
A Benchmark for StarCraft Intelligent Agents

Alberto Uriarte and Santiago Ontañón
Computer Science Department

Drexel University
{albertouri,santi}@cs.drexel.edu

Abstract

The problem of comparing the performance of differ-
ent Real-Time Strategy (RTS) Intelligent Agents (IA) is
non-trivial. And often different research groups employ
different testing methodologies designed to test specific
aspects of the agents. However, the lack of a standard
process to evaluate and compare different methods in
the same context makes progress assessment difficult.
In order to address this problem, this paper presents a
set of benchmark scenarios and metrics aimed at evalu-
ating the performance of different techniques or agents
for the RTS game StarCraft. We used these scenarios
to compare the performance of a collection of bots par-
ticipating in recent StarCraft AI (Artificial Intelligence)
competitions to illustrate the usefulness of our proposed
benchmarks.

Introduction
Real-Time Strategy (RTS) is a genre of strategy games
that has been recognized as being very challenging from
an Artificial Intelligence (AI) standpoint. In a RTS game,
each player must control a set of units in order to build an
economy (gathering resources), produce an army (building
training facilities) and destroy her enemy (commanding her
army). This is challenging, since the state space of RTS
games is typically very large given the enormous number
of potential actions that can be taken at any time and that the
players are able to make decisions in real-time rather than it-
eratively. Given these unique properties of RTS games, tra-
ditional AI techniques for game playing are not applicable
to RTS games.

Since the first call for research in AI for RTS (Buro 2003),
significant progress has occurred in many different subprob-
lems on RTS AI (Ontañón et al. 2013). In order to assess
progress and compare the strengths and weaknesses of dif-
ferent techniques, several competitions (beginning with the
ORTS competition1 and culminating with the current Star-
Craft AI competition2) were created in order to provide a
common testbed. However, due to the multifaceted nature
of RTS games, the results coming out of such competitions

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://skatgame.net/mburo/orts/#Competitions
2http://webdocs.cs.ualberta.ca/∼cdavid/starcraftaicomp/

are insufficient for understanding the strengths and weak-
nesses of specific techniques or agents. For example, a Star-
Craft bot could potentially win a competition by employing
a hard-coded strategy that no other bot had a counter-for,
while it is clear that finding a good hard-coded strategy for a
single specific game (StarCraft) does not contribute toward
solving the general problem of AI for RTS games.

To address this problem, this paper proposes a new
method of evaluation and comparison of the performance
of StarCraft playing agents. We present a benchmark com-
posed of a series of scenarios, each of them capturing a dif-
ferent aspect of RTS games. Each scenario is defined by a
starting situation in StarCraft where the agent needs to ei-
ther defeat the opponent or survive for as long as possible.
Additionally, we provide an evaluation metric for each sce-
nario, in order to assess the performance of a given bot in the
given scenario. All the scenarios were created for the RTS
game StarCraft: BroodWar, and these scenarios as well as
the necessary scripts to automatically run them and obtain
the evaluation metrics are freely available online.

While we do not expect this approach to replace the Star-
Craft competition (since the competition still seems to be the
best way to evaluate the performance of complete agents in a
fair way), the proposed benchmark aims at providing a more
fine-grained picture of the strengths and weaknesses of spe-
cific algorithms, techniques and complete agents. By defin-
ing scenarios that capture different aspects of RTS game-
play, and evaluating a given agent in all of those scenarios,
we obtain a picture of the strengths and weaknesses of the
agent. Moreover, combining the results obtained in these
benchmarks with the final result of the StarCraft competi-
tion, we can also infer which aspects of gameplay have a
stronger impact in final play strength. Additionally, by hav-
ing a uniform benchmark that is shared by the community,
we ensure a standard way to compare AI techniques for RTS
games, helping us measure progress in the field. Moreover,
the set of scenarios presented in this paper only constitutes
a starting point, which we expect to grow over time.

The remainder of this paper is organized as follows: First,
we provide some background on previous benchmarks used
by the RTS community. Then, we present our proposed
benchmark by initially defining some evaluation metrics and
then discussing an initial collection of scenarios. Finally,
we present the results obtained from running a collection of

Artificial Intelligence in Adversarial Real-Time Games:
Papers from the AIIDE 2015 Workshop

22

current StarCraft bots on these scenarios evaluated by our
defined metrics.

Background
Playing RTS games requires planning and reasoning at mul-
tiple time scales, from second-by-second reactive control of
units to long-term planning. Usually, this continuum of time
scales is divided into three levels (Ontañón et al. 2013):

Reactive Control: for short-term decision-making, such as
unit movement, targeting or firing.

Tactics: for medium-term decision-making, like army con-
trol and building positioning.

Strategy: for long-term decision, like army composition,
build-order or determining counter-strategies against a
given opponent.

This section briefly describes different testing scenarios
that different research groups have employed to evaluate al-
gorithms to solve problems in each of these three levels.

The problems most tackled by the research community
are those related to reactive control. In this category, we
can find problems such as unit formation (Young et al.
2012; Danielsiek et al. 2008), unit survivability (Uriarte and
Ontañón 2012; Nguyen, Wang, and Thawonmas 2013) and
target selection (Churchill and Buro 2013). Usually, dif-
ferent papers define different testing scenarios (usually not
public) and sometimes they use the same scenarios as pro-
fessional players use to train their skills3 (Young and Hawes
2014).

In the case of tactics, spatial reasoning is of key impor-
tance. People have addressed problems such as how to solve
qualitative navigation problems (Hagelbäck 2012), how in-
telligent agents use terrain analysis to exploit chokepoints
or reasoning about the immediate enemy thread (Muñoz-
Avila, Dannenhauer, and Cox 2015), optimizing resource
gathering (Christensen et al. 2012; de Oliveira, Goldbarg,
and Goldbarg 2014), or building placement (Certický 2013;
Richoux, Uriarte, and Ontañón 2014). In these cases, the re-
searchers use professional StarCraft maps as a benchmark,
sometimes using the StarCraft internal score or just count-
ing the amount of resources gathered in a certain amount of
time.

Concrete experiments dealing with long-term strategy are
rare in the literature, except for some isolated pieces of
work focusing on base expansion importance or handling
dynamic obstacles (Ontañón et al. 2010; Jaidee and Muñoz-
Avila 2012). The common approach is to use a general map
and the win ratio to test their methods.

Moreover, in this paper, we have not included scenarios
to evaluate pathfinding algorithms, since well-known bench-
marks exist for this task (Sturtevant 2012).

Metrics
This paper presents a benchmark for RTS IAs consisting of
a collection of scenarios where the intelligent agents will be
evaluated playing against a predefined opponent. In order

3http://wiki.teamliquid.net/starcraft/Micro Training Maps

to assess how well a given agent has addressed a given sce-
nario, we need proper evaluation metrics. Moreover, differ-
ent scenarios require different metrics. For example, while
in some scenarios we are interested in measuring whether
the agent was able to completely destroy the opponent, in
other scenarios, we might be interested in measuring how
long the agent is able to survive. This section presents a col-
lection of metrics that we later use in the definition of the
proposed scenarios. We will always assume that the metric
is evaluated in a game state S, played by two players, A and
B, where A is the player controlled by the agent and B is the
opponent. Also, we will use t to denote the amount of time it
took for agent A to complete the scenario (i.e., to win, lose,
or reach a predefined timeout). All the metrics are designed
to be normalized either in the interval [0,1] or [-1,1], with
higher values representing better agent performance.
Survivor’s life: To evaluate the performance of a reactive

control technique, the typical scenario is a small map with
two military forces fighting each other. In this case we
want to win while losing as few units as possible and in
the least time possible. For this reason we suggest a mod-
ified version of LTD2 (Life-Time Damage 2) proposed by
Kovarsky and Buro (2005) where we only take into ac-
count the hit points of the surviving units and the time
elapsed. Therefore, we compute the survivor’s life metric
(SL) as the sum of the square root of hit points remaining
of each unit divided by amount of time it took to complete
the scenario (win/defeat/timeout), measured in frames:

SL(S) =

∑
a∈UA

√
HP (a)−

∑
b∈UB

√
HP (b)

t

where HP (u) is the Hit Points of a unit u, UX is the
set of units of the player X . Moreover, in order to be
able to compare results obtained in different scenarios, we
normalize the result to the interval [−1, 1]. To do this we
need to compute the lower and upper bounds. The lower
bound is when player A is defeated in the minimum time
and without dealing any damage to player B:

timeToKill(A,B) =

∑
a∈UA

HP (a)∑
b∈UB

DPF (b)

lowerBound(S) =
−
∑

b∈UB

√
HP (b)

timeToKill(A,B)

where the DPF is the Damage Per Frame a unit can in-
flict. The upper bound can be computed analogously by
considering the situation when player B is defeated in the
minimum possible time. Once the bounds are computed,
if the SL is negative, we normalize using the lower bound.
Otherwise, we use the upper bound to normalize:

SLnorm(S) =

{
SL(S)

|lowerBound(S)| if SL(S) ≤ 0
SL(S)

|upperBound(S)| otherwise

Time survived: In other scenarios we want to evaluate the
amount of time the agent can survive in front of an invin-
cible opponent. We can generate a score between [0, 1] by
normalizing the time the agent survived by a predefined
timeout (TO): TS = t/TO

23

Time needed: In other scenarios we want to evaluate the
time to complete a certain task or to recover from a loss.
In this case we start a timer when a certain event happens
(e.g., a building is destroyed) and we stop it after a timeout
(TO) or after a condition is triggered (e.g., the destroyed
building is replaced). The score is computed as: TN =
(TO − t)/TO.

Units lost: Sometimes, we want to evaluate how a bot can
respond to a strategic attack. In these cases, we can count
the difference in units lost by players A and B. We can
normalize between [0, 1] by dividing the number of units
lost by the maximum units of the player:

UL =
Blost

Bmax
− Alost

Amax

Where, Alost and Blost are the units that player A and
player B lost during the scenario respectively, and Amax

and Bmax are predefined upper bounds on the expected
number of units each player could lose in a given scenario
(this is analogous to a time out in scenarios controlled by
time, so if player A loses more than Amax units, the sce-
nario ends).

Finally, some parts of StarCraft are stochastic and some
AI techniques include stochastic elements. As such, each
scenario should be repeated sufficiently large number of
times in order to calculate an average value of these met-
rics that is representative of the bot’s performance. All the
experiments below show the average and standard deviation
after running each scenario 10 times.

Benchmark Scenarios
In this section we present a wide range of scenarios for
benchmark purposes. The list is not exhaustive, but is to
be seen as a starting point. We expect to keep the number
of tests growing. We choose StarCraft to implement the sce-
narios because of its recent popularity over other RTS games
as a test bed for AI game research (Ontañón et al. 2013). All
the scenarios described in this section for StarCraft are freely
available online4 to the research community.

In order to evaluate a StarCraft playing agent using these
scenarios, it must support two types of behavior:
• In a micromanagement scenario (those where the player

only controls military units) the goal for the intelligent
agent should be to reach the starting position of the en-
emy. Those scenarios are designed in such a way that
an enemy confrontation is unavoidable if the intelligent
agent tries to reach the opponent’s starting position.

• In full-game scenarios, the goal is just like a regular game:
do whatever is necessary to win the game.
The following subsections present a detailed list of all the

proposed scenarios. For each scenario, we provide the mo-
tivation, the map layout, the opponent behavior, termination
condition and evaluation metric.

4Each scenario consists of a StarCraft map containing the ini-
tial situation plus a tournament module to run the benchmark.
We provide versions for BWAPI 3.7 and 4.1 downloadable from:
https://bitbucket.org/auriarte/starcraftbenchmarkai

1 Vulture

6 Zealots

Figure 1: StarCraft scenario RC1-A-V6Z.

RC1: Reactive Control - Perfect Kiting
The purpose of this scenario is to test whether the intelligent
agent is able to reason about the possibility of exploiting
its mobility and range attack against a stronger but slower
unit in order to win. In this scenario, a direct frontal at-
tack will result in losing the combat, but via careful ma-
neuvering, it is possible to win without taking any damage.
Previous works have used this type of scenario to evaluate
reactive control of their bots (Uriarte and Ontañón 2012;
Wender and Watson 2012; Young and Hawes 2014; Liu,
Louis, and Ballinger 2014). The different configurations are
set to test the scalability and the awareness of the surround-
ings of the agent.

• Map description: We propose two different maps and
four initial army configurations. This gives rise to 8 dif-
ferent scenario configurations (RC1-A-VZ, RC1-A-V6Z,
..., RC1-B-V6Zg).

Layout A: Small map of 64× 64 tiles with no obstacles.
Player A starts at 9 o’clock, player B at 3 o’clock.

Layout B: A big region connected to one small region
on each side. Player A starts at the west small region,
player B at the east small region. In this layout, intu-
itively, the player should avoid conflict inside a small
region where its troops could get stuck.

VZ: Player A has 1 ranged fast weak unit (Vulture) and
player B has 1 melee slow strong unit (Zealot).

V6Z: Player A has 1 ranged fast weak unit (Vulture) and
player B has 6 melee slow strong units (Zealot).

3V6Z: Player A has 3 ranged fast weak units (Vulture)
and player B has 6 melee slow strong units (Zealot).
The purpose of this configuration is to test whether
player A’s units disturb each other.

V9Zg: Player A has 1 range fast weak unit (Vulture) and
player B has 9 melee fast weak units (Zergling).

Figure 1 shows an example of scenario RC1-A-V6Z using
the Layout A with 1 Vulture against 6 Zealots, and Figure
2 shows Layout B on the scenario RC1-B-V6Z.

• Enemy behavior: Player B will try to reach the player
A’s starting point. If it finds any player A’s troops, it will
chase it trying to kill it.

24

1 Vulture 6 Zealots

Figure 2: StarCraft scenario RC1-B-V6Z.

• Termination condition: One player’s army is completely
destroyed.

• Evaluation: Survivor’s life.

RC2: Reactive Control - Kiting
In this scenario the intelligent agent is at a disadvantage, but
using a hit-and-run behavior might suffice to win. The main
difference with the previous case is that here, some damage
is unavoidable. Some previous works done in this area in ad-
dition to the ones already presented in the previous scenario
are (Young et al. 2012; Parra and Garrido 2013).

• Map description: Here we have two possible configura-
tions:

A-3D3Z: Using the same map Layout A as before, but
where player A has 2 Dragoons in his starting locations
and 1 Dragoon near player B starting locations, while
player B has 3 Zealots. Intuitively, in this configuration
player A should retreat his isolated Dragoon in order to
wait for reinforcements.

A-2D3H: Using map Layout A where player A has 2
Dragoons and player B has 3 Hydralisks.

• Enemy behavior: Player B will try to reach the player’s
starting point. If it finds any player troop, it will chase it
trying to kill it.

• Termination condition: One player’s army is completely
destroyed.

• Evaluation: Survivor’s life.

RC3: Reactive Control - Sustained Kiting
In this case there is no chance to win so we should try to stay
alive as much time as possible. A typical example of this
behavior is while we are scouting the enemy base. Previous
work: (Nguyen, Wang, and Thawonmas 2013)

• Map description: This scenario uses a map Layout C
consisting in two regions (R1, R2) connected by a choke-
point. Player A starts in region R1, which is empty.
Player B starts in region R2 which it has 9 mineral
patches and a Vespene gas geyser (like a regular StarCraft
starting position); Player B has already a Nexus, 2 Pylons,
2 Zealots and 5 Probes; player A has 1 SCV.

• Enemy behavior: Player B will hold its position. If an
enemy is within its range of vision, it will chase it with its
two Zealots.

• Termination condition: One player’s army is completely
destroyed or timeout after 300 seconds.

• Evaluation: Time survived in frames since a Zealot starts
chasing the SCV normalized by the timeout. Notice that
this is a micromanagement map, and thus, the goal of the
agent is to reach B’s starting position.

RC4: Reactive Control - Symmetric Armies
In equal conditions (symmetric armies), positioning and tar-
get selection are key aspects that can determine a player’s
success in a battle. This scenario presents a test with several
configurations as a baseline to experiment against basic AI
opponents. Some similar tests have been performed in the
past (van der Heijden, Bakkes, and Spronck 2008; Blackadar
and Denzinger 2011; Shantia, Begue, and Wiering 2011;
Iuhasz, Negru, and Zaharie 2012; Churchill and Buro 2013;
Bowen, Todd, and Sukthankar 2013; Zhen and Watson
2013; Liu, Louis, and Ballinger 2014; Justesen et al. 2014;
Nguyen, Nguyen, and Thawonmas 2015).

• Map description: It combines Layout A with the follow-
ing possible army configurations:

5V: Each player has 5 Vultures. The goal is to test range
units.

9Z: Each player has 9 Zealots. The goal is to test melee
units.

12D: Each player has 12 Dragoons.
12Mu: Each player has 12 Mutalisks. To test flying units

with “splash” damage.
20Ma8Me: Each player has 20 Marines and 8 Medics.

To test mixed groups.
5Z8D: Each player has 5 Zealots and 8 Dragoons.

• Enemy behavior: Player B will hold its position in order
to maintain its formation.

• Termination condition: One player’s army is completely
destroyed.

• Evaluation: Survivor’s life.

T1: Tactics - Dynamic obstacles
This scenario measures how well an agent can navigate
when chokepoints are blocked by dynamic obstacles (e.g.,
neutral buildings). Notice that we are not aiming to bench-
mark pathfinding, but high-level navigation.

• Map description: Here we use a professional StarCraft
map called Heartbreak Ridge5. This map has the particu-
larity that the third closest base location from the starting
point has two ways to access it. The first is through an
open chokepoint. Alternatively there is a closer choke-
point blocked by an indestructible building and a stack
of minerals. The default StarCraft pathfinding algorithm
does not take into account dynamic objects, so it will

5http://wiki.teamliquid.net/starcraft/Heartbreak Ridge

25

Command center,
and 4 SCVs

4 Zealots

Chokepoint

Figure 3: StarCraft scenario S1.

lead the unit through the shortest (blocked) path until
the blocking objects are revealed form the fog of war, at
which point it will recalculate the path with the new in-
formation. Player A starts with a worker in the regular
starting position of the map, while the starting position for
Player B (who has no units) is this third base expansion.
Notice that since this is a micromanagement map, even if
B does not have any units in this scenario, the goal of the
agent is to reach B’s position.

• Enemy behavior: None.

• Termination condition: Player A reaches the starting po-
sition of Player B or a timeout after 60 games seconds.

• Evaluation: Time needed.

S1: Strategy - Building placement

One of the possible strategies in StarCraft is to rush your
enemy. Rushing consists of training a certain number of
military units as fast as possible, then attacking your enemy
while she is still developing her economy. A typical counter-
strategy to a rush is to create a wall in the chokepoint of
your initial region to prevent your opponent from reaching
you (a.k.a. walling). This scenario simulates a Zealot rush
and is designed to test whether the agent will be able to stop
it (intuitively, it seems the only option is to build a wall).
Some previous research has been done (Certický 2013;
Richoux, Uriarte, and Ontañón 2014).

• Map description: It uses Layout C where player A starts
like a regular game (a Command Center and 4 SCVs); and
player B starts with 4 Zealots. Figure 3 shows an example
of this scenario using the Layout C.

• Enemy behavior: Controls player B and it will wait 250
seconds to launch an attack to player A.

• Termination condition: Player A loses 25 units (at this
point, you are not able to recover from a rush) or player
B loses all his 4 Zealots.

• Evaluation: In this case we use units lost metric. More
specifically: (Units player B lost / 4) - (units player A lost
/ 25).

S2: Strategy - Plan Recovery
An agent should adapt on plan failures. This scenario tests
if the AI is able to recover from the opponent disrupting its
build order.

• Map description: It uses Layout C where player A starts
like a regular game (a Command Center and 4 SCVs); and
player B does not have units.

• Enemy behavior: Once player A’s Refinery is finished it
will be destroyed after 1 second by a scripted event.

• Termination condition: When the destroyed building is
replaced or a timeout of 400 seconds.

• Evaluation: Time spent to replace a building normalized
by the timeout.

Experiments
In order to illustrate the advantages of the proposed bench-
mark, we used it to evaluate the performance of some of
the state-of-the-art bots available: FreScBot, the winner
bot of micromanagement tournament at AIIDE 2010; UAl-
bertaBot, winner of AIIDE 2013; Skynet, winner of AIIDE
2011, 2012, and CIG 2011, 2012, 2013; and Nova, with a
strong kiting behavior. Table 1 shows the average score and
standard deviation of each bot on each scenario after 10 exe-
cutions. Not all bots can play all 3 races, and some bots can-
not play micromanagement maps. When a bot cannot play
a given scenario, we mark it with the N/A (Not Applicable)
label.

For scenarios whose metric is normalized in the interval
[-1,1], negative values mean that the bots were not able to
complete the scenario. At first glance, we can see that most
scores are negative, meaning that bots fail to succeed in com-
pleting most of the scenarios. We would like to point out a
few interesting trends from the table:

• Nova’s strong point is kiting, and it is no surprise that it is
the only bot that scores well in the kiting scenarios (RC1,
RC2, and RC3). However, since Nova can only control
the Terran race, it cannot be tested in RC2.

• Newer bots (UAlbertaBot, Skynet, Nova) significantly
outperform the older bot FreScBot in micromanagement,
even though FreScBot was the winner of the microman-
agement tournament in 2010. While UAlbertaBot and
Skynet improved the micromanagement of Protoss’ units,
Nova outperformed FreScBot’s micromanagement with
Terran’s units.

• Despite improved performance in micromanagement,
none of the bots tested were able to pass any of the tac-
tics or strategic scenarios. This is consistent with previ-
ous observations indicating that the biggest weakness of
state-of-the-art StarCraft bots is their high-level reasoning
skills (tactic and macro), and not their micromanagement
skills.

Additionally, we would like to point out that the proposed
benchmark is not to be seen as a way to assess the strength
of a bot overall (the StarCraft AI competition is a better way

26

Table 1: Score achieved by four different bots on each scenario. The right-most column shows the range of values achievable
in each scenario (higher is always better).

Scenario FreScBot UAlbertaBot Skynet Nova Range
RC1-A-VZ -0.1603 ± 0.0242 -0.2216 ± 0.0265 -0.2429 ± 0.0431 0.3335 ± 0.0517 [-1,1]
RC1-A-V6Z -0.0314 ± 0.0118 -0.0684 ± 0.0077 -0.0828 ± 0.0096 0.0115 ± 0.0271 [-1,1]
RC1-A-3V6Z -0.0924 ± 0.0327 -0.1115 ± 0.0260 -0.1124 ± 0.0275 0.0944 ± 0.0598 [-1,1]
RC1-A-1V9Zg -0.0183 ± 0.0060 -0.0438 ± 0.0093 -0.0361 ± 0.0042 0.0093 ± 0.0376 [-1,1]
RC1-B-VZ -0.1785 ± 0.0163 -0.1406 ± 0.0162 -0.1865 ± 0.0138 0.2892 ± 0.0139 [-1,1]
RC1-B-V6Z -0.0588 ± 0.0021 -0.0442 ± 0.0016 -0.0636 ± 0.0053 0.0159 ± 0.0254 [-1,1]
RC1-B-3V6Z -0.1178 ± 0.0219 -0.0885 ± 0.0148 -0.1090 ± 0.0080 0.1074 ± 0.0371 [-1,1]
RC1-B-1V9Zg -0.0457 ± 0.0035 -0.0283 ± 0.0047 -0.0363 ± 0.0063 0.0282 ± 0.0297 [-1,1]
RC2-A-2D3H -0.2343 ± 0.0772 0.0127 ± 0.1261 0.0506 ± 0.1641 N/A [-1,1]
RC2-A-3D3Z 0.0036 ± 0.0757 0.0718 ± 0.1453 0.2887 ± 0.0345 N/A [-1,1]
RC3 N/A N/A N/A 0.0335 ± 0.0065 [0,1]
RC4-A-5V -0.0370 ± 0.0129 -0.0081 ± 0.0187 -0.0591 ± 0.0290 -0.0298 ± 0.0672 [-1,1]
RC4-A-12D -0.0027 ± 0.0614 0.0115 ± 0.0348 0.1031 ± 0.0239 N/A [-1,1]
RC4-A-9Z -0.0231 ± 0.0217 -0.0117 ± 0.0344 0.0239 ± 0.0427 N/A [-1,1]
RC4-A-12Mu 0.1042 ± 0.0717 0.2335 ± 0.0601 0.3273 ± 0.0858 N/A [-1,1]
RC4-A-20Ma8Me -0.0145 ± 0.0306 0.0424 ± 0.0351 -0.0024 ± 0.0004 -0.1276 ± 0.0173 [-1,1]
RC4-A-5Z8D -0.0402 ± 0.0170 -0.0462 ± 0.0249 0.0313 ± 0.0281 N/A [-1,1]
T1 N/A N/A N/A 0.0000 ± 0.0000 [0,1]
S1 N/A -1.0000 ± 0.0000 N/A -0.7420 ± 0.3920 [-1,1]
S2 N/A 0.0000 ± 0.0000 N/A 0.0000 ± 0.0000 [0,1]

to assess that), but as a way to delve deeper into the spe-
cific strengths and weaknesses of different bots, and a way
to guide future work in the area.

Conclusions
In this paper we presented a set of scenarios to benchmark
the performance of RTS IAs on different tasks that humans
are able to solve with relative easy effort. We believe that
providing this common set of problems will improve the
evaluation process of future RTS AI techniques and agents.
We also presented some quantitative metrics that can be used
to evaluate the performance of each scenario.

As part of our future work, we would like to expand the
set of scenarios (which is currently heavily biased toward
micromanagement), specially trying to identify interesting
tactical and strategic scenarios. We plan to maintain a public
repository of the project and provide basic scripted AIs other
than the built-in AI in order to expand the set of opponent
behaviors in each scenario.

References
Blackadar, M., and Denzinger, J. 2011. Behavior learning-
based testing of StarCraft competition entries. In Artificial
Intelligence and Interactive Digital Entertainment (AIIDE
2011). AAAI Press.
Bowen, N.; Todd, J.; and Sukthankar, G. 2013. Adjutant bot:
An evaluation of unit micromanagement tactics. In Confer-
ence on Computational Intelligence and Games (CIG 2013),
1–8. IEEE.
Buro, M. 2003. Real-time strategy games: a new AI re-
search challenge. In International Joint Conference of Arti-

ficial Intelligence (IJCAI 2003), 1534–1535. Morgan Kauf-
mann Publishers Inc.
Certický, M. 2013. Implementing a wall-in building place-
ment in StarCraft with declarative programming. CoRR
abs/1306.4460.
Christensen, D.; Hansen, H. O.; Hernandez, J. P. C.; Juul-
Jensen, L.; Kastaniegaard, K.; and Zeng, Y. 2012. A data-
driven approach for resource gathering in real-time strategy
games. In Agents and Data Mining Interaction, Lecture
Notes in Computer Science. Springer. 304–315.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In Con-
ference on Computational Intelligence and Games (CIG
2013), 1–8. IEEE.
Danielsiek, H.; Stür, R.; Thom, A.; Beume, N.; Naujoks,
B.; and Preuss, M. 2008. Intelligent moving of groups in
real-time strategy games. In Symposium on Computational
Intelligence and Games (CIG 2008), 71–78.
de Oliveira, C. F.; Goldbarg, E. F. G.; and Goldbarg, M. C.
2014. Bi-objective worker assignment in the bases of Star-
Craft. In Encontro Nacional de Inteligncia Artificial e Com-
putacional (ENIAC 2014).
Hagelbäck, J. 2012. Potential-field based navigation in Star-
Craft. In Conference on Computational Intelligence and
Games (CIG 2012), 388–393. IEEE.
Iuhasz, G.; Negru, V.; and Zaharie, D. 2012. Neuroevolution
based multi-agent system for micromanagement in real-time
strategy games. In Balkan Conference in Informatics (BCI
2012), 32–39. ACM.
Jaidee, U., and Muñoz-Avila, H. 2012. CLASSQ-L: A q-
learning algorithm for adversarial real-time strategy games.

27

In Artificial Intelligence and Interactive Digital Entertain-
ment Conference (AIIDE 2012). AAAI Press.
Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script- and cluster-based UCT for StarCraft. In Confer-
ence on Computational Intelligence and Games (CIG 2014).
IEEE.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. In Conference of the Canadian
Society for Computational Studies of Intelligence (Canadian
AI 2005), volume 3501, 66–78. Springer.
Liu, S.; Louis, S. J.; and Ballinger, C. A. 2014. Evolv-
ing effective micro behaviors in RTS game. In Conference
on Computational Intelligence and Games (CIG 2014), 1–8.
IEEE.
Muñoz-Avila, H.; Dannenhauer, D.; and Cox, M. T. 2015.
Towards cognition-level goal reasoning for playing real-time
strategy games. In Goal Reasoning: Papers from the ACS
Workshop.
Nguyen, T. D.; Nguyen, K. Q.; and Thawonmas, R. 2015.
Heuristic search exploiting non-additive and unit properties
for RTS-game unit micromanagement. Journal of Informa-
tion Processing (JIP 2015) 23(1):2–8.
Nguyen, K. Q.; Wang, Z.; and Thawonmas, R. 2013. Poten-
tial flows for controlling scout units in StarCraft. In Confer-
ence on Computational Intelligence and Games (CIG 2013),
1–7. IEEE.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010.
On-line case-based planning. Computational Intelligence
26(1):84–119.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in Star-
Craft. Transactions on Computational Intelligence and AI
in Games (TCIAIG) 5(4):293–311.
Parra, R., and Garrido, L. 2013. Bayesian networks for
micromanagement decision imitation in the RTS game Star-
Craft. In Advances in Computational Intelligence, volume
7630 of Lecture Notes in Computer Science. Springer. 433–
443.
Richoux, F.; Uriarte, A.; and Ontañón, S. 2014. Walling in
strategy games via constraint optimization. In Artificial In-
telligence and Interactive Digital Entertainment Conference
(AIIDE 2014). AAAI Press.
Shantia, A.; Begue, E.; and Wiering, M. 2011. Connec-
tionist reinforcement learning for intelligent unit micro man-
agement in StarCraft. In International Joint Conference on
Neural Networks (IJCNN 2011), 1794–1801. IEEE.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games (TCIAIG) 4(2):144–148.
Uriarte, A., and Ontañón, S. 2012. Kiting in RTS games
using influence maps. In Artificial Intelligence and Interac-
tive Digital Entertainment Conference (AIIDE 2012). AAAI
Press.
van der Heijden, M.; Bakkes, S.; and Spronck, P. 2008.
Dynamic formations in real-time strategy games. In Sympo-

sium on Computational Intelligence and Games (CIG 2008),
47–54.
Wender, S., and Watson, I. D. 2012. Applying reinforce-
ment learning to small scale combat in the real-time strategy
game StarCraft:Broodwar. In Conference on Computational
Intelligence and Games (CIG 2012), 402–408. IEEE.
Young, J., and Hawes, N. 2014. Learning micro-
management skills in RTS games by imitating experts. In
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2014). AAAI Press.
Young, J.; Smith, F.; Atkinson, C.; Poyner, K.; and Chothia,
T. 2012. SCAIL: an integrated StarCraft AI system. In
Conference on Computational Intelligence and Games (CIG
2012), 438–445. IEEE.
Zhen, J. S., and Watson, I. D. 2013. Neuroevolution for
micromanagement in the real-time strategy game StarCraft:
Brood War. In AI 2013: Advances in Artificial Intelligence -
26th Australasian Joint Conference, volume 8272 of Lecture
Notes in Computer Science, 259–270. Springer.

28

