
Sampling Hyrule: Sampling Probabilistic
Machine Learning for Level Generation

Adam Summerville and Michael Mateas
Expressive Intelligence Studio

University of California, Santa Cruz
asummerv@ucsc.edu, michaelm@soe.ucsc.edu

Abstract

Procedural Content Generation (PCG) using machine
learning is a fast growing area of research. Action Role
Playing Game (ARPG) levels represent an interesting
challenge for PCG due to their multi-tiered structure
and nonlinearity. Previous work has used Bayes Nets
(BN) to learn properties of the topological structure of
levels from The Legend of Zelda. In this paper we de-
scribe a method for sampling these learned distributions
to generate valid, playable level topologies. We carry
this deeper and learn a sampleable representation of the
individual rooms using Principal Component Analysis
. We combine the two techniques and present a multi-
scale machine learned technique for procedurally gen-
erating ARPG levels from a corpus of levels from The
Legend of Zelda.

Introduction
Procedural Content Generation has seen wide spread adop-
tion in the games research community as well as the video
game industry. In large part, the methods for procedural gen-
eration of video game levels have focused on designers try-
ing to codify and proceduralize their design decisions to cre-
ate a generator. However, this is a difficult process and a
designer might unknowingly encode hidden biases or might
not have a full grasp of their intuitive design process. We
feel that a better source for a designer’s design knowledge
are the artifacts that they themselves generate as they inher-
ently encode the designer’s decisions and knowledge. To-
wards this end, we use previous work by Summerville et al.
(Summerville et al. 2015) as a machine learned represen-
tation of design knowledge for Action Role Playing Game
(ARPG) levels from The Legend of Zelda series and present
a system for generating levels that have the same statistical
properties as the human-authored levels.

Previous applications of machine learning techniques to-
wards the goal of procedural content generation have mostly
been focused on learning to generate levels for platformer
games, specifically those in the Super Mario Bros. series.
These have ranged from applications of Markov chain gen-
eration (Dahlskog, Togelius, and Nelson 2014a; Snodgrass
and Ontanon 2013), to learning graph grammars (Londoño

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Missura 2015) via automatic grammar induction tech-
niques. Platformer level generation has been the most popu-
lar use of machine learning, but ARPG levels present an in-
teresting challenge for procedural content generation. Plat-
former levels tend to be highly linear, typically progressing
from left-to-right. All known uses of machine learning for
platformer level generation have relied on this property (al-
though levels in other platformer games are not guaranteed
to have this property). On the other end of the spectrum,
ARPG levels tend to be highly nonlinear. They also tend to
combine high level mission parameters (e.g. find a key to
unlock a door, find an item to solve a puzzle, etc.) with a
large amount of player backtracking through a densely con-
nected space. The only known application of machine learn-
ing techniques to The Legend of Zelda is the work of Sum-
merville et al.

The learned representation that we use operates at two dis-
crete scales. At the highest level is a Bayes Net (BN) that
represents the graph topology of the room-to-room connec-
tions in ARPG levels. In and of itself, it contains features
that operate a number of different scales. These range from
low level room-to-room properties to high level properties
of the level as a whole, such as what is the length of the op-
timal path through the level. At the 50,000 foot level ARPG
levels can be thought of as directed graphs with rooms as
nodes and doors as edges. The BN was trained on this repre-
sentation and is then used to generate a graph representation
of the level. While this representation encodes the aspects
of ARPG levels that make them an interesting challenge, it
leaves out a crucial aspect of the levels, the rooms them-
selves. Towards this end, we present a machine learned rep-
resentation of the rooms using Principal Component Analy-
sis (PCA) for feature compression. We then interpolate be-
tween human authored levels in this reduced feature space
to generate rooms that have the desired properties (a room
that contains enemies, a key, and a puzzle). Our contribu-
tions are a novel use of sampling BNs to generate playable
ARPG level graphs that are then made concrete by interpo-
lating within a PCA compressed feature space.

Related Work
Machine learned representations of video game levels have
taken a number of approaches. Despite the breadth of
techniques used, the vast majority have been stochastic

Experimental AI in Games: Papers from the AIIDE 2015 Workshop

63

in nature. Markov chains have been the preferred method
for probabilistic platformer level generation. Dahlskog et
al. (Dahlskog, Togelius, and Nelson 2014b) used Markov
chains to generate Mario style platformer levels from n-
grams learned from the Super Mario Bros. 1 corpus.
Dahlskog chose to represent levels as a series of vertical
slices and learned transmission probabilities from one verti-
cal slice to the next looking at up to trigram level historicity.
Snodgrass and Ontan (Snodgrass and Ontanon 2013) simi-
larly used Markov chains as their method for level genera-
tion. However, instead of looking at vertical slices they used
a 2-dimensional Markov chain that operated at the level of
individual tiles. Both of these techniques are capable of gen-
erating new levels, but the only level of authorial control is
in the selection of the training corpus.

Guzdial and Riedl (Guzdial and Riedl 2015) used a prob-
abilistic model with latent features to capture similar tile
blocks in Mario levels. They then learned relationships be-
tween tile groups for placement purposes. This has a ben-
efit over Markov chains in that it does not require an ex-
tremely large corpus to provide information at a larger scale.
For instance, Dahlskog was only able train a Markov chain
up to the trigram level, providing 3 tiles of information,
whereas Guzdial’s work was able to learn relationships that
spanned upwards of 18 tiles in distance. Londoo and Mis-
sura (Londoño and Missura 2015) similarly used a system
that learned relationships between tiles, but instead used
graph grammar induction as their method of learning. Un-
like the other work, they eschewed a representation focused
on physical relationships (tile X is next to tile Y) instead
opting for semantic relationships (tile X is reachable from
tile Y or tile X is connected to tile Y via a platform). While
not yet used for actual level generation the use of semantic
relationships could perhaps lead to a wider expressive range
of generation.

Deterministic machine learning techniques are uncom-
monly used in the realm of level generation. In part this
is due to the fact that a probabilistic representation is ap-
pealing for level generation. Nonetheless, Shaker and Abou-
Zleikha (Shaker and Abou-Zleikha 2014) used non-negative
matrix factorization to learn a compressed feature expres-
sion of Mario platformer level generators. Non-negative ma-
trix factorization is a technique that factorizes a source ma-
trix into two matrices that can broadly be thought of as a
feature representation and a set of weights. It has the benefit
that all of the matrices involved are guaranteed to be posi-
tive. The nonnegative portion makes sense in the domain of
platformer tilemaps, as a tile either exists (positive) or not
(zero), but the concept of a negative tile has no meaning.

Machine Learning Techniques

Levels in the 2D members of Legend of Zelda series are a
series of connected rooms. Due to this natural segmenting of
rooms, we used two separate machine learning paradigms.
Each technique has a different set of affordances that makes
it useful for its targeted problem area.

Figure 1

Bayes Nets

At the level of room topology, Bayes Nets (BNs) were cho-
sen as the machine learning technique. BNs learn relation-
ships between feature distributions and upon observing data
can be used to infer the rest. In the previous work by Sum-
merville et al. a number of different models were tested with
the smallest model, the Sparse model, having not only the
best tradeoff between predictive power and complexity, but
flat out having the best predictive power. This is the model
that we chose to use for generation purposes and can be seen
in figure 1. The trained BN captured a variety of high level
features, such as number of rooms in the level and length
of optimal path through the leve, along with low level fea-
tures such as room-to-room connections and room types. At
generation time a designer can set whatever they want (or
rather observe in the probability parlance) and the system
will work with that and infer the rest. e.g. a designer could
observe the size of the level, the general make up of rooms,
etc.. The system could even be used in a mixed initiative
manner with a designer laying out a set of rooms and allow-
ing the system to fill in the rest. The learned network was
composed of the following features:

• Number of Rooms in Level
• Number of Doors in Level
• Number of Path Crossings in Level
• Length of Optimal Path
• Distance of Room to Optimal Path
• Path Depth of Room in Level
• Distance From Entrance
• Room Type
• Previous Room Type
• Door Type from Previous Room
• Next Room Type
• Door Type to Next Room

and was trained on 38 levels from The Legend of Zelda,
The Legend of Zelda: A Link to the Past, and Legend
of Zelda: Link’s Awakening that comprise a total of 1031
rooms.

64

Figure 2: The first 5 Principle Componenets of the solid
blocks. These account for 70% of all variation

Principal Component Analysis
Principal Component Analysis (PCA) is a technique that
finds a set of orthogonal features that best capture the covari-
ance between the original feature set. PCA has been used for
feature recognition and dimensionality reduction for faces in
a technique known as Eigenfaces (Turk and Pentland 1991).
Using Eigenfaces and the work of Shaker and Abou-Zleikha
as inspiration we treated rooms as binary bitmaps. While an
actual tilemap is not binary, it is better to treat it in a one-
hot manner with multiple channels of information. The tile
types that we considered were:
• Solid
• Enemy
• Item
• Key
• Trap
• Puzzle
• Water/Bottomless Pit
• Key Item
• Teleporter

Different graphical representations or sub-representations
(i.e. is an enemy a bat or a skeleton) are ignored and only
the highest level of purpose is considered. Each of the 9 tile
types is treated as its own binary images and were treated
separately when performing the PCA.

We used 488 rooms from the three aforementioned games
for the PCA. However, to increase the size of the sample
space we also used all mirrorings (up-down, left-right, both)
to quadruple the size of our dataset. Unfortunately, rooms
from the three games differ in size so we had to find a way
to rescale the rooms to fit the maximum horizontal (12) and
vertical sizes (10). To do this, a preprocessing step was per-
formed where we performed a graph cutting procedure on
the dimensions that needed to be expanded. To do this we
found a path of minimal transitions from filled to unfilled
and vice-versa and expanded along this line.

For PCA on images each pixel, or in this case tile, is
treated as its own feature. Given the 12 × 10 room size we
had a total of 120 features. Upon performing PCA the new
feature set is ranked upon the amount of variance from the
original feature set that it accounted for. There is no gen-
eral rule for what the desired level of feature compression
is, but we decided that the minimal feature set that could
perfectly recreate our original rooms would suffice. In the
end this meant that we accounted for approximately 95% of
the original information with a compressed feature set of 20
features. The first five principal components of the solid tile
type can be seen in figure 2.

Like Non-Negative Matrix Factorization (NNMF), PCA
splits the original feature matrix into 2 sub-matrices that can
be thought of as the compressed feature set and the weights

to apply to those features. PCA tends to learn global fea-
tures, unlike NNMF which tends to learn local features. Dur-
ing the research process we performed a comparison be-
tween PCA and NNMF and found PCA performed much
better than NNMF for this domain. Where PCA was able to
reduce the feature set by a factor of 6, it took the entire “re-
duced” NNMF feature set to accurately recreate the original
rooms.

With the reduced feature set we can then interpolate be-
tween the weight vectors of different rooms to find rooms
that are in between the originals. Our original intention was
to simply find 2 original rooms that had the features that we
wanted (e.g. a room that had items and enemies) and inter-
polate between them. However, we found that blindly taking
rooms, even of the same type, was no guarantee of success
when interpolating. A large amount of rooms looked like
they had been created from random noise, lacking any of the
structure that we would have hoped to have been captured
during the PCA process. To combat this, we performed a
clustering step where rooms were clustered based on their
weight vectors using k-Means clustering. This ensured that
the rooms being chosen to interpolate between were at simi-
lar places in the 20-dimensional space, which eliminated the
problem of interpolating through ill defined portions of the
space.

Level Generation
With the learned representations of the level, we need to ac-
tually generate levels. We first construct the room-to-room
topology of the level, and then go through on a per-room
basis and generate the rooms using the PCA representation.

Level Topology
When generating the level topology a designer can first ob-
serve any design features that they wish. For the purposes of
our generation we only observed the size of the levels. We
then sample the learned distributions for the high level, per-
dungeon parameters and observe them to fix them through-
out generation. As of now, only the number of rooms is
treated as a hard constraint, i.e. if the designer specifies that
there are 31 rooms in the level then it is guaranteed that there
will be 31 rooms in the level. The rest are treated as soft con-
straints that only inform the dependent distributions.

Once the global level parameters have been inferred, the
dungeon is built up from a seed room. The initial entry point
to every dungeon is a special Start room. Start rooms only
ever have 1 neighbor, and it is this first neighbor room that
is inferred. The room type, the incoming door type, and the
number of neighbors are all inferred, given the prior room
type (initially the Start room), the traversed door type (ini-
tially a regular door), its depth in the dungeon (initially one),
and all of the inferred or specified global parameters. During
this process there is a simultaneous grid embedding process
that happens in parallel. The Start room is always placed at
(0,−1) and its child room is always placed at (0, 0). Each
new child room is placed at an open neighboring place on
the grid, and added to a list of rooms to be inferred. Once all
of the specified number of rooms have been placed, a second
cleaning process guarantees that the level is playable.

65

Figure 3: Interpolation between two human authored rooms. The rooms on the ends are human authored while the rooms in
between represents steps between them of 20%.

(a)

(b)

(c)

(d)

Figure 4: Representative sample of 4 generated levels

For a level to be playable, all of the rooms must be ac-
cessible, the number of key locked doors must equal the
number of placed keys, all keys must be used to complete

the level, all keys must be in front of the doors they lock,
and there must be a special item room, a boss room, and an
end room. To resolve any of these constraints, we utilize the
same machinery that tested the validity of the algorithm, the
log-likelihood of a specific event occurring. For example, if
there was no end room placed, we simply iterate over all
rooms, find the one that has the highest likelihood of being
an end room, and change it to an end room. We do this for the
boss and special item rooms, in addition to the key locked
doors. Once these have been taken care of, we then find the
optimal path through the dungeon in order to guarantee that
the optimal path through the dungeon uses all of the placed
keys. If the level is not completable, then we know that the
player is unable to reach a required key. This can be resolved
in one of two ways, 1) Move a key that has not been reached
to a room that has been reached, or 2) Move a locked door
that has been reached to a door that has not been reached.
The choice of how to resolve the violation is chosen at ran-
dom. On the other hand, if the level is completable, but not
all keys are used, then a key-locked door is placed unneces-
sarily. To resolve this, an unseen key locked door is moved
to a seen unlocked door. No matter what constraint violation
is being resolved, it is handled with the same machinery seen
above, e.g. if a key needs to be moved, then the existing key
room that is least likely to be a key room is removed, and the
room it is moved to is the one most likely to be a key room.

Room Generation
With the level topology constructed we need to generate the
rooms at the tile level to have a playable level. To gener-
ate a room of a given type, we find a cluster that contains at
least two instances of that type, choosing two at random, and
interpolating between the two randomly. Despite the cluster-
ing cutting down on unplayable rooms, it is not guaranteed
that a generated room will be playable. Moreover, it is pos-
sible that a generated level might not have the desired prop-
erties, e.g. an interpolated room contains no enemies despite
the two source rooms containing enemies. Another concern
is that the generated room might have obstructions to the re-
quired doors. If there are any violations, the generated room
is thrown out and a new one is sampled. While not ideal,
this process is very fast and even with oversampling takes
under a second. An example of the interpolation process can
be seen in figure 3

Results
A representative sample of generated levels can be seen in
figure 4. While all generated levels are guaranteed to be

66

completable, it is an open question as to how good they are.
Due to the dual nature of our algorithm as both a classifi-
cation tool and a generation tool, it is able to evaluate the
artifacts that it produces. To perform this evaluation use the
Bayesian Information Criteria (BIC) to evaluate how likely
the generated levels are.

BIC = log p(D|Sh) ≈ log p(D|θ̂s, Sh)− d

2
logN

whereD is the data of the model, Sh is the chosen model,
θ̂s are the parameters of the model, d is the number of free
parameters in the model, and N is the number of datapoints.
The BIC has two terms, the first is based on the likelihood
of the data given the learned model, the second is a penalty
term that penalizes the model based on how many terms it
has (i.e. how complex it is). The BIC works well to eval-
uate the levels as it can tell the likelihood of a generated
level; However, given that the regularization term imposes
a penalty for each data point seen we can only compares
levels of the same size to each other. In reality this is not
a major concern, as the likelihood of a level does not make
much sense in the abstract and is only important as it re-
lates to comparing the likelihood of two levels. As such, we
compare the likelihood of our generated levels to human au-
thored levels, considering 3 different sized levels. The sized
chosen are:
• Small - Levels contained 12 rooms, the size of the smallest

level in our dataset.
• Medium - Levels contained 35 rooms. The mean size of

levels in the dataset was 33.9. The closest level comprises
35 rooms.

• Large - Levels contained 47 rooms. The standard devia-
tion for room size was 14.2, so this represents one stan-
dard deviation from the mean size.

For the purpose of testing we produced 20 levels of each size
class, and the results can be seen in table 1.

Level
Size

Authored
BIC

Maximum
Generated BIC

Mean
Generated BIC

Small -14,568 -15,171 -15,444
Medium -25,006 -28,904 -32,483
Large -38,722 -39,361 -43,813

Table 1: Comparison of log-likelihoods between human au-
thored levels sand generated levels.

As can be seen, the human authored levels are seen to be
more likely, but this is not surprising. Currently, a number
of different factors are working against the generated lev-
els. Most importantly, the human authored levels that were
tested against were part of the training set, making them
quite likely according to the model. Furthermore, since only
room size is treated as a hard constraint, a generated level
might not have the desired properties. Finally, due to the na-
ture of how level violations are resolved the generated lev-
els are treated in a way that maximizes likelihood in a local
greedy manner. If the violations were resolved maximizing
likelihood for the entire level, the end results would almost
certainly have a higher likelihood.

Conclusions and Future Work
Procedural content generation via machine learned tech-
niques are an open area of research with many different pos-
sible approaches. In this paper we presented a hybrid ap-
proach that uses two machine learning techniques to gener-
ate levels in the style of The Legend of Zelda. Bayes Nets
present an appealing representation for learning high level
design knowledge for procedural content generation due to
the ability for a designer to observe parameters for genera-
tion and allow the system to infer the rest. Principal Compo-
nent Analysis, used in the style of Eigenfaces, can be used
to learn orthogonal, correlated features in images. Apply-
ing this to tilemaps we can then interpolate between existing
rooms to generate new rooms that are similar to human au-
thored levels.

Evaluation techniques for video game levels, specifically
procedurally generated levels, is an open area of research.
In this paper we present a unique evaluation approach. In-
stead of creating a separate metric (or suite of metrics) we
compare how likely our generated levels are compared to
human authored levels. Given the goal of learning design
knowledge for the purpose of generation, we can directly
use that learned knowledge as an evaluation scheme. While
the generate levels perform more poorly than the existing
human authored levels, this is to be expected as the human
authored levels were part of the training corpus. In future
work we would like to compare other levels from The Leg-
end of Zelda series and fan-authored levels to see how they
compare to our generated levels.

References
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014a. Linear
levels through n-grams. In Proceedings of the 18th Interna-
tional Academic MindTrek Conference.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014b. Linear
levels through n-grams. In Proceedings of the 18th Interna-
tional Academic MindTrek Conference.
Guzdial, M., and Riedl, M. O. 2015. Toward game level gen-
eration from gameplay videos. In Proceedings of the FDG
workshop on Procedural Content Generation in Games.
Londoño, S., and Missura, O. 2015. Graph grammars for su-
per mario bros levels. In Proceedings of the FDG workshop
on Procedural Content Generation in Games.
Shaker, N., and Abou-Zleikha, M. 2014. Alone we can
do so little, together we can do so much: A combinatorial
approach for generating game content. In AIIDE’14, –1–1.
Snodgrass, S., and Ontanon, S. 2013. Generating maps using
markov chains.
Summerville, A. J.; Behrooz, M.; Mateas, M.; and Jhala, A.
2015. The learning of zelda: Learning to design levels for
action role playing games. In Proceedings of the 10th Inter-
national Conference on the Foundations of Digital Games.
Turk, M., and Pentland, A. 1991. Eigenfaces for recognition.
J. Cognitive Neuroscience 3(1):71–86.

67

