
Intelligent Content Generation
via Abstraction, Evolution and Reinforcement

Dean M. LeBaron, Logan A. Mitchell and Dan Ventura
Computer Science Department

Brigham Young University
Provo, UT 84602

lebarondean@gmail.com, mitchlam711@gmail.com, ventura@cs.byu.edu

Abstract

We present a system for autonomously generating puzzles in
the form of a 2D, tile-based world. Puzzle design is entirely
dependent on tile characteristics, which are implemented as
abstract classes that can be modified by the system. Thus,
the system controls not only the base-level puzzle design but
also (to some extent) the meta-level component design. The
result is a rich space of possible puzzles that the system ex-
plores with a combination of evolutionary computation and
Q-learning. The system autonomously produces a variety of
puzzles of varying difficulty to create a game called Loki’s
Castle. The system is almost completely autonomous, re-
quiring only a minimal description of what a puzzle should
include, and the abstraction allows extensibility so that fu-
ture versions can invent entirely new classes of tiles. Several
puzzle examples are presented to demonstrate the system’s
capability.

Introduction
Arguably the most interesting additions to the field of game
development over the last few years have been from the
fields of procedural content generation (PCG) and artifi-
cial intelligence (AI). Procedural generation of content for
games is increasingly allowing designers to focus on higher-
level concerns, while automatic generators produce lower-
level content such as textures, landscapes, buildings, lay-
outs, music, simple dialogues, etc. (Togelius et al. 2011).
Even so, procedural generation is still mostly focused on
a particular type of game content–namely environment and
map design (Hendrikx et al. 2013).

Artificial intelligence is making inroads into the gaming
industry most obviously in the form of non-player characters
and other types of agents that pose challenges to the main
players, but it has been used in many other ways as well,
including dynamic difficulty balancing (Hunicke and Chap-
man 2004; Chanel et al. 2011), player experience modeling
(Drachen 2008; Yannakakis and Togelius 2011), datamining
of user behavior (Bauckhage, Drachen, and Sifa ; Duche-
neaut et al. 2006), and even featuring as the “main event”
(Horswill 2014). Indeed, Horswill suggests that game de-
sign may need to be reconsidered from the ground up to in-
corporate AI to its best advantage. And, Smith has recently
discussed ways in which procedural content generation “can
be turned up to eleven” (Smith 2014).

In considering how we might address both of these sug-
gestions, we consider combining AI and PCG in a way that
begins to allow the system more autonomy in designing the
game itself, in the form of automated puzzle generation. In
particular, we present a system which generates 2D puzzles
formed in a tile-based world. The puzzles consist of simple-
looking 2D environments in which the player must discover
how to move from the start tile to the exit tile by navigating
the unknown challenges posed by tile characteristics, which
change from level to level.

Levels are generated using a two-pass evolutionary pro-
cess and evaluated with a combination of intelligent heuris-
tics (at the first level) andQ-learning-based playability mod-
eling (at the second level). Similar approaches have been
used in various ways in other systems, including the follow-
ing.

Taylor and Parberry built a system for creating a spe-
cific type of puzzle called sokoban using naı̈ve yet effec-
tive techniques such as random templates and brute force
search (2011). Using a scripting language designed by
Stephen Lavelle1, both Lim and Harrell (2014) and Khal-
ifa and Fayek (2015) have built more general puzzle level
generators.

Yoon and Kim presented a system using L-system gram-
mars which created a blueprint of 3D game models. A ge-
netic algorithm (GA) which queries users as part of its fit-
ness function is then used to manipulate the basic shapes
produced by the grammars (Yoon and Kim 2012). Ashlock
used a GA to produce puzzles at varying levels of difficulty,
and the fitness function includes dynamic programming to
determine the minimal moves required to solve the puzzle—
a measure of playability based on puzzle difficulty (Ashlock
2010).

Williams-King et al. used a two pass GA to generate puz-
zles inspired by the classic game LodeRunner. Their ap-
proach involves using one GA to evaluate the aesthetic qual-
ity of a level, and then all members of the population above a
certain fitness are passed to a second graph based GA which
is intended to discover dynamic elements of the puzzle, i.e.,
mimic a user-experience (Williams-King et al. 2012). Again
this can be seen as an attempt to measure the playability of
the generated levels.

1http://puzzlescript.net

Experimental AI in Games: Papers from the AIIDE 2015 Workshop

36



Other work has been done with the focus of creating and
measuring fun while not specifically using GAs. Smith et al.
created 2D platformers using a rhythm-based grammar and
ideas of flow. They argue that a user who achieves flow, and
therefore discovers the rhythms inherent in the level has an
enjoyable experience, and they also attempt to measure this
directly with anxiety curves (Smith et al. 2009).

Our work fits squarely in with those described above in
that we are using GAs to generate content and have at-
tempted to incorporate a measure of playability by using Q-
learning as part of the fitness function of the GA. Similar
to Holmgård, et al. (2014), we posit that the Q-learner can
somewhat mimic the experience of a user, and quantitative
notions such as how long the Q-learner takes to solve the
puzzle or how much exploration it required before exploita-
tion, can approximate the challenge of a given level.

The goal of our system is to generate unique, challeng-
ing levels, presented as a top down, 2D maze-based puzzle
game. Each level requires the user to discover tile character-
istics and how they interact, so that they can eventually plan
for the hero a safe path to the exit tile. As each new level
is generated, not only is the level layout changed, but also
the tiles’ characteristics change as well, so that the player
must begin the process all over again. Because this is rather
diabolical, we call the game Loki’s Castle.

Building Loki’s Castle
The levels of Loki’s Castle are constructed from a set of tiles,
each with unique visual and behavioral properties. While
the visual properties are fixed (at least for the moment), the
behavioral properties are mutable and change for each level,
which means both that the number of possible tiles (and thus
the number of possible puzzles) is very large and that the
player must discover tile behaviors and interactions anew at
each level. Tiles are composed into square levels, 10 tiles on
a side. Candidate levels are evaluated by a two-stage evolu-
tionary algorithm that uses an initial fitness function to eval-
uate (visual) aesthetic qualities of a level and a second fitness
function to evaluate playability. Microsoft’s XNA frame-
work is used to create the interface.

Tiles
Tiles are the basic building blocks used to create levels. A
tile is a 1 × 1 square with a set of properties and an associ-
ated sprite. Every tile possesses three properties—CanEnter,
HasEntered and HasExited—and these properties have asso-
ciated effects implemented by the tile to affect the hero when
the player attempts to enter, enters, or exits a tile, respec-
tively. The CanEnter property exhibits four possible effects:
TRUE, FALSE, REMOVE (an item), ADD (an item). The
HasEntered and HasExited properties can both exhibit seven
possible effects: NONE, DEATH, CONDITIONAL DEATH
(if no item), MOVE, ADD (an item), REMOVE (an item), and
SLIDE. Given that there are 14 unique tile sprites available
to the system, there are then (1 + 3× 7× 7)× 14 = 2, 072
general file types [not (4× 7× 7)× 14 because all tiles with
CanEnter→FALSE are functionally equivalent to walls].

In addition, many of the tile effects are parameterized in

various ways by an abstract parameter object. For exam-
ple, any item-based effect can be parameterized by item
type (axe, amulet or key) as well as by item number (1,
2 or 3), while the MOVE and SLIDE effects can be pa-
rameterized by direction (up, down, right, left) and dis-
tance (1, 2, ..., or 9). Taking all the parameterizations
into account as well, the number of tiles types rises to
(1+7 × 95 × 95) × 14 = 884, 464 (one could argue that
visually different tiles with the same functionality are homo-
morphic in some sense and that therefore this number should
be reduced by a factor of 14, but given that a tile’s visual rep-
resentation can be associated with different functionality at
each new level, this homomorphic quality can actually be
misleading for the player rather than helpful, suggesting the
larger number should be considered more representative of
the true size of the tile space).

This abstract implementation of tiles allows extensibil-
ity as well as mutability, allowing the system a non-trivial
autonomy in designing puzzles—both effects and parame-
terizations are extensible and mutable, so that new effects
and/or parameterizations can easily be associated with a tile
property (note that as of this writing, parameterizations are
mutated by the system but the set of effects from which we
draw is static, so tile-effect bindings are mutable, but new
effect types are not created [yet]). Further, the large tile
space means that each generated level is likely to be unique.
Consider the number of possible tile combinations that can
be used to create a puzzle. We have defined puzzles to in-
clude 4 types of tiles not including walls and the start and
end tile (via the first stage fitness function discussed below).
One of these is always the default tile (CanEnter→TRUE,
HasEntered→NONE, HasExited→NONE), but the remain-
ing three are randomly constructed tiles, drawn from
the set of ≈ 900K possible tiles. To create a level,
the system selects 3 tiles with replacement, yielding(
((884464+3)−1)

3

)
= 115, 316, 301, 441, 393, 360 possible

unique choices of effector tile sets. This number still does
not account for tile placement in the 10× 10 grid. The sys-
tem discovers which combinations work to create interesting
levels while operating in this large space.

Evolving Levels
Levels are created using a two-stage evolutionary approach
inspired by (Williams-King et al. 2012). The first stage of
the algorithm is concerned with creating visually pleasing
mazes, and then the most fit candidates are passed to the Q-
learner to be evaluated and further refined.

Stage 1 The first stage of the evolution is concerned with
generating levels with some (visual) aesthetic quality. Given
a level p, the first stage fitness is computed with a function
of the form:

fitness(p) = f(NumTypes(p),

T ypesRatio(p), Symmetry(p))

where NumTypes(p) drives the number of different effec-
tor file types to some desirable value (in our experiments
this value was 3, as mentioned above), TypesRatio(p)

37



drives the ratio of the number of each of those types to-
wards some desirable distribution (in our case, uniform), and
Symmetry(p) values (longitudinal or latitudinal) symmetry
over asymmetry.

The evolution follows a classical form: first, fitness of an
initial population of mazes is computed, and 20% of the pop-
ulation is then selected for reproduction by fitness-weighted
sampling. The set of parents are then randomly paired and
crossed-over to create new children, which are then mutated
and assigned a fitness score. Finally the population is culled
back down to its original size, again by fitness-weighted
sampling.

Crossover occurs by selecting a random-sized contiguous
block of tiles from one parent, and then inserting it into the
corresponding location of the other parent to create a new
child. The start and end tiles are preserved to ensure puzzle
validity.

Mutations takes three different forms: a single tile’s type
can be (uniformly) randomly changed, 10% of the tiles can
randomly exchange locations, or all tiles of one type can
have their type changed to another (uniformly at random).
The mutation rate is 100%, and the mutation form is chosen
(uniformly) randomly.

Stage 2 The second stage of generating puzzles uses Q-
learning (Watkins and Dayan 1992) to model how challeng-
ing the level will be based on it’s complexity. The Q-learner
determines whether a level is solvable or not, which is ob-
viously the first criteria for a playable level, and the time
the learner requires to find the solution and the total reward
gained by the Q-learner gives an indication to the difficulty
of the level. Q-learning is a reinforcement learning tool for
discovering an optimal policy without modeling the environ-
ment, and it learns to solve a puzzle by exploring the level
and observing the reward gained by taking each action at
each state. Using this experience, the Q-learner computes
an expected reward for each state-action pair using the fol-
lowing formula:

Q̂k(s, a) = (1− αk)Q̂k−1(s, a)

+ αk(r(s, a) + γmax
a′∈A

Q̂k−1(s
′, a′))

where, s ∈ S and a ∈ A are the current state and action,
respectively, with S = {(x, y, w, z,~c, t1, ..., t9)} and A =

{up, down, right, left}. Q̂k(s, a) is the expected reward
for the given state-action pair at iteration k, r(s, a) is the
reward gained in state s by taking action a, αk is the learning
rate at iteration k, γ is a discount factor for future (expected)
reward, and s′ is the new state after taking action a. The
components of a state s ∈ S are
x the x-coordinate of the hero
y the y-coordinate of the hero
w the x-coordinate of the exit tile
z the y-coordinate of the exit tile
~c a vector of counts for each acquirable item
ti tile type for each of the nine tiles the hero’s neighbor-

hood, with t1 being the tile above and to the left of the

Figure 1: An example generated maze showing a variety of
tiles and a visually pleasing layout. Here, and in the fol-
lowing figures, a key labels each tile-type with its associated
effect, and a solution path (not necessarily unique) to the exit
tile is shown in yellow. In this case, while the solution is not
trivial, it is fairly straightforward.

hero, t5 being the tile on which the hero is standing, and
t9 being the tile below and to the right of the hero.

The exact reward structure used is not critical as long as it
faithfully represents the environment’s effect on the player.
In this case, that means a (relatively) large positive reward
for entering the exit tile, a (relatively) large negative re-
ward for killing the hero, and a (relatively) small negative
reward for entering any tile other than the exit tile (to facili-
tate shortest-path solutions).

Given a level p, the second stage fitness is computed with
a function of the form:

fitness(p) = f(

s∑
QLearn(p))

where QLearn(p) applies the Q-learner to p, returning ac-
cumulated reward for a solution, and the superscript s on
the summation indicates total time allotted in seconds for
learning a solution (or solutions). If a solution is found be-
fore the allotted time has elapsed, the Q-learner is restarted
from scratch, and the accumulated reward from all solutions
found in the allotted time is summed (redundant solutions
are counted in the summation). So, a puzzle that is easy
to solve may have many solutions discovered in the allotted
time and thus a high fitness, while a very difficult level may
have no solutions discovered in the allotted time and have a
fitness of 0—the fitness measure is inversely correlated with
level difficulty. For our results, we set s = 30, so the Q-
learner is run on each level for a total of 30 seconds.

Results
To produce playable levels, six parallel threads of the first
stage of the evolution are continuously run for 1500 genera-
tions with a population size of 100 puzzles, with each thread

38



Figure 2: This example highlights a simple kind of chal-
lenge: mostly navigating around pitfalls, even though the
path is almost trivial. In this puzzle, the green tiles are death
(note that the red Xs don’t show up in the actual game; they
are added here to emphasize the danger of the green tiles).
The gold-rimed tiles will slide the player. This can make it
difficult to control and can cause a careless player to perish.

having a unique pool of tile types from which to compose its
population members (as soon as a thread finishes, another
is started). For the second stage of the evolution, the Q-
learner randomly selects one of the completed threads’ pop-
ulations and attempts to solve its highest rated puzzle. The
Q-learner runs for 30 seconds and then selects another com-
pleted thread and repeats. Puzzles that pass both stages of
the evolution are sorted by second stage fitness, with higher
(second stage) fitness values indicating less challenging puz-
zles (at least for the Q-learner); therefore, puzzles are pre-
sented to the player in descending order of (second stage)
fitness, so that the levels increase in difficulty over time.

Figures 1–5 show several example levels that have passed
both stages of fitness during the evolutionary process, and
are thus at least somewhat visually pleasing and solvable. In
Figure 1, some tiles cannot be entered so that the solution
simply involves finding a path that avoids these tiles. In Fig-
ure 2, the stakes are raised slightly—the green tiles will kill
the hero. So, again, the solution is one of obstacle avoid-
ance, but in this case, failing to do so results in death. To
make things even a bit more tricky, the stylized gold tiles
slide the hero, which can cause the player to inadvertently
enter the green tiles. The example of Figure 3 adds some-
thing slightly more cerebral—fake walls. Some of the black
tiles are real walls that cannot be entered, while others are
fake and can be. Upon entering the fake wall, the hero will
be slid downwards. The solution lies in discovering this (as
there is no path to the exit that does not require it), while
avoiding the tan tiles which will kill the hero. In Figure 4,
both the green tiles and the stylized gray tiles cost one ham-
mer item to enter, while entering water tiles bestows one
hammer item. The Q-learner has to learn to enter a water
tile multiple times to accumulate hammers in order to get

Figure 3: In this puzzle, the tan tiles are death, the dark gray
tiles are walls, and only some of the black tiles are walls—
some of the black tiles are fake walls. If a player steps off
them, they will move the hero downwards. The only way to
solve this puzzle is to slide down one of the “wall” sections.
This means that the player must realize that he can now walk
on this wall. He will learn it quickly, because the only way
off the start tile is either to die on the left, or walk on the
wall on the right.

through the “gated” tiles guarding the exit. The example of
Figure 5 demonstrates a simple trap that must be avoided—
water tiles cost one key to enter, so if the hero gets stuck be-
tween two water tiles without any keys, he is trapped. The
Q-learner learns to avoid this by finding that the dark grey
tiles are the source of a pair of keys.

Figure 6 shows the number of solvable puzzles found ver-
sus time. This grows fairly close to linearly, and therefore
approximately one solvable puzzle is found every minute of
running the Q-learner: 25 minutes of running the system
produced 20 solvable puzzles. The puzzles that are pre-
sented to the player are ordered by descending total reward
to the Q-learner accumulated within a 30 second learning
period (so, “easier” puzzles are seen first). For example,
if it takes the learner 10 seconds to solve the puzzle and it

39



Figure 4: In this example, the greenish tiles and the stylized
gray tiles cannot be entered unless an item is received by
entering the blue water tiles; therefore, 3x water gives the
character the ability to pass through the 3 stylized gray tiles
to get to the exit.

Figure 5: In this puzzle, the dark squares (such as the one
that the hero is standing on) set the key count to 2. The
water tiles require possession of at least 1 key to enter and
doing so costs the player that key. The black tiles are walls.
Thus, the player must be careful to avoid getting stuck in
between the two water tiles. Furthermore, the player has to
take a small detour to pick up more keys to be able to finish.

solves it 3 times within the time limit, then the score is the
sum of the rewards for each of those runs (different solutions
will likely have different rewards, but even the same solution
may have slightly different reward each time it is discovered
due to the stochastic nature of the Q-learner).

Discussion
Loki’s Castle uses evolutionary computation andQ-learning
to generate unique puzzles that exhibit interesting character-
istics and varying degrees of challenge. The tile effects are

Figure 6: Time vs. number of solvable puzzles generated
with fitted y = x line. The system currently generates ap-
proximately one solvable puzzle level per minute.

also generated uniquely each time, making use of an abstrac-
tion of the tile types that allows significant system autonomy
in level creation. Tiles that generate interesting levels can be
saved and used in subsequent creations.

While our initial results are promising on the (visual) aes-
thetic level, the creativity and enjoyability of the puzzles the
system produces can still be improved. We have set up an
extensible framework to easily include additional types of
tiles, and to easily allow the system itself to create and ana-
lyze levels created using these new tiles. Currently the most
creative aspect of Loki’s Castle is the fact that tile effects are
generated dynamically and then puzzles built using the cre-
ated tile types are scored by the Q-learning-evaluated stage
of the evolutionary computation. This process is akin to
learning an autonomous aesthetic by which the program de-
cides that a certain tile property→effect leads to levels which
are too easy, too difficult, or impossible. Currently, however,
a pool of these tiles is being created a priori from which to
draw, and then the system incorporates (some of) them to
create a level with a target number of tile types. The next
step would be to incorporate the fact that the tiles can be dy-
namically created into a mutation function in the evolution-
ary process itself. Namely, instead of looking at levels with
different combinations of pre-made tile types, the evolution-
ary process would introduce new properties or change cur-
rent properties of the tiles in a fitness-based feedback loop.
This step would not be a difficult one given our abstracted
code functionality.

To faciliate generalization and thus speed-up puzzle eval-
uation, it may be possible to use a variation of the Q-learner
that replaces the Q table with a function approximator, such
as a multilayer perceptron trained using back-propagation.
The neural network enables the Q-learner to generalize to
new puzzles and states that it has not seen before. To adapt
the neural network to handle Q-learning, each action is tied
to a single output node, and the expected reward is normal-
ized to be in the interval [0,1] to enable regression (Mnih et

40



al. 2013). (Note: we made some initial attempts to do this,
but, unfortunately, we found that the neural network failed
to generalize well and we had to resort to a Q-table-based
approach that meant resetting the Q-Learner and having it
learn each new puzzle from scratch).

Another area for potential improvement would be to im-
prove the Q-learner’s ability to say something about the
enjoyability of a given puzzle. This may include moving
beyond a simple Q-learner and utilising additional algo-
rithms/methods. Specifically, the Q-learner can tell us if
a puzzle is solvable, and how long it took to solve it, but
does not have a(n explicit) notion of what made the puz-
zle solvable. Was it necessary to avoid or to visit certain
tiles? The answer to this question could be incorporated into
a more complex fitness function that would conceivably pro-
duce more enjoyable puzzles.

It would also be desirable to incorporate dynamically gen-
erated UI elements (e.g., visual or aural cues) relating to the
properties of the tiles. This would require some notion of se-
mantics such as associating certain colors, textures or sounds
with the property of a tile (e.g., walls are heavy and dark,
dangerous tiles are red or jagged, default tiles are neutral
colors, etc.) Further, given some generational semantics,
one can imagine giving the game the ability to blend me-
chanics, tile-types or even entire levels to create new classes
of puzzles.

In addition, as levels become more complex, it may be
desirable to incorporate some sort of tutorial ability in the
game that allows players to learn tile properties and mechan-
ics (or better yet, to learn the same semantics that the game
uses to generate content) as they play (the point of the game
is that players must [re-]learn at each level how to play the
puzzle, but if this is too difficult, the game might provide
hints to help the player adapt).

Finally, while we find the puzzles interesting and fun to
play, at least at a basic level, it would be desirable to conduct
user studies to see a) if the difficulty level ascribed to gen-
erated puzzles by the Q-learner-based fitness function accu-
rately correlates with the challenge perceived by a human
player, b) whether (some of) the generated puzzles are en-
joyable to (some subset of) the general game-playing popu-
lation, and c) if so, whether we can accurately predict which
puzzles will be fun for human players (based on the current
fitness measures or variations thereof).

References
Ashlock, D. 2010. Automatic generation of game elements
via evolution. In Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 289–296.
Bauckhage, C.; Drachen, A.; and Sifa, R. Clustering game
behavior data. IEEE Transactions on Computational Intelli-
gence and AI in Games , to appear.
Chanel, G.; Rebetez, C.; Betrancourt, M.; and Pun, T. 2011.
Emotion assessment from physiological signals for adapta-
tion of games difficulty. IEEE Transactions on Systems Man
and Cybernetics, Part A 41(6):1052 – 1063.
Drachen, A. 2008. Crafting user experience via game met-
rics analysis. presented at NORDICHI 2008, Lund, Sweden.

Ducheneaut, N.; Yee, N.; Nickell, E.; and Moore, R. J. 2006.
Alone together?: exploring the social dynamics of massively
multiplayer online games. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 407–
416.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications 9(1):1.
Holmgård, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2014. Generative agents for player decision modeling
in games. In Foundations of Digital Games.
Horswill, I. 2014. Game design for classical AI. In AIIDE
Workshop on Experimental AI in Games.
Hunicke, R., and Chapman, V. 2004. AI for dynamic dif-
ficulty adjustment in games. In AAAI Workshop on Chal-
lenges in Game Artificial Intelligence.
Khalifa, A., and Fayek, M. 2015. Automatic puzzle level
generation: A general approach using a description lan-
guage. In Computational Creativity and Games Workshop.
Lim, C.-U., and Harrell, D. F. 2014. An approach to general
videogame evaluation and automatic generation using a de-
scription language. In Proceedings of the IEEE Conference
on Computational Intelligence and Games, 1–8.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M.
2009. Rhythm-based level generation for 2D platformers. In
Proceedings of the 4th International Conference on Founda-
tions of Digital Games, 175–182. ACM.
Smith, G. 2014. The future of procedural content genera-
tion. In AIIDE Workshop on Experimental AI in Games.
Taylor, J., and Parberry, I. 2011. Procedural generation
of Sokoban levels. In Proceedings of the 6th International
North American Conference on Intelligent Games and Sim-
ulation, 5–12.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. Ma-
chine Learning 8(3–4):279–292.
Williams-King, D.; Denzinger, J.; Aycock, J.; and Stephen-
son, B. 2012. The gold standard: Automatically generating
puzzle game levels. In AIIDE.
Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Affec-
tive Computing 2(3):147–161.
Yoon, D., and Kim, K.-J. 2012. 3D game model and texture
generation using interactive genetic algorithm. In Proceed-
ings of the Workshop at SIGGRAPH Asia, 53–58. ACM.

41




