

Implementing Injunctive Social Norms
Using Defeasible Reasoning

Joseph A. Blass and Ian D. Horswill
Northwestern University

joeblass@u.northwestern.edu; ian@northwestern.edu

Abstract
Believability requires video game characters to consider
their actions within the context of social norms. Social
norms involve a broad range of behavioral defaults,
obligations, and injunctions unrelated to strictly causal
reasoning. Defeasible reasoning involves rationally
compelling but deductively invalid arguments, such as
reasoning with rules that allow exceptions. This paper
investigates having video game characters use defeasible
reasoning to consider injunctive social norms when
selecting and planning actions.

 Introduction
Action selection and planning involves selecting policies,
actions, or sequences of actions that are likely to further an
agent’s goals (Ghallab et al., 2004). This is a difficult
enough problem, but an additional challenge for designers
of believable virtual characters is having these characters
act in accordance with social norms. Social norms involve
a broad range of behavioral defaults, obligations, and
injunctions that are orthogonal to the strictly causal
reasoning generally implemented in planners. These
norms can range in significance from the gravely serious,
such as moral injunctions against murder, to the almost
trivial, such as the convention of people passing one
another on the sidewalk bearing to the right. Norms enable
us to consider the social acceptability of an action, and
draw our attention to socially relevant information, such as
who is going to be affected the most by the action. Norms
define what actions in what contexts are suggested,
obligatory, or forbidden, and allow multiple agents to co-
exist and cooperate without explicit coordination. Failure
to follow norms can lead to character behavior that is

Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

comical, obnoxious, or simply strange, in the eyes of a
human observer.
 In principle, social norms could be encoded directly into
the axiomatization of a domain by salting planning
operators with additional preconditions and effects, and
adding additional goals such as “don’t be a jerk.”
However, there are a number of reasons why this might be
undesirable. Modularity argues for centralizing
representation of a phenomenon where possible, rather
than diffusing it through all the various planning operators.
More importantly, social norms have a fundamentally
different character from the causal structure of a domain.
Causal rules, such as that firing a gun requires the gun be
loaded, are generally inviolate. Social norms on the other
hand are nearly always ceteris paribus rules that admit
endless exceptions and excuses. Moreover, social norms
often conflict with one another, requiring case-by-case
arbitration as to which norms win in a given circumstance.
 In this paper, we discuss initial work on the integration
of reasoning about social norms into a character agent
architecture in the game MKULTRA (Horswill, 2014)
using defeasible reasoning (reasoning with exceptions).
We will describe the system for reasoning about norms, its
integration into the overall character architecture, and the
results of early experiments with the system.
 It should be said at the outset that social norms are a
very broad area, and our work does not cover all cases.
Norms can involve overt obligations for action, such as
greeting someone at the beginning of a conversation, or
overt injunctions against it, such as not stealing someone
else’s property. However, they can also involve much
more subtle issues such as when a contemporary American
male tries to determine whether he knows another male
well enough to greet him with a hug rather than a
handshake. In this paper, we deal only with overt
injunctions, and the reasoning about their exceptions.

Intelligent Narrative Technologies and Social Believability in Games:
Papers from the AIIDE 2015 Joint Workshop

75

Social Norms in Game Characters
Social norms commonly occur in social interactions and
actions that affect others. They are relatively unimportant
in games in which NPCs serve as violent opponents or
helpful sidekicks to a player character, rather than a social
partner. These roles demand less social intelligence since
they afford little by way of unscripted social interactivity.
However, several games have implemented systems to
handle and respond to social norms, which we will discuss.

In Façade (Mateas & Stern, 2003), NPCs could deem an
action on the part of the player character, such as kissing
one of the characters in a married couple, inappropriate,
and respond accordingly. NPCs were written in such a way
as to not produce inappropriate behavior themselves, but to
our knowledge, they did not include any sort of reified
system of social norms.

The Sims 3 (Evans, 2009) used a propositional rule
engine to reason about character actions and responses.
Rules were used both to filter inappropriate character
actions, and to recognize actions as inappropriate. This
allowed the implementation of an “inappropriate”
personality trait that could be applied to a given character
to make them intentionally behave inappropriately in social
situations.

Evans (2010) also used a rule-based system for a deontic
logic to implement explicit reasoning about social norms in
an unpublished prototype Sims-style game. In the game,
norms could be stated as a deontic rules and changed
dynamically during the game.

Versu (Evans & Short, 2014) implements complex
social interactions using a reified model of social practices.
In Versu, social practices are effectively parallel processes
that run independently of the characters participating in
them. They propose actions to the characters, who then
determine which actions to perform by forward-simulating
the actions, then scoring the resulting world states based on
a set of goals. Goals can be arbitrary sentences in its logic.
Norms can be explicitly modeled by adding goals to the
characters to not violate them. This makes for an
extremely flexible system, but only allows for single-action
lookahead.

There are two components missing from these previous
models of social reasoning for virtual characters in video
games. The first is the ability to have norms override other
norms. For example, the inclination not to touch strangers
is outweighed by the obligation to help people when
someone falls down in the street, which is overruled by a
different norm if the person who fell has several
bodyguards. The second missing component is the ability
to integrate conflicting information. Social practices are
highly confusing and confusable: some information (or
agents) can indicate that one action is correct, while others
indicate another. This is not simply a matter of taking a

weighted sum, but of explicitly coordinating and
integrating conflicting inputs.

Defeasible Reasoning
Defeasible reasoning (Pollock, 1987) involves argument
that is rationally compelling but not deductively valid
(Koons 2014). In practice, this generally means reasoning
with rules that allow exceptions (ceteris paribus rules).
This makes it an appealing, if somewhat legalistic, tool for
reasoning about social norms, since it provides a
convenient formalism for expressing both ceteris paribus
rules, and their exceptions.

Defeasible reasoning, in the form of non-monotonic
logic, has received a great deal of attention in the
knowledge representation community, beginning with
McCarthy’s work on circumscription (1980), and
continuing with work on various logics such as Reiter’s
Default Logic (Reiter, 1980) and Moore’s Autoepistemic
Logic (Moore 1985). We use here Nute’s (1993)
Defeasible Prolog (d-Prolog), a meta-interpreter written in
Prolog that supports a subset of pure Prolog together with
extensions for defeasible Horn rules. D-Prolog has been
used previously to model semi-formal norms such as
lending policies (Ryu 1992) and parking regulations
(Dhanesha 1994).

Defeasible reasoning provides a path towards integrating
conflicting information and letting certain norms trump
others. Defeasible reasoning lets characters reason with a
set of defaults, but allows those defaults to be overridden
by other rules in unusual situations or when circumstances
change. This makes it a good choice for reasoning about
social norms.

The key idea behind defeasible reasoning is that not all
reasons, which link arguments together, logically entail
their conclusions. Instead they create a defeasible
“presumption in favor of their conclusion” (Pollock, 1992),
that is, a reason to assume the conclusion is correct until
proven otherwise. In Pollock’s formulation, conclusions
are rejected by rules called defeaters, which either attack
the reasons for a conclusion, or the conclusion itself. A
rule which attacks the conclusion is a rebutter; a rule
which attacks the reason for a conclusion is an undercutter.
If something is undercut, the conclusion could still be true,
but perhaps not for the reasons provided.

For example, let us imagine a rule that states,
“defeasibly, if it’s nice outside and Bill has a ball, Bill will
play with a ball outside.” Let us further assume that it’s
nice outside and Bill has a ball; we can conclude
“presumably, Bill is playing with a ball outside.” An
undercutter would be a rule that states “assume it’s not nice
outside,” detracting from our reasons for believing Bill is
playing outside with a ball. A rebutter would be a rule that
states “defeasibly, if Bill has a ball and the ball is a ping-

76

pong ball, Bill will not play with a ball outside.” Without
knowing whether the ball is a ping-pong ball or not, we
cannot know what to conclude.

Defeasible reasoning expands the range of query
responses from “true” and “false” to “definitely true”,
“definitely false”, “presumably true”, “presumably false”,
and “can’t tell”, depending on how the conclusions were
derived. It should be clear that, particularly when
reasoning about the appropriateness of social behavior, a
system that can ambivalently fail to draw a conclusion
(that is, which concludes “I can’t tell what the right thing
to do is”) is superior to one that cannot fail as gracefully.
This is especially true if we want to be able to model the
social dynamics of teenagers.

Defeasible reasoning was central to the OSCAR project,
a cognitive architecture for rational agents that uses
deductive inference rules and defeasible reasoning schemas
as central cognitive inference tools (Pollock, 2000; 2001).
OSCAR was designed to help make decisions and process
information, rather than achieve goals. OSCAR is able to
reason about a changing world using simple constraints.
For example, if the agent perceives a thing P, it defeasibly
believes P; if it does not subsequently perceive ~P (that is,
not P), it continues to defeasibly believe P (Pollock, 1998).
OSCAR can also project beliefs into the future and has
ways of discounting those beliefs.

Defeasible Prolog (d-prolog, Nute 1993) is an extension
to Prolog that implements defeasible logic. D-prolog adds
operators to prolog that enable prolog to conclude the
negation of a fact; to conclude something defeasibly; and
to undercut a conclusion (no further operators are required
to enable rebutting rules, since a rule that concludes the
negation of a fact rebuts rules that conclude that fact). D-
prolog also adds facts to support those new operators, such
as declaring particular sets of facts incompatible or
determine which rules are superior to others. D-prolog also
enables assumptions: itsNiceOut(today) := true.
means “presumably, we can conclude that it’s nice out
today”, rather than traditional Prolog’s
itsNiceOut(today)., which means “it is definitely nice
out today.” D-prolog can derive conclusions strictly or
defeasibly. Strict derivations only use regular Prolog rules;
defeasible derivations use all rules. The use of the :=
operator, rather than the Prolog’s normal :- operator, states
that a rule is defeasible, not a strict rule. It can be defeated
by other rules that state exceptions or extenuating
circumstances that rebut or override the original rule.

Implementation
The present work was implemented within MKULTRA, a
game under development that incorporates compositional
natural-language dialogue and reactive planning techniques

in a tile-based RPG (Horswill, 2014). The game’s
reasoning system is written in Prolog, where each character
has access to a global knowledge-base (KB) for the game
as well as their own KB that encodes their beliefs, needs,
goals, desires, etc. The natural language system uses
definite clause grammars (Pereira and Shieber 1987) and is
based loosely on CHAT-80 (Warren and Pereira 1982).
The reactive planner is based on Sibun’s (1992) Salix
system, which is in turn based on McDermott’s (1978)
NASL system.
 The current work focuses on injunctions, that is, on
blocking potential actions that violate social norms. This
involves two primary issues, reasoning about whether a
given action is non-normative, and integrating that
reasoning into the overall agent architecture. We use the
term non-normative since it is more inclusive of the variety
of norms than a term like forbidden. Some norms, such as
moral rules, concern obligatory or forbidden actions, but
other norms, such as the convention of passing on the right,
are not inviolable. Both define normative and non-
normative behavior, and the same framework can be used
to reason about both kinds of norms. In the current
implementation, however, the planner does functionally
treat non-normative actions as forbidden: characters can
only take a non-normative action if a different norm states
that the action is actually normative.

Testing actions against norms
Reasoning about whether an action is non-normative is
implemented using a set of defeasible rules written in d-
Prolog. We will focus here on reasoning about object
possession, although the system also includes injunctions
against murder (with an exception for self-defense).
 The primary rule used for object possession is that it is
rude to use objects that belong to others:

rude(use(User, Obj)) :=
 belongs_to(Obj, Owner),

 User \= Owner.

Thus, it is rude for someone visiting a friend to walk up to
their refrigerator and start eating their burritos. Characters
are defined as belonging to themselves, so this rule also
prevents a character from using another character for some
purpose. This rule can be defeated by other rules that state
exceptions or extenuating circumstances that rebut or
override the original rule. One such rule is that it’s not
rude to use the object if one has permission to use it:

~rude(use(User, Obj)) :-
 permission_to_use(User, Obj).

Here the ~ operator denotes (strong) negation. This rule
uses the :- operator and so is a strict (non-defeasible) rule:

77

it can’t be overridden, and so rebuts the original defeasible
rule.
 Other rules can also override the original rule. For
example, it might be acceptable to eat a friend’s burrito
without permission if one is literally dying of hunger:

~rude(use(User, Object)) :=

 satisfies_need(Need, Object),
 need_to_satisfy_to_survive(Need),

 satisfaction_level(Need, Level),
 minimum_survival_level(Survival_Level),

 Level =< Survival_Level.

However, this is another defeasible rule because it too can
have exceptions, such as if one’s friend is also dying of
hunger.
 Note that representing the full range of all human social
norms would require an enormous number of rules,
exceptions, exceptions to exceptions, etc. Clearly humans
are able to store and reason with the enormous number of
norms and conventions we are exposed to, but it would be
too computationally expensive for us to do so exclusively
with defeasible reasoning. That is, in this paper we are not
making an argument that humans do all of our normative
reasoning using defeasible reasoning. Scaling our
characters’ normative reasoning to human levels would be
an enormous, perhaps impossible, challenge. However,
defeasible reasoning provides the expressiveness required
to begin exploring these issues in video game characters.

Architectural integration
Norms are integrated into the system’s reactive planner by
testing candidate actions for deviancy and rejecting ones
that violate norms. The current system does not address
the issue of taking additional actions, such as asking
permission, to make otherwise deviant actions acceptable,
although this could be done straightforwardly by declaring
normativity to be a precondition for all possible actions
and declaring other actions (such as asking permission) to
establish normativity.
 In a planner/executive architecture, norm testing would
be integrated by filtering candidate actions in the planner.
This would be easiest to do in a planner that used forward-
chaining, state-space search, such as SHOP (Nau et al.
1999), since the full state of the world would be available
for the norms reasoning system. However, it could also be
used with other planners, such as partial order planners,
particularly if the rules governing norms do not depend on
state information that can be changed by plan actions.
 In our implementation, characters use a reactive planner
based loosely on Sibun’s Salix (1992), which was in turn
based on McDermott’s NASL (1978). The system works
by incrementally decomposing tasks until a primitive

action is obtained, then executing the action, and
continuing with the rest of the decomposition.
 Domain knowledge is provided in the form of task
decomposition rules. When executing a task, the system
finds all possible decompositions of the task. If there is a
unique decomposition, it executes it. If not, there is an
impasse, and the system recursively executes either the
task match_failure(OriginalTask) or the task
resolve_conflict(Task, Decompositions), depending
on whether there were no decompositions or conflicting
decompositions. These, in turn, have their own
decomposition rules that implement meta-level reasoning
for different tasks. This mechanism is similar to Soar’s
universal subgoaling (Laird et al., 1987).
 The current system implements social norms by filtering
candidate decompositions to veto decompositions that
violate norms. Since this is a reactive planner (i.e. it
commits to a particular decomposition and doesn’t
backtrack the execution of actions if the decomposition
fails), it is possible for a character to commit to a
decomposition and only later discover (when its subtasks
are themselves decomposed) that it involves actions that
would violate norms. In this case, the character would be
forced to abort and restart the task using a different
strategy. However, it might not do so until the original
strategy had been partially executed. This could be
alleviated either by adding additional domain knowledge to
allow earlier rejection of deviant strategies, or by adopting
a full (backtracking) planner.
 One issue in the current implementation is that d-Prolog
is implemented as a meta-interpreter, i.e. it is an interpreter
written in Prolog that is itself interpreted by the underlying
Prolog interpreter. D-Prolog queries are thus relatively
expensive in the current implementation. This is partly due
to features of d-Prolog that aren’t used in the current
implementation; for example, d-Prolog can evaluate
queries relative to lists of explicit assumptions, a feature
that is used for automatically determining some cases
where one rule subsumes another. Our current
implementation explicitly specifies rule precedence so as
to avoid the overhead of repeatedly computing it.
 In principle, this interpretation overhead could be
compiled out through partial evaluation (Sterling and
Shapiro, 1994). However, the current prototype uses an
explicit list of action types that should be examined further
for norm violations, with all other actions being
automatically assumed permissible. This has so far proven
to be relatively easy to maintain while also being efficient
enough not to impact the frame rate of the game.

78

Example Scenario
We tested the system in a scenario where the player
character visits a friend’s house. Characters take objects to
be owned by the owner of the house in which they reside,
so all objects are assumed to belong to the friend. The
characters run identical code bases, a Sims-style simulation
of basic survival needs (Zubek 2010) that generates goals
for the reactive planner discussed above (including the
testing against social norms). The two characters thus have
identical goals but differing behavioral injunctions, since
one character owns all the objects, and the other owns
none. The system was tested under two experimental
conditions: in one, the friend declares that the player
character should make themselves at home and do
whatever they please, i.e. that they have permission to use
anything in the friend’s house. In the second condition, the
friend declares that he is unhappy that the player character
is at his house, and tells them not to touch anything. In this
condition, the player does not get permission for any
objects.

In the first condition, the two characters behave
identically: they both go about fulfilling their needs. In the
second condition, the friend goes about his day as normal,
since he is in his house, owns everything, and therefore
does not have to worry about whether he can use the items
therein. However, the player character wanders and does
(almost) nothing, since all actions involve either the friend
or the friend’s things, which is blocked by the injunction
against using others’ possessions without permission.
Eventually, the player character’s needs reach the point
where her survival is in jeopardy (impending death due to
hunger, dehydration, or sleep deprivation). At that point,
the third rule above defeats the prohibition against using
another’s possessions without permission. This enables the
character to fulfill her survival needs, but not other actions.
She will therefore eat, sleep, and drink, but not watch
television, for example, since television is not a survival
need. Moreover, she only eats, sleeps, and drinks when
those need levels near the fatal stage (i.e. below the
emergency level).

A typical activity trace in this case is as follows.
Suppose the emergency level for need satisfaction is 15 on
a 0-100 scale, and the character’s hunger satisfaction (i.e.
level of satiation) is 20 and fun satisfaction is 10. Fun is
not a survival need, and hunger is over 15, so the character
does nothing. After sufficient time, hunger is below 15,
and fun is almost 0. The character eats, which sets her
hunger to 50. She then goes back to doing nothing until her
hunger (or another survival need) satisfaction level dips
below 15.

Other Related Work
In addition to work on socially believable characters in
games, there is an interesting body of work on normative
systems. Much of this work involves artificial multi-agent
systems that use norms to define default behaviors in
synthetic societies. Sergot (2008) presented a formal
language for normative systems with which to discuss
norms, compliance to said norms, and to determine which
agents are responsible for the state of the world.
 Dhanesha (1994) and Ryu (1992) have also used
defeasible reasoning (and indeed, d-Prolog) to model semi-
formal rule systems, such as parking regulations.
 We are not aware of any work on normative systems that
attempts to model existing human social norms, as would
be desirable for simulated characters.

Future Work
This work is still in its initial stages. Most obviously, the
system can be extended to support both more exceptions to
the current norms and more types of injunctive norms.
 As we add more norms, the system may have to reason
about contradictory norms; for example, the norm of
introducing oneself and offering a business card is of lower
priority than the norm of rendering first aid to the victim of
an automobile accident. Much work has been done on
prioritizing rules in non-monotonic logics (i.e., Brewka &
Eiter, 1999; Delgrande et al., 2003). D-prolog includes a
facility for declaring relative priorities of rules, and even to
make priorities conditional on the contents being reasoned
about. D-prolog can also determine priority automatically
in cases where one rule is derivable from a second, but the
second is not derivable from the first (the second rule in
this example has superiority). The current implementation
does not involve enough rules to require much
prioritization, however.
 In the longer term, we will extend the system to more
complicated types of reasoning. It would be useful for the
system to be able to reason about the permissibility of
sequences of actions, not just actions in isolation. For
example, it is perfectly acceptable to go to dinner by
oneself, and it is perfectly acceptable to invite someone to
dinner, but not to invite someone and then stand them up.
It would also be useful to be able to reason about
permissibility in terms of the effects of actions rather than
the actions themselves. Asking a houseguest to leave at
the end of a dinner party is fine, asking them to do so
during a dangerous storm might not be.
 Characters should be able to have different norms from
each other, and should be able to violate norms under
certain circumstances. Currently characters can only
violate one norm when another norm indicates that doing
so is, in fact, normative. One simple solution is to have a

79

different set of defeasible rules (which are not social
norms) that define when it is reasonable for characters to
ignore rules. Our current implementation is already
capable of supporting characters having different norms,
by having those norms reside in each character’s KB
instead of the game engine’s KB.
 Another area for future work concerns norms of
obligation. If you’re called away in the middle of a
conversation, it’s polite to first say “excuse me.” On the
other hand, if you’re called away because a crazed gunman
is shooting at you, you shouldn’t waste time on
pleasantries. We also do not currently represent norms
surrounding omissions: what characters fail to do, not only
what they have done. Making character architectures that
can both conform to these norms, and reason about them
(so as to feel slighted, for example, if someone walks away
in the middle of a conversation) in a natural manner, is
very much an open problem.
 While the current system reasons about the normativity
of actions, it would also be possible to implement a system
that instead (or additionally) reasoned about the
permissibility or impermissibility of states of the world.
Our current system has only very limited support for this
since our reactive planner does relatively little projection
into the future. It can reason that eating another character
is murder, and therefore immoral, because it causes to an
impermissible state transition from living to dead.
However, improved projection would certainly be useful.

 Finally, there are a number of norms that do not conform
to the kinds of quasi-legalistic reasoning used here. By
quasi-legalistic reasoning, we mean reasoning that involves
clear rules and exceptions with crisp evidence accruing in
favor or against a conclusion. Some norms, for example
the rules determining when one knows someone else well
enough to use a nickname, are extremely complicated and
do not necessarily fit the rules-and-exceptions model of
defeasible reasoning. Determining whether a nickname is
appropriate, for example, is more about reaching a limit
point of personal connection than about a specific event.
These are norms that depend on the accrual of many
different small pieces of evidence and which can be
satisfied in myriad ways, and which may not be effectively
implementable using defeasible reasoning.

Conclusion
Conforming to social norms and conventions is critical to
character believability. Developing agent architectures
that can explicitly represent, reason about, and conform to
such norms is an important goal for game AI research.
Defeasible logic is a convenient tool for such reasoning
because of its ability to naturally express complicated
systems of rules and exceptions.

 This work represents first steps in this project by adding
support for representing and reasoning about injunctive
norms and their various exceptions and mitigating
circumstances. It shows that defeasible logic programming
provides both an expressive representation and a reasoning
system efficient enough for real-time control of game
characters.

Acknowledgements
We gratefully acknowledge Richard Evans, Ken Forbus,
and our reviewers for discussing and helping develop the
ideas presented in this paper.

References
Brewka, G., & Eiter, T. (1999). Preferred answer sets for
extended logic programs. Artificial intelligence, 109(1), 297-356.
Delgrande, J. P., Schaub, T., & Tompits, H. (2003). A framework
for compiling preferences in logic programs. Theory and Practice
of Logic Programming,3(02), 129-187.
Dhanesha, K. (1994). Normative expert system using deontic
logic and defeasible reasoning. Master’s thesis, The University of
Georgia
Evans, R. (2009) Modeling Individual Personalities in The Sims
3. Game Developer’s Conference, San Francisco, CA.
Evans, R. (2010) Sim Tribe: Using a Deontic Logic to Model
Social Practices, in Experimental Game AI Live Demos, AI
Summit Game Developer’s Conference, San Francisco, CA.
Evans, R., & Short, E. (2014). Versu - A Simulationist
Storytelling System. IEEE Transactions on Computational
Intelligence and AI in Games, 6(2), 113–130.
Ghallab, M., Nau, D., & Traverso, P. (2004). Automated
Planning: Theory and Practice. Morgan Kaufmann Series in
Artificial Intelligence. Elsevier.
Horswill, I. D. (2014). Architectural Issues for Compositional
Dialog in Games. In Tenth Artificial Intelligence and Interactive
Digital Entertainment Conference. May 2014, Raleigh, NC
Koons, R. (2014). "Defeasible Reasoning", The Stanford
Encyclopedia of Philosophy, Edward N. Zalta (ed.), URL =
http://plato.stanford.edu/archives/spr2014/entries/reasoning-
defeasible.
Laird, J., Rosenbloom, P., and Newell, A. (1987). Soar: An
Architecture for General Intelligence. Artificial Intelligence, 33:
1-64.
Mateas, M. & Stern, A. (2003). Façade: An Experiment in
Building a Fully-Realized Interactive Drama. In Game
Developers Conference, Vol 2
McCarthy, J. M. (1980) “Circumscription — A Form of Non-
Monotonic Reasoning”, Artificial Intelligence, 13: 27–39, 171–
177.
McDermott, D. (1978), Planning and Acting. Cognitive Science,
2: 71–100.
Moore, R. C. (1985) “Semantic Considerations on Nonmonotonic
Logic”, Artificial Intelligence, 25: 75–94.

80

Nau, D., Cao, Y., Lotem,, A., & Muñoz-Avila, H. (1999). SHOP:
Simple Hierarchical Ordered Planner. In IJCAI-99, pp. 968-973
Nute, D. (1993) Defeasible Prolog. Technical Report AI-1993-04,
AI Programs, University of Georgia. Presented at AAAI Fall
Symposium on Automated Deduction in Nonstandard Logics,
Raleigh, NC
Pereira, F.C.N., & Shieber, S. (1987) Prolog and Natural
language Analysis. Brookline, MA: Microtome Publishing.
Pollock, J. (1987). Defeasible Reasoning. Cognitive Science, 11,
pp. 481-518
Pollock, J., (1992) How To Reason Defeasibly. Artificial
Intelligence 57, pp 1-42
Pollock, J., (1998) Perceiving and Reasoning about a Changing
World. Computational Intelligence, 14(4), 498-562
Pollock, J. (2000). Rational Cognition in OSCAR. Intelligent
Agents VI. Agent Theories, Architectures, and Languages. In
Lecture Notes in Computer Science, vol 1757, pp 71-90
Pollock, J., (2001) Defeasible Reasoning with Variable Degrees
of Justification. Artificial Intelligence 133, pp 233-282
Reiter, R. (1980) “A logic for default reasoning”, Artificial
Intelligence, 13: 81–137.
Ryu, Y. (1992). A Formal Representation of Normative Systems:
A Defeasible Deontic Reasoning Approach. PhD thesis,
University of Texas.
Sergot, M. (2008). Action and agency in norm-governed multi-
agent systems. In Engineering Societies in the Agents World
VIII (pp. 1-54). Springer Berlin Heidelberg.
Sibun, P. (1992). Locally Organized Text Generation. University
of Massachusetts, Amherst
Sterling, L. and Shapiro, E. (1994). The Art of Prolog: Advanced
Programming Techniques. 2nd edition. MIT Press. Cambridge,
MA.
Warren, D. H., & Pereira, F. C. (1982). An efficient easily
adaptable system for interpreting natural language
queries. Computational Linguistics, 8(3-4), 110-122.
Zubek, R. 2010. "Needs-based AI." In A. Lake (ed.), Game
Programming Gems 8, Cengage Learning, Florence, KY.

81

