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Abstract

Placing decorative content in any virtual environment
is not a trivial task, as the location of even non-critical
content influences player movement choices through
the level, as well as the general game aesthetic. In this
work we use path visibility properties to define and in-
vestigate three methods for content placement in a game
level, aimed at generating shared, unique, and never
seen content. We compare and evaluate the three ap-
proaches using a human study where each player was
given a level layout based on our three methods, show-
ing our directed process has a non-trivial and control-
lable impact on player movement.

Introduction
Most digital games are goal-oriented; players are given an
initial position and have to reach a certain goal position or
state within a virtual level. Many generative methods to cre-
ate such levels have been defined, and are able to create en-
gaging levels (Dormans and Bakkes 2011), while making
sure the game’s fundamental puzzle structure in terms of
keys, locks, chests etc., is kept or properly created. In or-
der to create an interesting in-game experience, however, a
level typically includes a variety of decorative content, rang-
ing from textures to interactive objects. The placement of
this content is still important to the player’s experience in
terms of inducing immersion and inspiring exploration, but
is less well defined, and typically placed through manual de-
signer effort, or in randomized locations within generative
approaches.

In this paper we are interested in formalizing algorithmic
processes for meaningful placement of decorative content.
Our approach considers possible solutions (paths) through a
level, computing a region of weak visibility, such that every
point in that region is visible from somewhere on the path.
We use that to determine what players may or may not en-
counter, and thus where content should be located so as to
either be seen on all paths, be (relatively) unique to a path,
or not typically be encountered on any common path. We
validate our design through a human study demonstrating
that player choices are materially affected by our placement
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strategies, and thus can server as a mechanism to encourage
exploration or replay. Contributions of this work include:
• We define three different methods for positioning game

content based on a discrete form of weak visibility regions.
• A human study is conducted, demonstrating that our place-

ment approaches have a direct affect on player behaviour.

Background & Related Work
The study of visibility is one of the cornerstones of compu-
tational geometry as it arises naturally in computer graphics,
robotics, digital games, etc. Many forms of visibility prob-
lems have been extensively studied in two or higher dimen-
sions.

Given a polygon P of n vertices, the method to define a
visibility polygon from a single point, q, is a well established
problem (Ghosh 2007), of time complexity Θ(n log(n)). We
use the well known angular plane-sweep algorithm (Asano
1985) to construct a visibility region V (q), giving us a star-
shaped polygonal region defined by the existing edge set,
filtered according to visibility from q. Figure 2 shows such a
region in light purple for point q.

In this work we are actually more interested in building
the weak visibility polygon V (s) of a segment s, where ev-
ery point in V (s) is visible from at least one point on s.
Computing weak visibility has a surprisingly high theoret-
ical complexity, and pathological cases can be constructed
where V (s) has Ω(n4) vertices. Suri and ORourke gave a
worst-case optimal algorithm, showed that weak visibility
from a segment can be computed in O(n4) time (Suri and
O’Rourke 1986). To reduce the implementation complexity,
however, we resort to a heuristic, discretized form of weak
visibility, which we will present as part of our algorithmic
methodology.

Related Work
We are generally interested in placing game content in a
polygon such that it respects certain properties. The most
well studied form of this problem can be expressed as plac-
ing single or multiple polygons P (content) inside a polygon
Q while minimizing the Euclidean distance from the vertices
of P to the vertices of Q (Aonuma et al. 1990). A problem
more similar to the one of interest in this paper is the chro-
matic art gallery problem, aiming to ensure that landmarks
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are distinguishable (Erickson and LaValle 2011). This is it-
self similar to the well known art gallery problem, but aim-
ing at the minimum number of colours needed when guards
are given different colours and their visibility regions over-
lap. This approach could be extended to apply to content
positioning, although their technique does not take into con-
sideration player movement within a level.

The research problem of generating high-level game-level
maps is a well known problem; decorating a level with non-
puzzle content, however, seems to be neglected. Dormans
and Bakkes presented a grammar-based approach that gen-
erates missions that are mapped to a polygon representing a
level (similar to the level we show in figure 9) (Dormans and
Bakkes 2011), although the levels created are not populated
with content. Smith et al. and Horswill & Foged used con-
straint solvers in order to assure that level puzzle structures
were kept when populating a level with content (Smith et al.
2012; Horswill and Foged 2012).

Player motion is an important aspect of content decora-
tion, as any choice taken by designer or in generative meth-
ods can influence the player’s movement. Winters and Zhu
presented a study that investigated the influence of level de-
sign paradigms on player path choices (Winters and Zhu
2014). They showed that shifted elevation such as stairs and
directional lines had the most influence when making move-
ment choices. Milam and El Nasr presented 5 design pat-
terns used by developers to orient players based on their
sight (Milam and El Nasr 2010).

Algorithmic Method
In this section we present the different algorithms used to
produce unique and shared content in a level using visibility
polygons. The method is composed of three major compo-
nents: finding all path solutions, describing a path as a weak-
visibility polygon, and finding content locations.

Finding Paths
The user of this technique provides a level, L, which we as-
sume is composed of a 2D polygonal geometry (an overhead
view). In figure 1, for example, the lighter area describes
a polygon, with the central obstacle defining a single large
hole. Within the level the user also provides starting, s, and
goal, t, vector positions, as well as the desired number of
shared, m, and unique, n, content locations.

In order to find all the possible paths from s to t, we
proposed two approaches based on either using a roadmap
and depth-first search, or using individual level traces1 along
with clustering.

Roadmap traces - We treat the problem of finding possi-
ble paths from s to t as equivalent to enumerating all simple
paths from a corresponding node v(s) to a corresponding
node v(t) in a graph G, generated from the roadmap. Note
that this excludes cyclic routes, and so approximates direct
path solutions rather than exploratory ones.

Arbitrary roadmaps may be used, as long as they result
in a connected graph. In our design we construct a roadmap
from a triangulation of the level geometry, building a graph

1produced by agent or human players

Figure 1: Level geometry with a triangulation-based roadmap
(thin gray lines) and the graph representation built from its dual
(gray circles and thin purple lines).

G by associating the centres of triangles with nodes and
adding edges between nodes if their triangles share an edge.
Figure 1 shows such a triangulation and the roadmap re-
trieved from the dual-graph. For presentation purposes, the
roadmap segments are drawn passing through the midpoint
of each shared edge. In our implementation, the user can
provide his own roadmap or use the presented technique to
produce simple paths.

Given G, we can then proceed in finding all simple paths
from s to t. As s and t are arbitrary 2 dimensional vectors,
we begin by first locating the triangles enclosing s and t re-
spectively, giving us appropriate starting and ending graph
nodes v(s) and v(t). A recursive search is then conducted,
using DFS to generate the set of all simple paths between
v(s) and v(t). For games that allow for multiple entry and
exit points this process can be repeated for all combinations
of entry and exits. Although the problem of finding all sim-
ple paths between two (sets of) nodes has a worst-case expo-
nential complexity, game roadmaps are relatively small and
sparse (and here planar), and our experience is that a brute
force approach is sufficiently fast at the scale of reasonable
game-levels.

Clustering traces - In some situations possible player
behaviours might be too complicated to be generated by a
simple roadmap graph. Guard interactions in a stealth level,
time-dependant actions, combat with enemies, etc., tend to
require players make careful choices in movement strategy,
resulting in a much less exhaustive and less straightforward
set of possible paths between start and goal than the under-
lying geometry may itself allow.

An alternative solution is then to build possible paths
based on movement traces from actual gameplay. This could
be achieved by recording human players as they go through
the level, or mimicked by using a randomized game solver
such as a rapidly exploring random tree to algorithmically
generate a set of solutions (Tremblay, Torres, and Verbrugge
2014). Human and randomized traces tend to show signif-
icant fine-grain variability, so when adopting this approach
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Figure 2: The visibility region (light pink) seen by vertex q (green
vertex), the region is constructed from the apex vertices (red) and
projections (orange), and the non-apex vertices (blue and black).

we also rely on grouping similar traces together using clus-
tering algorithms, following a geometric clustering approach
by Campbell et al. (Campbell, Tremblay, and Verbrugge
2015). Once we have a set of path clusters, we can then con-
struct representative paths from the centroid trace of each
cluster.

Visibility Polygons
Using the collection of paths from s to t previously com-
puted, we build a path weak-visibility region collection. This
stage is separated into two steps: (1) constructing the visibil-
ity region from a single source, and (2) building the visibility
polygon for the path.

Visibility region - Point visibility assumes a 360◦, infinite
range field of view (FoV). In most games, the player’s ability
to see is described by a more limited FoV, forming a cone
of finite length and angle. This can be modelled in terms
of straight-line polygons by a single triangle, or with more
precision by multiple triangle strips. In our case we use two
triangles as an efficient but still acceptable approximation,
as shown in figure 3, as the pink area on the right. In order
to construct the final visibility region we then intersect this
polygon with the visibility region, giving us the final FoV
region for a given point. The light pink region in the top left
of figure 3 shows an example of the result.

Path visibility - Full path visibility implies a weak visi-
bility calculation, computing the visibility region discernible
from any point on the path. As previously discussed, weak
visibility from even a single segment has high theoretical
complexity. Our approach to path visibility is thus heuristic,
based on combining a set of discrete, point-visibility compu-
tations, calculated at constant intervals along the path. This
under-approximates actual weak visibility, but has a much
lower implementation effort, and the accuracy versus cost
trade-off can be easily controlled by altering interval size.
For each point we build the point-visibility polygon, inter-
secting it with the player’s FoV assuming they were looking
towards the next point, or keeping orientation for the last

fovp

fovq

Figure 3: The light pink regions represent two FoVs, fovp depicts
the full, non-obstructed FoV of a point, whereas fovq results from
the intersection of a FoV with its visibility region.

Figure 4: Computing weak visibility. A small interval size results
in FoV polygons that would merge to fill the corridor (top corridor,
left side), but with a larger step size can miss portions (top cor-
ridor, right size). The extruded FoV polygon (bottom corridor) is
necessarily fully merged.

point. The resulting FoV regions are merged for each point
in the path, giving us the final path visibility.

Naively done, and depending on the interval granularity,
this calculation can result in a stepping effect, where por-
tions of the actual visibility region are missing in our result.
The top corridor of figure 4 shows two path visibility regions
with different intervals. The movement on the left side uses
a short interval, and the union of the two FoVs thus covers
the full corridor. On the right side, a long interval is used,
resulting in multiple missing triangles that actually would
have been seen by the player walking along the segment.

Determining an optimal granularity is difficult—outside
of simple corridor situations, ensuring sufficient overlap of
individual player FoV polygons to avoid these missing ar-
eas can require arbitrarily small interval granularity. We no-
tice, however, that the union of visibility polygons computed
from the set of player positions does in fact include the miss-
ing areas, and they become excluded only when we intersect
with each individual FoV. To avoid this problem, we thus
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Figure 5: Final results including one shared content (yellow) and
one unique content (red) per simple path from s to t.

compute the fully merged set of point-visibility polygons,
intersecting it with a single polygon constructed by sweep-
ing or extruding the player FoV from the starting position at
the beginning of the segment to the ending position at the
end of the segment, as shown in the bottom corridor of fig-
ure 4.

Content Locations
To insert content items we can now assume a set of paths,
each of which is associated with a visibility region. On each
path we must then allocate m content items so they are all
encountered (seen) on every path, and n content items that
will be unique to each path. This allocation process is ac-
cordingly separated into two sections, one to place shared
items, and one for unique content.

Shared content - Shared content is placed within the vis-
ibility region(s) seen on all our input paths. Given the visi-
bility regions, this common polygonal environment is easily
computed as the intersection of all such regions. Note that
while having common starting and ending positions implies
some overlap must exist, this can in general result in multi-
ple, disconnected polygons.

To find a suitable location within these shared polygons,
we first sort the set of shared polygons by area. This allows
us to prioritize placement within relatively large regions,
and so (heuristically) better ensure the item will be seen on
each given path. Our polygons are not necessarily convex,
and so placing an item within a polygon is not trivial. We
thus find a representative point, a specific location guaran-
teed to lie within the polygon, by triangulating the polygon
and selecting the centroid of the largest triangle. Subsequent
placements of our m items descend down our polygon pri-
ority (size) list, and may also make use of different triangles
within the same polygon. Figure 5 shows the final results for
2 shared content items, represented by two yellow circles.

Unique content - Unique content needs to be placed such
that each of n items is only encountered on one of our paths.
For this we can compute the difference between each visi-
bility region and all others, and apply the same process as

s

t

Figure 6: Wasteland level showing weak visibility region of a path

for shared content to locate items within the resulting set of
polygons. Figure 5 shows the results for one unique content
item (red circle) per path.

Content collision ratio - In more complex levels with
many paths of interest, path overlap can easily be such that
locations for content unique to each path may not exist. To
deal with this, we also define a more flexible content colli-
sion ratio (CCR). This scalar value represents the maximum
ratio of other paths on which a given unique content may be
encountered. Given P total paths and a content which we
intend to locate on one of those paths, a CCR ∈ [0 . . . 1],
allows a maximum of dCCR× (P − 1)e other paths to also
cover the content. A CCR of 1 then allows the content to be
placed in a location that may be covered by all paths, a CCR
of 0 will require the content be placed in a location that no
other paths cover and hence is truly unique, and values be-
tween are proportionally permissive.

It is important to note that these content placement re-
quirements are strict, and may thus fail for given geometries,
path sets, and values of m, and n. The content locations will
also of course be related to the FoV used, with different FoV
assumptions, such as infinite range and/or 360◦ visibility,
producing different results and making it more or less likely
that satisfactory content placements exist.

Experimental Results
In this section we analyze the effectiveness of our approach
on a non-trivial example level. We first verify that we can
place shared, unique, and “never seen” content (the inverse
of shared). Then we investigate the impact of these ap-
proaches through a small-scale human study. We imple-
mented the method described in the previous section using
python 2.7, the Shapely library which wraps the geometric
engine - open source (GEOS) (The Toblerity Project 2015),
and the poly2tri which provides Delaunay triangulation of
polygons with holes (Hansen, Green, and Åhlén 2012).

Wasteland
In order to test our presented approach we modelled the Tem-
ple of Titan level from Wasteland 2 (inXile Entertainment
2014). Figure 6 shows this level with its multiple entry and
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exit points indicated by red dots. Once entering this level the
player has to reach the green position in order to advance
the narrative and then exit the level through any of the red
points. Note that we only modelled the general level struc-
ture, and did not represent game or puzzle elements such as
doors, enemies, and collectables.

In order to show the potential of our method we explored
placing content for a single entry and exit point (s and t
respectively in figure 7, although technically s is not an
entry/exit). Use of multiple starting and ending points in-
creases analysis effort and can reduce opportunities for shar-
ing content between paths, but does not change the basic
approach. We consider placement of shared content, unique
content using different ratios, and never seen content as a
means of encouraging exploration.

Shared content - In designing a level, a developer may
want all players to encounter some key content in the game.
This only happens at the intersection of visibility regions of
all the simple paths, which for a single start and goal min-
imally includes the start and goal nodes. Figure 7 shows 2
locations in yellow which all the player paths between s and
t necessarily see. Note that the exact starting location was
not selected as the resulting polygon was too small for the
example content we considered.

Unique content ratio - When a level offers multiple over-
lapping simple paths, as shown in figure 6 it can be impossi-
ble to use our simple approach for finding truly unique con-
tent locations. In order to assure some uniqueness, but with
more latitude and thus more likely to be successful, we use
the CCR ratio previously presented. For this we used a brute-
force approach where we check all possible combinations.
For example, if the ratio is 0.5, a unique content is allowed
to collide with half of the path visibility regions. We thus
look at all possible combinations that use half of the paths
or less until we have a candidate with an area region large
enough to place the content item. In order to avoid having
always the same region polygon returned for unique con-
tent, these combinations are shuffled for every request. This
is in general an expensive process overall, but could be made
more efficiency with a less brute-force approach, and capped
to fail in place of excessive computation time. An example
of the result of this process can be seen in figure 8, where
unique content is placed for each path region option using a
ratio of 0.5.

Never seen - In order to encourage exploration of the
level, we can also look at the difference between the level
polygon and the union of all the path visibility regions. The
resulting polygons represent regions a player does not nec-
essarily need to explore in order to solve the level. Figure 9
shows the results for the Wasteland level with never seen
content (cyan points) placed in various dead-ends and near
unused exit points.

Human Study
In order to evaluate the different presented methods, we ran
an online study. We created a simple exploration game as
a first person, 3D simulation, with the player required to
find the exit from a fixed starting point. Each player was
randomly assigned one of the three presented layouts repre-

s

t

Figure 7: Two shared content (yellow dots).

s

t

Figure 8: One shared content (magenta dots) per visibility path
region, using a ratio of 0.5.

s

t

Figure 9: The never seen location (cyan dots).

senting different content distributions (figure 7, 8 or 9). Each
content location had a unique art asset, e.g. an angel statue,
barrel, well, etc. We had 73 participants drafted from the
internet (Unity3D sub-reddit), where 20 played the shared
content level, 26 the unique content with ratio 0.5, and 27
the never seen content level.

Figures 10a, 10b and 10c show the movement heatmaps
for each layout. These results show interesting differences,
although a larger data set is needed to establish statistical
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n=388

(a) Shared content

n=388

(b) Unique content

n=388

(c) Never seen

Figure 10: Movement heatmaps for human experiment; for level geometry refer to figures 7, 8, and 9.

0

2

4

6

8

10

0

2

4

6

8

10

0 50 100 150 200 250 300 350
0

2

4

6

8

10

Figure 11: Distribution of time spent (s) in the level for each
layout; the shared content (blue), unique content (magenta)
and never seen (green) with their averages (dashed lines)
and medians (dash-dot lines). The continuous lines show an
equivalent normal distribution for the calculated mean and
standard deviation.
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Figure 12: Distribution of the distance travelled (m) in the
level for each layout; the shared content (blue), unique con-
tent (magenta) and never seen (green).

significance. In the never seen layout (figure 10c), we can
see that players explored much more of the space than in the
other layouts. This suggests that our design for placing con-
tent outside the main path options encourages exploration.

For a more quantitative view, we also looked at two other
measurements: distance travelled and time spent in the level.
Figures 11 and 12 show the distribution for each measure-
ment. In general players with the never seen layout spent
more time and travelled a longer distance than the others. In-
terestingly, the unique content case also seems to influence
the players to move slightly faster towards the goal, as seen
by a more skewed distribution and a median of 66s com-
pare to 71s for the shared content layout. A similar obser-
vation can be made for the distance travelled. It is possible
that unique content items acted as signposts, leading players
along an expected path toward the goal. A larger scale study
would help verify this, and additional experiments would
also be useful to rule out the influence of other factors, such
as the number of content items, which may also be influenc-
ing pathing decisions. Overall, though, we can see that all
three layout achieve different outcomes in terms of players
movement behaviour, and so our process for placing content
has a controllable and potentially meaningful impact on the
player experience.

Conclusions and Future Work
Observing game content, even narratively unimportant ele-
ments, is a major player motivation in most game genres.
Leveraging that desire is thus an important aspect of game
design, and processes to locate decorative content relative to
likelihood of being seen are useful tools in encouraging ex-
ploration. Our visibility based design provides an elegant al-
gorithmic approach to placing such content, with the human-
study validation demonstrating that it has a measurable im-
pact on player movement.

We are interested in further investigating the human moti-
vations for path finding, as this information is essential in de-
veloping better positioning algorithms as well for movement
simulations. Informed by human models, architects have
multiple school of thoughts about where you should put cir-
culation paths as well as content locations (Frederick 2007;
Alexander, Ishikawa, and Silverstein 1977), and this general
approach could be further exploited to make an improved,
methodically defined game experience.
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