
MCMCTS PCG 4 SMB:
Monte Carlo Tree Search to Guide Platformer Level Generation

Adam Summerville1, Shweta Philip, and Michael Mateas1
1 Expressive Intelligence Studio

University of California, Santa Cruz
asummerv@ucsc.edu, sphilip@ucsc.edu, michaelm@soe.ucsc.edu

Abstract

Markov chains are an enticing option for machine
learned generation of platformer levels, but offer poor
control for designers and are likely to produce un-
playable levels. In this paper we present a method for
guiding Markov chain generation using Monte Carlo
Tree Search that we call Markov Chain Monte Carlo
Tree Search (MCMCTS). We demonstrate an example
use for this technique by creating levels trained on a cor-
pus of levels from Super Mario Bros. We then present
a player modeling study that was run with the hopes of
using the data to better inform the generation of levels
in future work.

Introduction
Procedural Content Generation (PCG) is a field that has seen
a lot of work in the design and generation of levels for plat-
former games. These have ranged from using modular de-
signer authored pieces (Shaker et al. 2011a) to trying to learn
relationships between sprites using techniques from com-
puter vision (Guzdial and Riedl 2015). Markov chains are
an appealing approach since they can be quickly trained on
a corpus of levels and generate levels with similar proper-
ties. However, the main problem with using Markov chains
to generate levels is that they offer little to no guarantees
about the levels that they generate. This makes it difficult
for a designer to rely on them, since the levels are just as
likely to be unplayable as playable (Snodgrass and Ontañón
2013). A similar, but less severe problem, is that the designer
has very few knobs to tweak the outcome of the generator,
with the two major ones being the length of historicity in the
chain and the training corpus.

Monte Carlo Tree Search (MCTS) (Browne et al. 2012) is
a popular technique in the world of game AI and has seen ap-
plications in Poker (Van den Broeck, Driessens, and Ramon
2009), Magic: The Gathering (Ward and Cowling 2009), and
perhaps most notably Go (Gelly et al. 2012) where it has
pushed the level of play from equaling an advanced novice to
mid professional levels. MCTS uses random sampling dur-
ing the search process to find areas that seem promising, bal-
ancing the need to explore the possibility space by sampling

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

broadly and the need to exploit promising avenues of the tree
by sampling deeply. It is an appealing technique because it
is agnostic of the domain that it is searching, relying only on
an evaluation function to determine a good end node from a
bad one. Despite its success as an adversarial AI technique,
it has seen little use in other roles.

We propose Markov Chain Monte Carlo Tree Search
(MCMCTS) as a method for level generation process that
uses the information learned from existing levels coupled
with playability guarantees and designer control. Using
Markov chains trained on a corpus of levels from the origi-
nal Super Mario Bros. we can generate levels that feel like
they could have come from the original series. The Markov
chain and MCTS work together, with the Markov chain
supplying transmission probabilities that guide the search
in more probable directions and the MCTS pruning selec-
tions that lead to unplayable or otherwise undesirable lev-
els. The properties that make MCTS useful as a game player
also make it useful as a level designer. A large component
of using PCG for level generation is random variation in
the produced artifacts, and the sampling of MCTS helps to
ensure that generated levels will have variation. The bal-
ance between exploitation and exploration means that it is
less likely to explore areas of the search space that are un-
playable (e.g. levels that contain gaps too wide for the player
to cross), but the exploration might find levels that are close
to unplayable (e.g. levels with gaps just wide enough for
the player to cross). While we use a designer authored eval-
uation function to guide the search, the approach can eas-
ily be adapted to other generation domains. In future work,
the evaluation function could be automatically learned from
player data, entirely eliminating the need for human au-
thored design choices. Our contribution is a novel applica-
tion of Monte Carlo Tree Search to Procedural Content Gen-
eration by guiding a Markov chain generator for the creation
of platformer levels.

Related Work
Markov chain generation of platformer levels has seen two
major approaches, the first looking at tile-to-tile transitions
and the other looking at vertical slices of levels. Snodgrass
and Ontañón (Snodgrass and Ontañón 2013; 2014) have
mainly looked at the tile-to-tile transitions. This approach
has a couple of benefits, namely that it can produce very

Experimental AI in Games: Papers from the AIIDE 2015 Workshop

68



Figure 1: A level block, split into the bigram state and the possible patterns that it can transition to

novel levels. But this comes at a great cost in that a lot of
generated levels will be completely unplayable. A key prob-
lem of this approach is that empty tiles make up the vast
majority of tiles in platformer levels meaning that almost all
transitions are either to or from empty tiles. Another prob-
lem of this approach is that it entirely washes over a key
factor to platformer levels in that transitions are highly de-
pendent on their height in a level, e.g. high tiles are more
likely to be empty and low tiles are more likely to con-
tain ground. Snodgrass combated this by learning multiple
Markov chains by splitting the levels into multiple height
regimes.

The vertical level slices of Dahlskog et al. (Dahlskog, To-
gelius, and Nelson 2014) are much less likely to have prob-
lems with skies full of tiles and large gaps along the bottom
due to the fact that the vertical slices inherently capture the
height content of the tiles. However, the use of vertical slices
loses a large portion of novelty in that it can only ever pro-
duce vertical slices that have been seen before, a problem
that Snodgrass’s work does not have. A key issue with both
approaches is that they do not expose many knobs to users.
The main way that a user can substantively change the out-
put of the chain is by editing the training corpus. They also
come with no guarantee of playability, with over half of the
levels produced by Snodgrass’s system being unable to be
completed.

While MCTS is a popular technique in the games com-
munity, it has mainly been used as a technique for game
playing. However, Browne (Browne 2013) has proposed us-
ing MCTS as a search technique for PCG. Within the field
of computational creativity, a system is deemed creative if
it can produce novel, high quality artifacts that are recog-
nizable as being representative of the target domain (Ritchie
2007). Browne found that MCTS was able to find high qual-
ity solutions with high diversity, diversity being a proxy for
novelty.

MCTS has been used for story generation by Kartal et al.
(Kartal, Koenig, and Guy 2013). They found that MCTS was
well-suited to story generation, particularly in realms with a
high branching factor. Other search approaches quickly ran
out of memory without being able to search the possibility
space in an efficient manner, but MCTS was able to gen-
erate stories with a large number of possible player actions
(100+).

Level Generation
To generate levels using Markov Chain Monte Carlo Tree
Search (MC-MCTS) we first need to learn a representation
of the levels suitable for Markov chain generation. We will
then use this representation at generation time, guided by
Monte Carlo Tree Search to generate learned levels that have
desired properties.

Markov Chain Generation
For this work, we used the levels from Super Mario Bros.
as the training corpus. We used screencaptured level images
produced by a fan on the internet (Albert 2014). To extract
the tile information we used the open source computer vi-
sion library OpenCV2 (Bradski ) to find subimages in the
whole level image. While Super Mario Bros. contains 32
levels, a number of these are atypical and were excluded
from the corpus, namely the underwater levels, the ones that
take place on bridges with flying fish, and the boss levels,
leaving us with a corpus of 20 levels. While the tile-to-tile
and vertical slice methods of platformer level representation
both have their benefits and drawbacks, we chose the vertical
slice representation for this work due to the higher probabil-
ity of not producing unplayable levels. During chain gener-
ation it is possible to reach what Snodgrass called an unseen
state, i.e. one in which the history has never been seen be-
fore and as such no transmission probabilities are known.
To avoid this, if a tile combination would lead to an unseen
state we exclude it from our transmission probability table.
We only consider 2 slices of history when generating the
level chain, but in an attempt to capture larger scale patterns
the tables can transition to larger than a single slice, with
patterns up to 8 wide being used. See figure 1 for more de-
tail. While these patterns are rare due to their uniqueness,
the addition of recognizable large scale patterns helps speed
the rollout process and produces familiar, but novel levels.

The tile types we considered were:

• Solid - Any solid tile, including ground, hard blocks, or
the tree tiles

• Hidden Power Up - A breakable block that contains a
power up instead of just being breakable

• Breakable - A breakable block

• Question Mark Block - A question mark block, regardless
of its contents

69



(a) A level with moderate difficulty

(b) A level that made heavy use of the “underground” levels

(c) A hard level with a high density of enemies

Figure 2: Screenshots of 3 generated levels being played in Infinite Mario

• Enemy - An enemy, regardless of its type
• Bullet Cannon - The cannon that fires Bullet Bills
• Pipe - A pipe, regardless of being a warp pipe, piranha

plant, or plain
• Coin - A coin

For the purposes of this work we only considered the high
level function of a block, as opposed to its most detailed
categorization (e.g. we abstract over whether an enemy is a
Goomba or a Koopa Troopa). This allows for a more filled
out conditional probability table, at the expense of speci-
ficity.

Markov Chain Monte Carlo Tree Search
MCTS operates in four steps:

• Selection - Starting from the root node, the child with the
most potential is chosen successively until a leaf node is
found.

• Expansion - While that node has untried moves, a move
is chosen, at random, and applied

• Rollout - Moves are applied randomly until a terminal
condition is met

• Backpropagation - A score is calculated for the rollout
and applied successively to all parent nodes

Standard Markov chain generation starts from a seed state
and randomly transitions to successor states. This process
repeats until a terminal condition is reached, be it a ter-
minal state or some desired condition of the chain is met
(e.g. length >= some threshold). From this description, it
is easy to see that standard Markov chain generation is di-
rectly analogous to a single rollout in MCTS. While MCTS
is typically considered in the style of an adversarial game
playing AI, hence the parlance of “moves”, for our purposes

the ”moves” that can be made are the states that can be tran-
sitioned into from a parent state. The successor states are
chosen with the probabilities learned from the above section
for both the Expansion and Rollout steps.

The most common Selection strategy for MCTS is Up-
per Confidence bound 1 applied to Trees (UCT) introduced
by Kocsis and Szepesvri (Kocsis and Szepesvári 2006). The
UCT formula for node i is:

UCTi =
wi

ni
+ c ∗

√
ln t
ni

Where

• wi - The total score of node i - in game playing applica-
tions this is commonly the number of wins

• ni - The number of simulations considering node i

• c - The exploration parameter.
√
2 theoretically, but used

to tune exploration vs. exploitation in practice

• t - The total number of simulations

The main choices for a user of MCMCTS are how the
score is calculated, the exploration parameter, and the num-
ber of rollouts performed. A higher number of rollouts will
better sample the space and produce a better end result, but
this comes at the cost of time. In order to keep the level gen-
eration time under 30 seconds per level we limited the sys-
tem to 200 rollouts per “move”. We generated 320 vertical
slices per level, so we could sample up to 64,000 levels per
every generated level. The exploration parameter value mat-
ters most in its relative scaling compared to the score value,
so we set it to the theoretically correct

√
2 and focused our

attentions on the score.
The score function that we used was:
score = S + g + e+ r
where

• S - Whether the level is solvable or not. If it is solvable

70



then it was set to 0, otherwise it was set to a large negative
number, -100,000 in this study.

• g - The desirability of the level as a function of the number
of gaps.

• e - The desirability of the level as a function of the number
of enemies.

• r - The desirability of the level as a function of the number
of rewards (coins or power-ups).

In theory, these functions could be anything or could be
learned via player testing. For the purposes of this work the
desirability functions were quadratics that captured our hy-
potheses about how desired difficulty of the level would af-
fect the desirability of the components. In general as diffi-
culty increased so did the desirability of gaps and enemies,
but due to the quadratic nature there was a point at which
too many enemies and gaps would be undesirable to any-
one. The opposite was true for the rewards, as they would
decrease as difficulty increased. This score was then passed
through a logistic function to produce a result in the range
of 0-1.

wd = 1
1+e−scored

Solvability was determined at a low level of fidelity for
the purposes of speeding the MCTS search. Snodgrass used
Robin Baumgarten’s A* controller (Shaker et al. 2011b) to
determine whether a level can be completed or not, but it
runs a full simulation of the Mario physics making it too
slow for a sampling process that wants to be run thousands
of times in a short period of time. We created a simplistic
A* Mario controller that operates on the tile level with dis-
cretized physics extracted in a preprocessing step from the
actual Mario simulation. This simulation captures running
and jumping physics at fine enough fidelity to ensure that all
jumps that the controller determines are fine will in fact be
fine in the full-fledged simulation. However, the low level
controller does not consider enemies at all, so it is possible
for a section of enemies to be too dense for playability. In
practice, this is of not much concern as the learned probabil-
ities make such a section exceedingly unlikely and the score
function makes this unlikely as well. A sample of three lev-
els generated by our system can be seen in figure 2. Level 2a
and 2b have the same difficulty, but show the variation that
can be achieved due to the wide range of levels used dur-
ing training the Markov chain. Level 2c is a harder difficulty
which results in a higher quantity of enemies.

Player Modeling
Our intention is to move away from the hand authored scor-
ing function and move towards a design that incorporates
feedback to better tune levels to a player’s desired difficulty
and skillset (e.g. do they enjoy levels with more/less jumps,
gaps, enemies, etc.). Towards this end we first used the gen-
erator to generate levels as part of a player modeling ex-
periment based on the work of Pedersen et al. (Pedersen,
Togelius, and Yannakakis 2009), with the intention of using
these player models as the basis for future work in gener-
ating levels for specific players. We have our own intuition

about what would make levels more challenging or prefer-
able to different player types, but we used the tunable pa-
rameters of our system to model player challenge ratings and
preference based on their experience level. We then look at
predicting player experience level based on player perfor-
mance metrics.

Data Collection
We used our MCMCTS system to perform player modeling
based on the tunable parameters. We considered each of the
three parameters in either a High or Low setting.The combi-
nations of these parameters result in 23 = 8 different variants
of the game. The following table displays the detail of all the
variants. Each variant is played as the first game marked by
A and as the second game marked by B in a pair. In total,
every game is played 16 times over the course of the exper-
iment. The only fixed feature was that only one power-up
was included in the levels.

Controllable Features Played as
Variants Gaps Enemies Rewards A B Total

1 Low Low Low 8 8 16
2 Low Low High 8 8 16
3 High Low Low 8 8 16
4 High Low High 8 8 16
5 High High Low 8 8 16
6 High High High 8 8 16
7 Low High Low 8 8 16
8 Low High High 8 8 16

A number of gameplay features were considered for the
purpose of modeling player experience. These features are
selected based on a previous study done on player expe-
rience modeling which defined them to cover most of the
behavioral dynamics of Super Mario Bros. (Pedersen, To-
gelius, and Yannakakis 2009). The features fell into a num-
ber of different categories:

• Time: There were around 10 features related to time. Each
player was allowed 3 attempts at a level. Completion time
represented the time the player took to complete the level
in the last attempt. Total time represented the total time
spent by the player on a particular level. There were other
features which represented time spent running, running
left and also running right. Some features record the time
spend in each mode: Small Mode, Large Mode and Fire
Mode. The levels in this experiment featured only two
modes, Small and Large Mode. Hence only data about
these two modes were recorded.

• Jump: These features includes the number of times
a player pressed jump. Another feature called aimless
jumps logs the number of times the player jumped in the
absence of an enemy or a gap.

• Death: These features record the different ways and the
number of times the player died during a game level.
There are eight different ways how a player could die in
the levels. A player can die by falling into a gap, by com-
ing in contact with a Goomba, a Green Turtle, a Red Tur-
tle, an Armored Turtle, a Jump Flower, a Bullet Bill or a
Chomp Flower. In our experiment, five out of the seven

71



enemies were included in the levels: Goombas, Green
Turtles, Red Turtles, Bullet Bills and Chomp Flowers.

• Item: The features recorded under this category are re-
lated to the items that the player interacts with. Total
Coins represent the number of coins contained in each
level, as well as a feature which records the total num-
ber of coins collected by the player. Similarly, features
such as total coin blocks, total power blocks and total
empty blocks represent the number of blocks which con-
tain coins, power ups and nothing respectively. There are
some features which also capture the percentage of these
blocks the player interacts with or destroys during the
course of the game.

• Kill: As mentioned above there are five types of enemies
used in this experiment. These features recorded the num-
ber of enemies killed by the player for a given level. These
features also recorded the different methods by which the
player killed Marios enemies. Mario is capable of killing
enemies by stomping on them, by kicking shells at them,
and by throwing fire balls at them when in Fire Mode.
But as mentioned earlier, Fire mode was not included in
the levels, so this feature was always zero. Another fea-
ture represents the total number of enemies in a level.

• Miscellaneous: These features do not fall into any of the
categories mentioned above. They capture the number of
times the player switched from one mode to another, and
the number of times the player pressed a key to duck or to
run.
As part of the experiment, each player played eight vari-

ants of the level. After every pair of games the player was
asked to answer a series of questions. The experiment was
planned such that every level variant was played as both the
first in a pair (A) and the second in a pair (B) exactly eight
times. Note, this does not mean that they played level type
1 twice consecutively, just that they played a certain level
type and then another (randomly chosen) level type. This
was done to observe whether the player responses in the
questionnaire by the order in which levels were presented.
This experiment closely follows the protocol in (Pedersen,
Togelius, and Yannakakis 2009), in which the questionnaire
focused on challenge and preference. The following pair-
wise forced choice questions were asked to the players:
• Level A was more challenging/preferred over Level B
• Level B was more challenging/preferred over Level A
After playing four pairs of such levels, the player was asked
to describe their experience in playing platformer games in
the following categories:
• Beginner
• Intermediate
• Expert

The participants were 16 students at University of Califor-
nia who volunteered for the experiment. Each student played
the Java based Infinite Mario game and provided answers to
the questionnaire. Each participant played 8 levels, resulting
in data being collected for 128 levels. This paper analyzes
the data for 64 pairs of games.

Figure 3: Player rated challenge A vs. B

Figure 4: Player rated preference A vs. B

Modeling Analysis
We first wanted to verify that order had no effect on how
players rated challenge or preference. 3 shows the number
of times levels were marked as challenging by the players in
different orders.

There is no statistically significant difference between
playing a level first or second in terms of challenge rating,
but a larger sample size is needed for a definitive answer.

Figure 4 shows which level the player would prefer to
play.

With no statistically meaningful relationship could be de-
termnined, we are satisfied that there was no strong relation-
ship between the order in which levels were played. How-
ever, a larger sample size would help fully settle this. We
turn our focus to player experience modeling. We used the
data mining tool Weka (Hall et al. 2009) to learn a model for
our dependent variables: challenge, preference, and player
experience. Since we are trying to learn a binary dependent
variable we used logistic regression, and due to our limited
sample size we used 10-fold cross-validation.

Challenge
To determine whether the player voted for level A or B we
looked at the difference between level A and B for each pa-
rameter which were either 1 (A was high, B was low), 0
(A and B were the same), or -1 (A was low, B was high).
Our feature space considered the 3 difference parameters,
and the 4 interaction terms. Experience level was also con-
sidered as well as its interaction with the tunable parameters.
We then performed exhaustive feature selection based on the
Akaike information criterion (AIC), which only considered

72



3 parameters.
Our model was able to successfully classify which level

was more challenge 72.66% of the time, with a Kappa statis-
tic of 0.45. A number of different guides for interpretation
of the Kappa statistic agree, but 0.45 is generally held in the
fair-to-good range, so we are relatively happy with this re-
sult.

Variable Odds Ratio Direction
Gaps Difference 7.91 +

Enemies Difference 1.80 +
Experience * Gap Interaction 2.22 -

Not surprisingly, both higher number of gaps and enemies
were important determinants for whether players found the
level more challenging, with the number of gaps being the
most significant determinant. Also of note is that gaps were
less important for experienced players.

Preference

Using the same logistic regression methodology as above,
we found a model with 4 parameters that was able to deter-
mine player preference 64.07% of them time with a kappa
statistic of 0.28 which is considered fair, but not strong.

Variable Odds Ratio Direction
Rewards Difference 1.35 +

Experience * Rewards Interaction 3.71 -
Gaps Difference 1.72 -

Experience * Enemies Interaction 1.37 -

Players tended to prefer levels with a higher number of
rewards and a lower number of gaps. Interestingly, more ex-
perienced players were less likely to prefer higher number of
rewards, and while the difference in enemies had no signif-
icant effect on player preference, the interaction term with
experience did. Most surprisingly, more experience players
were more likely to prefer levels with fewer enemies.

Player Experience Level

Since the above models were based on self reported player
experience level, we wanted to see how well we could clas-
sify player experience based on our models so as to not re-
quire players to report their skill level. Originally we wanted
learn a model that could predict a player’s self-report of their
platforming skill as beginner, intermediate or expert based
on their gameplay features. Unfortunately none of the par-
ticipants self-identified as experts. As such we could only
try to classify whether they had low or medium experience
playing platformer games. Our model was accurate 70.31%
of the time with a fair-good Kappa statistic of 0.41. Unlike
challenge, the results are somewhat unintuitive. As above
we performed feature selection to produce a limited set of 7
features that had enough information gain. In this case being
+ means that the player is more skilled and − means more
likely to be a beginner.

Variable Odds Ratio Direction
Number of Jumps 1.08 +

Time Spent Running Left 1.03 +
Number of Aimless Jumps 1.04 -

Number of Enemies Killed by Shell 3.41 +
Total Time Spent Large 1.04 +

Total Number of Enemies 1.04 +
Number of Green Koopas Killed 1.64 -

Number of Bullet Bills Killed 1.42 +

These are much less intuitive than the other model, but
mostly make sense. Beginner players are more likely to
make aimless jumps, whereas more advance players make
their jumps count. One might expect that running back-
wards would show beginners’ cautiousness, but it seems that
running backwards is more a mark of an advanced player
making considered actions. Unsurprisingly, killing enemies,
specifically by an advanced technique like using a shell or
killing difficult enemies like Bullet Bills, is linked to being
a more advanced player. The most nonintuitive result is that
beginner players are more likely to kill Green Koopas, per-
haps because advanced players ignore them because they do
not pose a threat. Ultimately, more data needs to be gathered
to better predict player performance.

Conclusion and Future Work

We have presented a novel method for guiding Markov chain
platformer level generation via Monte Carlo Tree Search.
This technique relies on using classic Markov chain state
transitions as the “moves” for a Monte Carlo Tree Search
and classic Markov chain generation as the “rollouts”. This
method provides the simplicity of Markov chain generation
with a near guarantee of playability along with user and/or
designer tunable score function to provide levels that meet
the design goals. We then use this level generation frame-
work as a testbed for player modeling, attempting to build
on the work of Pedersen et al. (Pedersen, Togelius, and Yan-
nakakis 2009).

Currently, our system uses a scoring function that we hand
tweaked. We would like to extend this evaluation function to
incorporate player modeling. We would also like to use the
tool in a mixed initiative style by presenting levels to a de-
signer that they can then rate, from that we could learn a
scoring function that is attuned to a designer’s desires. Pre-
liminary work in looking at how levels are rated based on the
three tuned parameters shows that challenge is most strongly
associated with the number of gaps. Using a Pearson chi-
square independence test it it is the only parameter that is
statistically significant (p < 0.005) in determining whether
a player finds the level challenging. This leads us to believe
that more work needs to be done to determine why the other
factors had no effect on player’s challenge ratings.

On the Markov chain front we used the vertical slice style,
but we would also like to experiment with the tile-to-tile
transitions. Our belief is that we would find levels that are
more novel without running into the unplayability problems
that Snodgrass encountered.

73



References
Albert, I. 2014. Legend of Zelda Maps. http://ian-
albert.com/games/legend of zelda maps/.
Bradski, G. OpenCV, year = 2000. Dr. Dobb’s Journal of
Software Tools.
Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samoth-
rakis, S.; and Colton, S. 2012. A survey of monte carlo
tree search methods. Computational Intelligence and AI in
Games, IEEE Transactions on 4(1):1–43.
Browne, C. 2013. UCT for PCG. In Proc. IEEE Conf.
Comput. Intell. Games, 137–144.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. In Proceedings of the 18th Interna-
tional Academic MindTrek Conference.
Gelly, S.; Kocsis, L.; Schoenauer, M.; Sebag, M.; Silver, D.;
Szepesvári, C.; and Teytaud, O. 2012. The grand chal-
lenge of computer go: Monte carlo tree search and exten-
sions. Commun. ACM 55(3):106–113.
Guzdial, M., and Riedl, M. O. 2015. Toward game level gen-
eration from gameplay videos. In Proceedings of the FDG
workshop on Procedural Content Generation in Games.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The weka data mining software:
An update. SIGKDD Explor. Newsl. 11(1):10–18.
Kartal, B.; Koenig, J.; and Guy, S. 2013. Generating believ-
able stories in large domains.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the 17th European Con-
ference on Machine Learning, ECML’06, 282–293. Berlin,
Heidelberg: Springer-Verlag.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009.
Modeling player experience in super mario bros. In Pro-
ceedings of the 5th International Conference on Computa-
tional Intelligence and Games, CIG’09, 132–139. Piscat-
away, NJ, USA: IEEE Press.
Ritchie, G. 2007. Some empirical criteria for attributing
creativity to a computer program. Minds and Machines
17(1):67–99.
Shaker, N.; Togelius, J.; Yannakakis, G.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P.; Takahashi, G.; Smith, G.; and Baumgarten,
R. 2011a. The 2010 mario ai championship: Level gener-
ation track. Computational Intelligence and AI in Games,
IEEE Transactions on 3(4):332–347.
Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B. G.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P. A.; Takahashi, G.; Smith, G.; and Baum-
garten, R. 2011b. The 2010 mario ai championship: Level
generation track. IEEE Trans. Comput. Intellig. and AI in
Games 3(4):332–347.
Snodgrass, S., and Ontañón, S. 2013. Generating maps using
markov chains.
Snodgrass, S., and Ontañón, S. 2014. A hierarchical ap-
proach to generating maps using markov chains.

Van den Broeck, G.; Driessens, K.; and Ramon, J. 2009.
Monte-Carlo tree search in poker using expected reward dis-
tributions. In Proceedings of the 1st Asian Conference on
Machine Learning (ACML), Lecture Notes in Computer Sci-
ence, 367–381. Springer.
Ward, C., and Cowling, P. 2009. Monte carlo search applied
to card selection in magic: The gathering. In Computational
Intelligence and Games, 2009. CIG 2009. IEEE Symposium
on, 9–16.

74




