frobenius norm values, the elbow of
the plot occurred between 7 < k < 9. While using such a k
can be viewed as more accurate (i.e., lower Frobenius norm),
we aimed for a NMF model with a smaller & to (a) regularize
our model against over-fitting and (b) favor a simpler model
for interpretation. Thus, for 2 < k& < 6, we constructed N-
gram models for 3 < NV < 6, as shown in Figure 3. We see
that the 6-gram model performs best for all %, the 3-gram
model worst for k¥ > 3, and both 4-gram and 5-gram mod-
els fluctuate in performance. The relative performances of

2A variant called Convex Hull Non-negative Matrix Factoriza-
tion (CHNMF) (Thurau, Kersting, and Bauckhage 2009) was used.



Base Vector 1

Sequence (First 80 events) w l

TEESTA ARl  Ee B | AT R NI SRS Tl 'S ES TN 'SESEEEESSSEERREEET N | - -

#1 || TR R A A A T A s s | 1.82 | 265

I c 1 B i1 B I AAAARAIIABRARAL B ARAAA B BN B AcIIIIIIIIl AT rEssssssssd | 1.80 | 245

#3 || SRR T s e e s s s s s s s sssn | 1.75 | 292
Base Vector 2

Sequence (First 80 events) w [

W c 1 1 e A A B 1A A AR EEET B B B r 111 B B rriccr B B By B B B B Brax Brg B BEe B B B 3.76 | 792

AN ¢ ¢ c 1 Bhcccccr BNENT 1 cococx Bar Bhr BNGNENr BNGNr BNr 111 G111 GGGGGGGGGGT BENr Bhr 11 BN Bhr Bar Bh BNeN Barxl 375 | 742
#3 || =EEEETERTTER i B Bhes: ENGaGhr Bhr pr BNeNr 11 fr BNehr e | AT ETeerressnow | 3.39 | 660

Base Vector 3

Sequence (First 80 events) w l

#1 TR AR R A T R R R R R R R R R R R R R rEER R o | 1.43 | 112
#2 || wEwomoE i By @r @ cp @ B4 @D D@DDDDEEEDDQEnr B §1rcrrr B B B § B B B B B 142 | 112
#3 || SRR T R S R R A R

Key: ™ Gender A Category M Icon = Color M Animation Control

11| i | AraoAmEsEenaE | 1.36 | 114

Table 1: The table shows the first 80 events for each obtained basis vector and its top three weighted individuals.

12 o Mean: 173

Std. Err: 10

Std. Dev: 137
07 m Min: 19

Max: 792

Frequency

0 200 400 600 800
Sequence Length

Figure 2: Variation of lengths of interaction sequences.

the models are most consistently in-order within the range
k = [3, 4]. To balance the trade-off between increasing k for
more representative basis vectors (lower Frobenius norm),
increasing N for N-gram performance, and favoring a sim-
pler model (lower k), we settled on values £ = 3 and N = 6.

Interpreting Basis Vectors

Table 1 shows the first 80 events for each resultant basis vec-
tor and the top-3 weighted sequences. Top sequences of ba-
sis vector 2 had the longest sequence length followed by ba-
sis vector 1 and basis vector 3. For interpretation, we use the
N-gram frequency tables for each basis vector (Table 3) and
the top 3 sequences (Table 4). We discuss them as follows:
1. Basis vector 1 has N-grams that feature Icon events with
< 1 Color event within the sequence (e.g., EEEE®EE or
WEFHAY). The N-grams from its top three individuals
share these properties. The distinctive N-gram is the se-
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Figure 3: Performance comparisons of different N-gram
models with varying number of NMF basis vectors k.

quence of Color events (i.e., ). It depicts the be-
havior of trying different color variations regularly. We
thus interpret this basis vector as “regular shopping.”

. Basis vector 2 has N-grams that have > 2 Color events.

The N-grams from its top three individuals show partic-
ularly interesting characteristics. There is a high occur-
rence of a sequence of AnimationControl events (e.g.,
and F¥¥¥W) and the sequence of consecutive
Color events. It depicts trying many different options and
rotating the avatar. We thus interpret this basis vector to
reflect the behavior of “engaged shopping.”

. Basis vector 3 has similar N-grams to basis vector 1. The

N-grams from its top three individuals have patterns that
are common to both basis vector 1 and 3’s top individuals
(e.g., WIWIWY and Z@>@>). The main differences are
the low frequency counts overall and a sequence with a
Category event (i.e., IWW>). This seems to depict sim-
ply cycling through categories without trying out options.
We thus interpret this basis vector as “bored browsing.”



Base Vector 1 Base Vector 2 Base Vector 3
N-gram | f N-gram | f N-gram | f
=rrarad | 510 TITTTa | 267 T | 664
TEsEEd | 59 b Er B 9 EEEEE | 49
R 12 1 B B ) FEAEE | 5
TEEEE | 12 mrETEE | 8 qArEEEd | 4
TErEEE | 12 1 11 o ) FArEEd | 4

Table 3: The N-gram frequency tables for each of the basis
vectors. Only the top five N-grams are shown.

Base Vector 1 Base Vector 2 Base Vector 3
N-gram | f N-gram | f N-gram | f
TEEEEd | 59 62 wEEEEd | 18
46 || @M 57 || mEE 12

i By B | 37 T | 55 a9
AomaA | 37 hanngl 51 b B B1 1 IR

TEEEd 16 51 = | 7

Table 4: The N-gram sequences obtained from the top 3 in-
dividual sequences with the highest weights (i.e., most rep-
resentative) for each basis sequence vector.

NMF Model - Correlations

We found no significantly large correlations between the ba-
sis vectors and (1) the total time spent in the system or (2)
time spent customizing avatars of particular genders. We
omit them and focus on the remaining data variables.

Basis behavioral patterns appear to coherently depict
the different interpretations of customization behaviors.
The calculated correlations between the weights w; for each
basis vector in our data set are shown in Table 5. We observe
that basis vector 1 and 2 are weakly positively correlated (o=
.15, p<.05) with each other, while basis vector 3 is highly
negatively correlated with basis vector 1 (a= -.53, p< .05)
and basis vector 3 (a= .57, p < .05), coinciding with our
earlier interpretations. A player exhibiting “bored browsing”
(Basis 3) is less likely to demonstrate “regular shopping”
(Basis 1) behavior, and even less likely to have “engaged
shopping” (Basis 2) behaviors. It also shows that players
may exhibit different base patterns throughout a given ses-
sion, but are less likely to transit from one extreme (‘“bored
browsing”) to the other (“engaged shopping™).

Different basis behavioral patterns correlate differ-
ently based on the part of the avatar being customized.
The calculated correlations between the weights w; for each
basis vector and the time durations spent customizing differ-
ent categories of the avatar are shown in Table 6. We observe
that basis vector 1 (“regular shopping”) is correlated across
more categories (4) than the other two (3) and basis vector
3 (“bored browsing”) is negatively correlated across all sig-
nificant categories. While mostly comparable, Basis vector
1 has higher correlations with the “leg” category while basis
vector 2 has higher correlations with the “body” category. It
suggests that regular customization behaviors try out differ-
ent customization categories in general, but more engaged
behaviors occur during the customization of the “body”.
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Basis 1 | Basis2 | Basis 3
Basis 1 1.0 0.15 -0.53
Basis 2 0.15 1.00 -0.57
Basis 3 -0.47 -0.57 1.00

Table 5: Correlation coefficients between basis vectors /3
weights of the NMF model. (All results at p < .05).

Hair | Face | Body | Arm Leg
Basis 1 0.52 0.23 0.30 | -0.06 | 0.20
Basis 2 0.50 0.22 043 | -0.02 | 0.06
Basis3 || -0.52 | -0.24 | -0.28 | 0.08 | -0.13

Table 6: Correlation coefficients between basis vectors and
durations customizing each category. (Non-gray: p < .05).

Front | Back | Left | Right
Basis 1 002 | 040 | 0.18 | 0.23
Basis2 || 0.05 | 0.67 | 0.23 | 0.29
Basis3 || 0.01 | -0.55 | -0.19 | -0.36

Table 7: Correlation coefficients between basis vectors and
durations in different rotation views (Non-gray: p < .05).

Rotating characters to different views correlates with
behavioral patterns. The calculated correlations between
the weights w; for each basis vector and the time dura-
tions in different view rotations are shown in Table 7. We
observe that basis vector 3 is highly negatively correlated
with “back”-view rotations and moderately negatively cor-
related with “right”-view rotations. This makes sense as a
player that is just “bored browsing” would not likely spend
time rotating their characters. We observe that basis vector
2 (“engaged shopping”) correlates positively with viewing
the character from the three available alternate rotations and
is particularly high (a= .67) for the “back”-view rotation.
This seems to be in line with our basis vector interpreta-
tions, since while being engaged, a player would likely be
carefully considering how their avatar looks from multiple
different rotational views. Basis vector 1 (“regular shop-
ping”) has moderate positive correlations with the “back”
and “right”-rotation views, indicating some levels of interest
in viewing the avatar from at least the side and back profiles.

NMF Model — Multiple Linear Regressions

The results of the MLR models constructed for each of the
dependent data variables are shown in Table 8. We only in-
cluded models that were significant (p < .05) and listed
them in decreasing order of effect size (adjusted R?).
Engaged behaviors can particularly predict time spent
customizing avatar bodies and rotating avatars. While
both coefficients for basis vector 1 and basis vector 2 are
significant across most of the depedent variables with the
exception of ¢,;45¢ and #;4, the coefficients for basis vector
2 (B2) are higher than basis vector 1 for time spent on the
avatar “body” and time spent in the “back” and “left”-view
rotations. This indicates that engaged behaviors contribute
more towards time spent immersed with particular aspects of



B1(x10%)] B2(x10%)] Bs(x10%)[| adj. R*
thack|| 19.6%%% | 31.2%%% | . 542
hair|| 02.6%F% | 47.9%F% T 450
thody|| 113%FF | 133%F% | 242
trighl] - - -31.8%* 129
trace|| 8L5%F [ 60.1%% | - .080
tiese || 4.57% 516%% | - 064
tieg || 98.7%% ] - - 033

Table 8: MLR results of the NMF model.

the system such carefully considering customization options
for the avatars’ body by constantly rotating the character.

Regular shopping behaviors can predict time spent on
customizing the avatar’s head region and also general in-
terest in customization avatar . Coefficients for basis vec-
tor 1 (1) are higher for time spent customizing avatar “hair”
and “face”. This indicates that regular behaviors of trying
out different options contribute towards the head region of
the avatar. We note that 5; is less significant on both the
“body” of the avatar and time spent in the “left”-view rota-
tion, while being the only significant coefficient for ;..

Behavior patterns exhibiting boredom or disinterest
can predict engagement with the customization system.
The only variable where the coefficient for basis vector (33)
was significant was for time spent in the “right”-view rota-
tion. The negative sign indicates that “bored browsing” be-
havioral patterns contribute towards less time spent on ob-
serving avatars from multiple different views, which depicts
a disengaged, disinterested, or dis-satisfied player.

Performance Comparisons with Control Models

Table 9 shows a comparison of the NMF approach with the
two control models. We only show significant MLR results
for dependent data variables that showed at least small effect
sizes (adj.R?> > .1). We observed that NMF and PCA per-
formed significantly better than AA, suggesting that interac-
tion sequences are better modeled as sub-patterns occurring
within a sequence, as opposed to convex combinations of
existing data points. While PCA slightly outperforms NMF,
its basis vectors are not interpretable due to the nature of
the decomposition in PCA resulting in principal component
axes rather than points in the same representation space.

Discussion

We have found that computational models constructed from
avatar customization interaction data can help to us gain
insight about players’ behavioral patterns in a quantifiable
manner compared to relying on self-reported surveys. Since
customization often occurs early, it can be useful for con-
structed models to be used in tailoring subsequent experi-
ences for the player without requiring explicit input from
them. For example, a player exhibiting high “engaged shop-
ping” behavioral patterns could be presented with a detailed
tutorial on subsequent gameplay, while one with “bored
browsing” patterns could be given a less detailed, more
action-focused tutorial. If models are constructed in real-
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adj. R?
NMF | AA | PCA
Valid/Interpretable? || Yes Yes | No
thack 542 .320 .550
thair 450 147 466
tbody 242 153 251
tright .129 .033 .099

Table 9: Comparisons of NMF, AA, and PCA models based
on MLR effect sizes and validity of the basis vectors.

time, they could be used to dynamically adapt to players,
maximizing their engagement, retention, or prevent churn.

Limitations & Future Work

The N-gram models were trained on the NMF basis vec-
tors and evaluated based on the their performance in predict-
ing top N-grams from the top weighted individuals. Future
work could evaluate each model against entire interaction
sequences using metrics like perplexity of an N-gram model
as a performance measure. With N-grams, we assumed that
interaction behaviors would exhibit partial sequences with
a Markovian assumption. This distinguished between pat-
terns, such as cycling through categories versus approaching
customization hierarchically (e.g., first hair, then head, etc.)
However, non-Markovian models like the Sudden Relax-
ation Model (SRM) (Shushin 2005) or CMRules (Fournier-
Viger et al. 2012) could provide alternative insights.

The avatar customization system for Heroes of Elibca fea-
tured retro-style, 16-bit 2D RPG sprites set in a fantasy set-
ting. Behaviors would likely differ in other settings (e.g., a
space themed game might show less focus on an avatar’s
head and body, but more on arms and legs.) We plan to
apply AlRvatar to customization systems from other gen-
res and of greater fidelity (e.g., 3D assets.) Beyond data
variables from player behaviors (e.g., time durations), we
plan to study other aspects of players. Preliminary results of
NMF model validation against real-world aspects of iden-
tity (e.g., personality using the BIG-5 personality tests or
demographic information) did not show significant results.
A more tailored survey would improve results and enable us
to collect information on more specific aspects of players.

Conclusion

We have presented an approach to computationally reveal
and model player behavioral patterns during avatar cus-
tomization for characters in a fantasy-themed 2D RPG con-
text. Three basic patterns — regular shopping, engaged shop-
ping, and bored browsing, were modeled using non-negative
matrix factorization on the data set of interaction sequences
collected using our data-mining system A/Rvatar. N-gram
models were used to interpret and evaluate each of these
patterns. We validated these models with timing-related data
measuring players’ engagements with different parts of the
system. We found that these patterns could effectively model
the different levels of engagement players had and their pref-
erences. It shows that data-driven Al approaches can be ef-
fective in quantifying the implicit behaviors of players.
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