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Abstract

With game play data, empirical approaches to clustering
are typically based solely on game outcomes, e.g. kills,
deaths, and score for each player. In this paper, we in-
vestigate a method for clustering players based on how
a player’s choices relate to outcomes, or equivalently
the latent player styles exhibited by players. Our ap-
proach is based on a Bayesian semi-parametric cluster-
ing method which has several advantages: the number
of clusters do not need to be specified a priori; the tech-
nique can work with a very compact representation of
each match (e.g. consisting primarily of indicator vari-
ables for player choices); a player can belong to mul-
tiple clusters and hence can have a hybrid style; and
the resulting clusterings often have a straight-forward
interpretation. To demonstrate the approach, we apply
our method to multiplayer match logs from Battlefield
3 consisting of over 1200 players and 500,000 matches.

Introduction
Clustering is an essential game analysis tool for understand-
ing player strengths and preferences. For example, cluster-
ing techniques have been used to identify player preferences
for using vehicles over direct combat (Drachen et al. 2012),
for taking time to solve puzzles over running through con-
tent (Drachen, Canossa, and Yannakakis 2009), for under-
standing how guilds evolve over time (Thurau and Bauck-
hage 2010), for quantifying how players differ from an ideal-
ized player (Holmgard, Togelius, and Yannakakis 2013), or
for associating emotions with game content (Nogueira et al.
2014). Clustering techniques aid designers, developers and
producers by enabling them to test assumptions about how
players actually interact with their game (El-Nasr, Drachen,
and Canossa 2013).

Typically, approaches to player clustering are based on
match outcomes such as kills, deaths, and score. However, in
this paper we investigate a semi-parametric method for clus-
tering players based on how their choices affect the game
outcome (e.g. latent player styles), rather than on their out-
comes directly. Such latent player styles do not model the in-
game behaviors of players, but rather how the options taken
by the player relate to his performance. In our approach, we
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fit a linear regression model on total score as a function of
the character rank, roles, game type, and map chosen by each
player for each match. This regression model is used to es-
timate both global and player-specific weights on each in-
put feature. The set of player-specific weights then define
a player’s style: how each role/game/map choice relates to
their performance. We then use a semi-parametric Bayesian
clustering procedure to discover groups of players that have
similar weights. These weights are interpretable as player-
specific measures of how well that player performs relative
to the global performance across all players.

Intuitively, clustering on regression coefficients rather
than on outcomes directly has the potential to identify why
those players are high or low-performing, not just if cer-
tain players are high or low-performing. Additionally, our
approach can work with a very compact representation of
the game play data, with each player in a match described
only by of a sparse set of indicator variables (for roles/game
types/maps chosen) along with the character rank and match
score.

There are many clustering procedures that could be used
to group players based upon their play styles, with k-means
clustering being the most common method. Our use of
a model-based semi-parametric Bayesian clustering proce-
dure has two important advantages. First, the number of
clusters (unique player styles) does not have to be pre-
specified. K-means clustering is used as an initialization
of our procedure, but the number of clusters can grow (or
shrink) as the algorithm proceeds based on whether extra
(or fewer) clusters are needed to best fit the observed data.

In addition to allowing the number of clusters to change,
our algorithm also allows players to move between clus-
ters. This soft clustering strategy accommodates two types
of variability shown by players. In one case, certain players
may have a play style that is a true hybrid between two (or
more) common play styles shared by many players. In an-
other case, certain players may transition to new play styles
over the course of their gaming career, and so move be-
tween play style clusters as we observe more matches for
that player.

To demonstrate this idea, we process post-match data
from a large dataset of player-versus-player online match
data from Battlefield 3, consisting of over 1200 players and
500,000 matches.
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Related Work
Existing research has shown many compelling examples of
how game analytics can aid game development, mainte-
nance and design (El-Nasr, Drachen, and Canossa 2013).
Of these, clustering methods are a subset of analytics tech-
niques which are useful for identifying classifications of
players. For example, Sifa et al. (2013) used archetype anal-
ysis to understand how player styles evolved during Tomb
Raider: Underworld, building on previous work by Drachen,
Canossa, and Yannakakis (2009) which modeled styles of
game play with self-organizing maps. Drachen et al. (2012)
compared the results of k-means and Simplex Volume Max-
imization (SIVM) in identifying player profiles from the
games Tera and Battlefield 2: Bad Company 2. Thu-
rau and Drachen (2011) compared the results of k-means,
PCA, archetype analysis, and non-negative matrix factor-
ization for clustering World of Warcraft players according
to how their character level changed over time. Thurau
and Bauckhage (2010) used k-means and a scalable vari-
ant of archetype analysis to identify differences between
guilds in World of Warcraft. Nogueira et al. (2014) used
a fuzzy clustering technique for modeling how player emo-
tions related to game events. Holmgard, Togelius, and Yan-
nakakis (2013) used a hierarchal clustering method to group
players based on how they differed from a “perfect” auto-
mated player. Bauckhage et al. (2014) clustered trajectories
of players from Quake III to identify hotspots of player ac-
tivities. The above techniques use a quantitative approach
to mine categorizations from a dataset, but qualitative ap-
proaches, where categorizations are defined a priori, can also
be used. For example, Tychsen and Canossa (2008) define
design-based clusterings of players, called personas, which
can then be corresponded with empirical metrics.

Our clustering procedure is a quantitative approach
closely related to the DP-means procedure of Kulis and
Jordan (2012), though our focus is on clustering player-
specific regression coefficients (that define latent player
styles) rather than means of Gaussian variables. Also, since
we revisit the clustering decision for players over multiple
iterations, our algorithm does not produce a hard clustering
as you would get from DP-means. Rather, players are able to
switch clusters (i.e. move between latent player styles) based
on new match data from those players.

The Dirichlet process was first introduced in Fergu-
son (1974) and has become the basis for many successful
clustering applications (Griffin and Steel 2006; Teh et al.
2006). See Muller and Quintana (2004) for a good review
of DP-based clustering.

Dataset
We demonstrate this method on a dataset of over 500,000
online player-versus-player post-match data taken from over
1200 players of Battlefield 3 from 2012 to 2014. Battlefield 3
is first-person military themed game which allows players to
take on a variety of weapons and vehicles in diverse environ-
ments across the globe, ranging from tight urban landscapes
to open desert. The dataset was provided by EA through the
Wharton Customer Analytics Initiative (WCAI).

For each match, this dataset contains information about
the player’s chosen roles (e.g. assault, support, recon, en-
gineer along with the vehicle roles armored land, unar-
mored land, helicopter, boat, and jet), match environment
(e.g Grand Bazaar, Noshahr Canals, or Operation Metro),
and the game type (e.g. conquest, rush, and death match) as
well as the player’s rank (e.g. a measure of their progression
and skill) and match outcome in terms of total score, num-
ber of kills and number of deaths. The player may choose
more than one role in a single match or might join a match
late or quit a match early. We only model player matches for
which the player played more than 5 minutes and accumu-
lated more than 100 points (shorter matches with less than
100 points tend to correspond to matches where a player quit
early or joined late and thus did not have much time to ac-
cumulate points). In this paper, we focus on total score as an
outcome variable since it includes points due to both combat
and objectives and thus is a good indicator of how players
performed overall, regardless of whether their team won or
not.

Methodology

Bayesian nonparametric clustering finds subsets of players
that all share highly similar parameter values, where param-
eter values are learned from observed match data. In our
approach, we fit a linear regression model on each player’s
total score as a function of the character rank, roles, game
type, and map. The set of player-specific weights from our
regression model define a player’s latent style: how each
role/game/map choice relates to their performance.

The first component of our model involves a predictive
regression model of total score for each match m of player
j as a function of observed covariates of the match, such as
the character rank and taken roles.

Scorem = β0+β1Rankm + β2Rolesm+

β3Gamesm + β4Mapsm + . . .+ εm (1)

where Rankm is a integer measuring the character’s progres-
sion in the game so far and Rolesm, Gamesm and Mapsm
represent indicator variables for the roles, game type, and
map that are utilized in match m. For example, if the player
used the helicopter in match m, the corresponding role in-
dicator variable would be 1; otherwise, it is zero. εm is
the residual of the regression after learning each weight βi.
Scorem is the total score for the player in that match, mod-
eled on a log scale so it is normally distributed.

We based these covariate choices on the information pro-
vided but additional (or alternative) covariates could be in-
corporated into the model if available. The coefficient values
β0, β1, β2, β3, . . . , βF , where F is the number of features,
represent the global predictive effects (e.g. over all players)
of every feature on the outcome variable, Scorem.

The model given in equation 1 provides insight into the
relative importance of different covariates, but is insufficient
for our goal of accounting for differences among players in
terms of play styles. We account for this heterogeneity by
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introducing player-specific effects into the model,

Scorejm = β0j+β1jRankjm + β2jRolesjm+

β3jGamesjm + β4jMapsjm + . . .+ εjm
(2)

The intercept parameter β0j captures the overall ability
of player j, whereas the collection of coefficients βj =
(β1j , β2j , β3j , . . . , βFj) represent the player-specific re-
sponses of player j to the covariates of the particular match
m. These player-specific indicator variables are non-zero
only when the player participated in match m and took on a
specific role, map, or game.

We infer these parameters βj using a Bayesian cluster-
ing approach based on the Dirichlet process (DP), which
allows for the grouping players into distinct player styles
through the clustering of similar behaviors. Intuitively, a
Dirichlet process prior can be viewed as a more flexible
alternative to traditional random effects models, such as
βj ∼ Normal(µ, σ2), where the player-specific parameters
would be shrunk towards a single mean. In contrast, a DP
prior allows the player-specific parameters to be shrunk to-
wards multiple centers that are shared by subsets of players.

A desirable consequence of this DP model formulation is
that the player-specific parameters βj for player j are clus-
tered together with other highly similar player-specific pa-
rameters βi from other players. Thus, we will be creating a
data-driven grouping of players that exhibit similar in-game
behaviors, where those behaviors are defined as the effects
on game score of the roles, activities and other covariates
taken on by that player. This approach also allows for a sub-
set of players to be left ungrouped from the rest of the pop-
ulation.

Equations 1 and 2 combine to create a sparse linear sys-
tem Yobs = Xβ which we solve to estimate β. X is a
M × F matrix where each row corresponds to a single
player’s choices from a single match and each column cor-
responds to either a global or player input feature.

X = [Xglobal | Xplayer1 | . . . | XplayerN ]

The values ofXglobal are derived from equation 1 and the val-
ues of each Xplayerj are derived from equation 2. Note that
for each row, only one set of player-specific values will be
non-zero. Also, in cases where a player has never tried a role,
map, or game, the corresponding column will be entirely ze-
ros. We remove these all-zero columns from X . The rows
of Yobs correspond to the player’s score from each match,
Scorem, on the log scale to keep quantities normally dis-
tributed. The estimated β̂ is a column vector with the form

β̂j = [β̂global | β̂player1 | . . . | β̂playerN ]T

Each β̂playerj is a latent player style for player j.

Bayesian Iterative Clustering
We use a semi-parametric Bayesian clustering procedure to
discover groups of players with similar weights. The algo-
rithm is initialized with a starting number of clusters using

1. Initialization

Input players Cluster

2. Cluster refinement

x

score 1 score 2

score potential 
new cluster

Score cluster for each player Adjust clusters

Figure 1: Clustering overview. Each player is represented as
a set of weights β learned from a linear regression model re-
lating players’ choices to their scores. Our semi-parametric
Bayesian cluster procedure contains two steps: First, we ini-
tialize our clusters using k-means and then, we iteratively re-
fine these clusters. In each cluster refinement step, we score
how well each player fits in each existing cluster as well as
how well the player might fit a potential new cluster. Based
on these scores, we adjust the memberships of each cluster.

k-means and then iteratively refined. In each cluster refine-
ment step, we score how well each player fits in each exist-
ing cluster as well as how well the player might fit a poten-
tial new cluster. We then adjust memberships based on these
scores. Figure 1 and Algorithm 1 illustrate and summarize
this process.

To start, each player will have his own set of coefficients
β̂playerj computed to fit Yobs = Xβ. As the algorithm pro-
gresses, player coefficients will be replaced with their corre-
sponding cluster centers. Note also that because global coef-
ficients will not change, we can compute player coefficients
efficiently based only on residual observations Yres

Yres = Yobs −Xglobal β̂global

where β̂global is the estimate of just the global parameters.
Given player-specific β̂js, we initialize the algorithm us-

ing k-means. Because the number of groups are allowed
to change, we set the initial number of groups using the
heuristic

√
N/2, where N is the number of players (Mar-

dia, Kent, and Bibby 1980). Once clustered, we compute the
mean µ and standard deviation Λ over the player-specific
coefficients to estimate a multivariate normal distribution
βk ∼ MVN(µ,Λ) over the starting clusters. This multi-
variate distribution will be used during cluster refinement to
create potential new clusters.

The starting clusters are iteratively refined using the in-
sample root mean square error (RMSE) to improve each
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Initialization:
Solve for β = [βglobal | βplayer1 | . . . | βplayerN ]T ;
Cluster all βplayeri using k-means;
Compute MVN(µ,Λ);
Compute RMSE based on cluster centers;
Set σ2 = RMSE2;

Cluster refinement:
Foreach iteration t in NumIterations

Foreach player j in players
Foreach cluster k in clusters;

Compute score Qk;
Compute score Q∗ for potential new cluster;
Sample player j into cluster based on scores;

Update clusters
Update cluster centers;
Update RMSE and σ2;
Remove empty clusters;

Algorithm 1: Bayesian iterative clustering overview.

cluster.

RMSE =

√∑
(Yres − Ŷ )2

M

where Ŷ = Xplayer β̂player are scores estimated with player-
specific coefficients and M is the number of matches. In our
tests, the RMSE usually converges in less than 5 iterations,
but we run the algorithm for longer so that we can also ana-
lyze players’ cluster switching behavior.

During cluster refinement, we revisit the cluster assign-
ments for each player. Each iteration, we quantify how well
each cluster center βk estimates the player’s scores with

Qk = log(nk)− 1

σ2

∑
((Yj − Ŷjk)2)

where nk is the number of members in cluster k, σ2 =
RMSE2 from the previous iteration, Yj are the observed
residual scores for that player, and Ŷjk = Xplayerj β̂k are
scores estimated with the cluster center. The second term in
the equation above corresponds to a normal likelihood that
is evaluated on the log scale in order to handle the large val-
ues generated by the size of our dataset. The first term in the
equation above comes from the Dirichlet process prior.

Additionally, we compute a candidate new cluster β∗ sam-
pled from MVN(µ,Λ) and assign it a score similarly

Q∗ = − 1

σ2

∑
((Yj − Ŷj∗)2)

Players are stochastically assigned to a cluster based on
all scores Q. First, scores are renormalized with Qk =
exp(Qk − max (Q)). Then, we sample player j into one
of the clusters (or the new cluster) with probabilities pro-
portional to P = (P1, ..., Pk, P∗), each Pk = Qk/

∑
(Qk).

The player-specific βi is set to the corresponding βk (or β∗)
for the sampled cluster. Note that if β∗ is selected, you have
created a new cluster with size 1.
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Figure 2: Cluster sizes. The algorithm output 90 clusters
with the largest 30 clusters containing 72% of the players

Once done looping over all players, we store the player
cluster IDs for each player, remove any empty clusters, and
adjust the cluster centers to the mean of the member’s βs.

Results
We demonstrate this method on a dataset of 515,605 player-
versus-player match logs taken from 1221 players. We use
58 features: an intercept term, player rank, 9 roles, 17 game
types, and 30 maps. The intercept term corresponds to β0
in equation 1 or β0j in equation 2 and in the following sec-
tions, we will also refer to β0j as the player coefficient. We
initialize the algorithm using k-means with 25 clusters and
perform 10 iterations. The in-sample RMSE is reduced from
0.83 to 0.79 during the cluster refinement stage, converging
after the third iteration. The algorithm outputs 90 clusters
with the largest 30 clusters containing 72% of the players
(Figure 2).

With our Matlab implementation, the cluster initialization
takes 1.5 minutes and the cluster refinement takes approxi-
mately 3 minutes on a 64-bit laptop having 8 GB RAM and
2.5 GHz processors. Our sparse matrix takes 20 MB of disk
space and could be optimized to require less space.

We also look at the prediction accuracy of the resulting
models using hold-out testing (with the training set consist-
ing of a randomized 90% of each player’s matches). A base-
line model consisting solely on the single global average has
hold-out RMSE of 0.97. The linear regression model, con-
taining both global and player features (41,343 total) has
hold-out RMSE of 0.79 (a 19% improvement). The corre-
sponding cluster-based model using the approach in this pa-
per has hold-out RMSE of 0.80 (18% improvement) but only
requires a fraction of the features (5220 total, or 13% of the
full model).

Latent Player Styles
Recall that we fit a linear regression model on each player’s
total score for a match as a function of the rank, roles,
games, and maps chosen by that player in the match and that
the set of player-specific weights from our regression model
define a player’s style: how each role/game/map choice
relates to their performance. Player weights close to zero
indicate that the player performs close to average, whereas
large weights indicate big differences. For example, a large
positive rank indicates that players improve more quickly
as they gain ranks than players overall. The largest group
computed by our algorithm corresponds to players who
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All-Stars

Map Specialist

Game Specialist

Role Specialist

Figure 3: Visualization of four example clusters. The height
of each bar represents the weight magnitudes for each cluster
center. The colors indicate the type of feature: character rank
(red), role (green), game type (cyan), map (blue), and player
intercept (purple). Members of “All-Stars” tend to perform
above average in every rank, role, game, and map, as in-
dicated by the large coefficient for player. Members of our
“Map Specialist” example have a high weight on two maps,
Operation Metro and Grand Bazaar, as well as a large weight
on rank. Members of our “Game Specialist” example have
their highest weights in team death matches. Members of
our “Role Specialist” example have their highest weights in
assault as well as team death matches.

perform above average over all. Smaller groups correspond
to players who perform best with specific combinations
of role, game, and map, or who generally perform below
average (usually, composed of low rank characters). Note
that roles, maps, and game types are often inter-related
since each map will support a subset of game types and
roles, e.g. if a player excels at a given map, they often have
higher scores for the roles and game types associated with
the map as well. Below we give descriptions of several
representative clusters, visualized in Figure 3.

All-Stars, 11% Members of this cluster tend to perform
above average in every rank, role, game, and map, as in-
dicated by the large coefficient for player (Figure 3, top). In
Figure 4 (Top), we summarize the score distributions of a
representative member of this cluster. The average log score
for our dataset was approximately 8, whereas the player’s
average log score is consistently close to 9.
Map Specialist, 6% Many clusters have particular map
types as their primary drivers of score. In this example,
members have a high weight on rank as well as two maps:
Operation Metro and Grand Bazaar. (Figure 3, second from
top). In Figure 4, we show a representative member of this
cluster, who consistently performs well in Operation Metro.
The high weight on rank is also reflected in this player’s con-
sistently above average scores.
Game Specialist, 4% Many clusters have a game type as
the primary driver of score. In this example, members have a
high weight on rank and on two types of team death matches.
(Figure 3, third from top). Figure 4 shows a representative
member of this cluster, who performs significantly better
than average in this game type.
Role Specialist, 3% Many cluster types have similar top
weights on a role with particular game types and maps that

it tends to be well suited for. In this example, members have
their highest weights in team death match and assault. (Fig-
ure 3, bottom). Figure 4 shows a representative member of
this cluster, who performs significantly better than average
in one team death match type as well as assault.

Analyzing Player Memberships
During cluster refinement, the transitions players make be-
tween clusters is a measure of how well the player fits a
particular play style. We distinguish between players whose
membership in a group is relatively stable (‘sticky” mem-
berships) over memberships which tend to be weak. Sticky
members tend to have characteristics very similar to the clus-
ter center. In this analysis, where we run the cluster refine-
ment for 10 iterations, we define players who transition to
the same cluster 5 or more times as sticky. With this crite-
ria, 28% of players had stable memberships. For example,
the representative players described in the previous section
(Figure 4) are sticky members and hence share the closest
similarities with their corresponding cluster centers. We de-
fine hybrid memberships as those where a player transitions
to two groups 4+ times each. With this criteria, 7% of players
were hybrids. In some cases, hybrid players belong to sim-
ilar clusters, e.g. those having a largest weight on the same
feature in both. The average number of unique group tran-
sitions per player was 4.9. A small group of players (3%)
transitioned 9 or more times. The majority of these players
(77%) played fewer than 30 games and were beginner rank
and hence did not have much information yet to base a clas-
sification on.

Discussion and Future Work
This work investigates a method for computing clusters from
post match player-versus-player games, using a Bayesian
clustering approach. The predictive regression model which
is the basis for the player coefficients uses a very compact
representation of each match, primarily consisting of indi-
cator variables. In future work, we plan to investigate the
effect of additional features, the effect of feature choices on
the discovered clusters, and the effect of different outcome
variables on the discovered clusters.

This approach doesn’t require the number of clusters to
be set a priori, and both the computed clusters and the tran-
sitions of players provide potential insights for analysis. Al-
though cluster interpretation still requires intuition on the
part of the analyst, the resulting weights are straight for-
ward to interpret: they represent differences between the
player and the global averages for each feature. Our ap-
proach focused on the largest weights for each cluster center
and then looked at the profiles of sticky members. This re-
sulted in clusters which segmented players by their strengths
and weaknesses according to rank, role, map, and game. Fu-
ture work will investigate whether such clusterings can help
players improve their own performance or help matchmak-
ing through combining players with complimentary skill
sets.

Drachen et al. (2012) computed player styles for Battle-
field 2: Bad Company 2 using k-means and SIVM. Their
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Figure 4: Box plots of player scores. Each player is a “sticky” member of our four cluster examples. From left to right, colors
indicate the distribution type: overall (red), by role (green) , by game type (cyan), and by maps (blue). Blank spaces indicate that
the player never tried a particular role,game, or map. Stars indicate that the player’s average is significantly different from the
global average (determined by T-test). From top to bottom, “All-stars” includes members who tend to perform above average in
every role, game, and map; “Map specialist” includes members whose best performance is associated with certain maps (with
the game types played on those maps also having higher scores); “Game specialist” contains members whose best performance
is associated with a game type. “Role specialist” contains players whose scores are best with a single role and associated game
types.

analysis, which was based on outcome features (total score
over all games, total scores in each role (recon, assault, sup-
port, and engineer), duration of time spent in vehicles, etc.),
validated the fundamental ways in which players can ap-
proach the game, which is independent from the game type
and map. We view the approach in this paper as compli-
mentary. In addition to computing clusters based on player
strengths and weaknesses on different maps, roles, and game
types, we also can gain insights into how well a player fits
into a cluster by analyzing how “sticky” their membership
is.

Although our dataset is by no means a toy sample, it
is still relatively small compared to the millions of play-
ers who play Battlefield 3 online. Because the feature set
is very sparse, this technique should support data sets with
many more players than demonstrated here. However, we
also wish to investigate how to adapt the algorithm for an on-
line setting where rounds are processed in order by batches.
Such an approach has the potential to work with extremely
large numbers of players over long periods of time. Further-
more, because clusters can change, we are interested in how
evolving clusters reflect the progression of players over time.
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