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Abstract
In order to use computational intelligence for auto-
mated narrative synthesis, domain knowledge of the
story world must be defined, a task which is currently
confined to experts. This paper discusses the benefits
and tradeoffs between agent-centric and event-centric
approaches towards authoring the domain knowledge of
story worlds. In an effort to democratize story world
creation, we present an accessible graphical platform
for content creators and even end users to create their
own story worlds, populate it with smart characters and
objects, and define narrative events that can be used
by existing tools for automated narrative synthesis. We
demonstrate the potential of our system by authoring a
simple bank robbery story world, and integrate it with
existing solutions for event-centric planning to synthe-
size example digital stories.

Introduction
A prerequisite to using computational intelligence for auto-
mated narrative synthesis (Riedl and Bulitko 2013) is defin-
ing the domain knowledge of the story world in which you
want to author narratives. Domain knowledge includes an-
notated semantics that characterize the attributes and rela-
tionships of objects and characters in a scene (state), differ-
ent ways in which they interact (affordances), and how these
affordances manipulate their state. The domain knowledge
definition entails both the state and action space within a
story world. Current languages and interfaces for specifying
domain knowledge are confined to experts and the overhead
of domain specification is high, often comparable to author-
ing the story from scratch. In order to democratize the use of
computational narrative intelligence, the research commu-
nity must first provide an accessible interface for building
story worlds, and this is the focus of this paper.

Current approaches to automated narrative synthesis use
logical planners, such as STRIPS-like formalisms (Fikes and
Nilsson 1971), for building the state and action space of in-
dividual characters in the story. The Planning Domain Def-
inition Language (PDDL) (Mcdermott et al. 1998) provides
a common formalism for describing planning domains with
clear semantics. Although these tools are powerful, they are
hard to use and restricted to experts. We want to democratize
story world creation, enabling both expert and novice users
to construct a space for compelling narrative content.

In this paper, we explore two different metaphors for story
world building. Agent-centric authoring (Riedl and Bulitko
2013) defines the traits of each individual character or ob-
ject in the story world. Authoring the characteristics and
capabilities of individual characters is decoupled from the
specifying the story itself, and the complexity of automated
narrative synthesis is combinatorial in the number of char-
acters and the different capabilities of each character. Event-
centric authoring (Shoulson et al. 2013) encapsulates inter-
actions that have narrative significance as logical constructs
and provides an appropriate level of abstraction for author-
ing and reasoning about stories. This imposes an additional
authoring overhead, as these events need to be specified, but
mitigates the complexity of automation as it is now indepen-
dent in number of actors and actor capabilities. Automated
approaches explore the space of events to generate stories.
We present the benefits and trade-offs between these two
metaphors and motivate an event-centric approach for con-
structing story worlds. To this end, we introduce a graphi-
cal platform for event-centric authoring of story worlds and
demonstrate its potential with preliminary results.

Related Work
The research community has addressed the problem of
authoring interactive narratives in two main ways. Manual
approaches provide domain specialists with complete
control over creating rich narrative content, while auto-
mated approaches rely on computational techniques to
generate emergent interactive experiences. We provide
a brief review below, which builds on comprehensive
surveys of narrative authoring (Riedl and Bulitko 2013;
Kapadia et al. 2013).

Manual Authoring. Scripted approaches (Loyall 1997) de-
scribe behaviors as pre-defined sequences of actions. While
providing fine-grained control, small changes often re-
quire far-reaching modifications of monolithic scripts. Im-
prov (Perlin and Goldberg 1996) and LIVE (Menou 2001)
describe actor behaviors as rules based on certain conditions.
These systems produce pre-defined behaviors appropriate
for specific situations. However, they are not designed to
generate complicated agent interactions with narrative sig-
nificance. Facade (Mateas and Stern 2003) utilizes authored
beats to manage the intensity of the story in addition to
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a generalized scripting language (Mateas and Stern 2002;
2004) to manually authoring character interactions based on
preconditions for successful execution.

Story Graphs can represent branching story lines (Gordon
et al. 2004) enabling user interaction as discrete choices at
key points in the authored narrative. Behavior Trees (BT’s)
are applied in the computer gaming industry to design the
artificial intelligence logic for non-player characters (Isla
2005). BT’s enable the authoring of modular and extensible
behaviors, which can be extended to control multiple
interacting characters (Shoulson et al. 2014) and to provide
a formalism for specifying narrative events.

Automated Narrative Synthesis. Domain-independent
planners (Sacerdoti 1975) provide a promising direction
for automated narrative synthesis, however, at the cost of
requiring the specification of domain knowledge. The com-
plexity of authoring is transferred from story specification
to domain specification. For example, domain specification
has been demonstrated to enable multi-actor interactions
that conform to narrative constraints (Kapadia et al. 2011b;
2011a). However, they cannot be dynamically changed
to accommodate user input. Narrative mediation sys-
tems (Riedl and Young 2006) automatically synthesize
sub stories that consider the ramifications of possible user
interaction. However, these systems produce story graphs
with significant branching that are difficult to edit by
humans. Virtual directors or drama managers (Magerko et
al. 2004) may also accommodate user input while steering
agents towards pre-determined narrative goals (Weyhrauch
1997). Thespian (Si, Marsella, and Pynadath 2005) uses
social awareness to guide decision-theoretic agents.
PaSSAGE (Thue et al. 2007) estimates a player’s ideal ex-
perience to guide the player through predefined encounters.

Agent-Centric Domain Specification. Agent-centric ap-
proaches (Riedl and Bulitko 2013) build up each character
as an individual and explore the space of all possible
combinatorial character actions to synthesize stories.
Authoring the characteristics and capabilities of individual
characters is decoupled from specifying the story itself,
and the complexity of automated narrative synthesis is
combinatorial in the number of characters and the different
capabilities of each character.

Event-Centric Domain Specification. Events are a layer of
abstraction on top of agent-centric authoring which encapsu-
late complex multi-actor interactions that have narrative sig-
nificance. Event-centric approaches (Shoulson et al. 2013;
Shoulson, Kapadia, and Badler 2013) plan in the space
of pre-authored narratively significant interactions, thus
mitigating the combinatorial explosion of planning in the
action space of individual character actions.

Automatic Domain Learning. Recent work (Li, Lee-
Urban, and Riedl 2013) has shown the promise of using
crowdsourcing and machine intelligence for automatically
learning domains for automated story synthesis. These
approaches greatly minimize the burden of domain specifi-

cation, while sacrificing authoring precision.

Comparison to Prior Work. Our work complements on-
going research in computational narrative intelligence and
advocates the need for providing accessible metaphors for
building story worlds, in an effort to democratize story au-
thoring for the masses. To this end, we discuss the benefits
and limitations of agent-centric and event-centric authoring
paradigms and present our ongoing work towards providing
a graphical platform for end users to design their own story
worlds, for authoring compelling digital stories.

Domain Specification for Automated Narrative
Synethesis

In order to use computational intelligence for narrative syn-
thesis, content creators and story writers need to specify the
domain knowledge of the story world, which can be used
by an intelligent system for reasoning, inference, and ul-
timately story synthesis. This includes annotating seman-
tics that characterize the attributes and relationships of ob-
jects and characters in the scene (state), different ways in
which they interact (affordances), and how these affordances
manipulate their state. Many intelligent systems for auto-
mated synthesis are similar in this regard (Riedl and Bulitko
2013). However there exists a tradeoff between the complex-
ity of authoring and the computational complexity of gen-
erating stories depending on type of domain representation
used. The rest of this section first introduces some prelimi-
nary concepts for story world building. Using these building
blocks, we describe two standard representations of domain
knowledge and discuss their impact on automated narrative
synthesis.

Preliminaries
We introduce smart objects and affordances as the building
blocks for creating story worlds.

Smart Objects. The virtual world W consists of smart
objects (Kallmann and Thalmann 1999) with embedded
information about how an actor can use the object. We
define a smart object w = 〈F, s〉 with a set of advertised
affordances f ∈ F and a state s = 〈θ,R〉, which comprises
a set of attribute mappings θ, and a collection of pairwise
relationships R with all other smart objects in W. An
attribute θ(i, j) is a bit that denotes the value of the jth
attribute for wi. Attributes are used to identify immutable
properties of a smart object such as its role (e.g., a button or
a bank robber) which never changes, or dynamic properties
(e.g., IsPressed or IsStanding) which may change
during the story. A specific relationship Ra is a sparse
matrix of |W| × |W|, where Ra(i, j) is a bit that denotes
the current value of the ath relationship between wi and
wj . For example, an IsFriendOf relationship indicates
that wi is a friend of wj . Note that relationships may not be
symmetric, Ra(i, j) 6= Ra(j, i) ∀ (i, j) ∈ |W| × |W|. The
state of each smart object is stored as a bit vector encoding
both attributes and relationships.
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Affordances. An affordance f = 〈wo,wu,Φ,Ω〉 is an
advertised capability offered by a smart object that takes the
owner of that affordance wo and one or more smart object
users wu, and manipulates their states. For example, a smart
object such as a ball can advertise a Throw affordance,
allowing another smart object to throw it. A precondition
Φ : sw ← {TRUE,FALSE} is an expression in conjunctive
normal form on the compound state sw of w : {wo,wu}
that checks if f can be executed based on their current
states. A precondition is fulfilled by w if Φf(w) = TRUE.
The postcondition Ω : s → s′ transforms the current state
of all participants, s to s′ by executing the effects of the
affordance. When an affordance fails, s′ = s .

Narrative Synthesis. The aim of narrative synthesis is to
generate a narrative Π(ss, sg), which satisfies an initial state
ss and through a series of state transitions results in the de-
sired goal state sg .

Agent-centric Domain Knowledge
Following the definition of smart objects and affordances
described above, we can define a domain Σ = 〈S,A〉
which includes the definition of the state space S of all
characters and objects, and the action space A , or the space
of all permissible actions and interactions in this story world.

State Space. The overall state of the world W is defined
as the compound state s = {s1, s2 · · · s|W|} of all smart
objects w ∈W, which is encoded as a matrix of bit vectors.
sw denotes the compound state of a set of of smart objects
w ⊆W. The state space Sa represents the set of all possible
world states s.

Action Space. The agent-centric action space
Aa = F1 × F2 × · · · × F|W| is the cross product of
the set of all affordances of each smart object in the world.

Narrative Synthesis. Automated approaches explore the
space of all permissible character actions to generate a narra-
tive Π(ss, sg) = 〈f1, f2 . . . fn〉 that is a sequence of actions
and interactions between story characters that satisfies the
desired story outcome, sg . Agent-centric domain represen-
tations have two main drawbacks. First, the computational
complexity of automation scales exponentially in the num-
ber of characters and the set of affordances of each charac-
ter. This limits story worlds to a small set of characters with
limited degree of interactions. Second, the act of specifying
the state and capabilities of characters is decoupled from the
story itself, and it can be harder to maintain narrative coher-
ence.

Event-centric Domain Knowledge
Event-centric domains introduce events as an additional
layer of abstraction. Events are pre-defined context-specific
interactions between any number of participating smart
objects whose outcome is dictated by the current state of
its participants. Events serve as the building blocks for
authoring complex narratives. An event is formally defined
as e = 〈t, r,Φ,Ω〉 where t is a logical representation of

a coordinated interaction between multiple actors. t takes
any number of participating smart objects as parameters
where r = {ri} define the desired roles for each participant.
ri is a logical formula specifying the desired value of the
immutable attributes θ(·, j) for wj to be considered as
a valid candidate for that particular role in the event. A
precondition Φ : sw ← {TRUE,FALSE} is a logical
expression on the compound state sw of a particular set of
smart objects w : {w1, w2, . . . w|r|} that checks the validity
of the states of each smart object. Φ is represented as a
conjunction of clauses φ ∈ Φ where each clause φ is a
literal that specifies the desired attributes of smart objects,
relationships, as well as rules between pairs of participants.
A precondition is fulfilled by w ⊆ W if Φe(w) = TRUE.
The event postcondition Ω : s → s′ transforms the current
state of all event participants s to s′ by executing the effects
of the event. When an event fails, s′ = s . An event instance
I = 〈e,w〉 is an event e populated with an ordered list of
smart object participants w.

State Space. The event-centric state space Se is equivalent
to Sa.

Action Space. The event-centric action space
Ae = {e1, e2 · · · em} is defined as the set of all m
events that may occur between any permutation of smart
objects in the world W.

Narrative Synthesis. A narrative Π(ss, sg) = 〈e1, e2 . . . en〉
is defined as a sequence of events that transform the state
of the world from its initial state ss to the desired goal
state sg that represents the desired outcome of the narrative.
An event-centric representation of domain knowledge helps
mitigate the combinatorial complexity of authoring individ-
ual characters in complex multi-character interactions and
its variants have recently gained prominence in the games
industry. However, this does impose the additional over-
head of authoring events. For example, the work in (Shoul-
son et al. 2013) represents events using Parameterized Be-
havior Trees (Shoulson et al. 2011) and uses a total-order
planner (Pearl 1984) to generate narratives as a sequence of
events.

A Graphical Platform for Building Story
Worlds

Our story world builder is designed to build up components
of a full story world with required semantics to achieve
automated narrative synthesis. Our graphical platform is
built within the Unity3D game engine. Following the event-
centric representation (Shoulson et al. 2013), events are
defined as Parameterized Behavior Trees (Shoulson et al.
2011) which provide a graphical, hierarchical representation
for specifying complex multi-actor interactions in a mod-
ular, extensible fashion. We use NodeCanvas for authoring
Behavior Trees. To demonstrate the benefits of our system,
we integrate the planner described in (Shoulson et al. 2013)
to generate sample narratives that can be synthesized within
the story worlds that are created using our platform. Our un-
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Figure 1: Overview of steps for building a story world and creating stories.

(a) (b) (c) (d)

Figure 2: An example narrative synthesized using an event-centric planner in the bank story world that was authored using our
system. (a) Two robbers distract and incapacitate a guard. (b) One robber coerces the bank manager to press a button to access
the vault. The robber unlocks the vault (c) and takes money from the vault (d) before escaping from the bank.

derlying representation of the story world is general and can
be easily used within other computational narrative synthe-
sis systems.

Building a new story world entails three main steps, which
are described below: (1) Story World Creation: defining all
possible states and relationships in the world in addition to
configuring the scene. (2) Smart Object Creation: defining a
set of smart objects and characters, and instantiating them in
the scene. (3) Event Creation: defining a lexicon of events
for creating stories. Figure 1 illustrates the main steps of
building a story world and Figure 2 illustrates an example
story that was generated within a bank robbery scenario, that
was authored using our platform.

Story World Creation
The first part of world creation is to instantiate a world with
all of the basic functionality as well as the definition of
all possible states and relationships available in the world.
States include high level descriptions of objects. For exam-
ple, a bank vault smart object is locked, or a smart character
has a role of robber. Relationships can be defined. For ex-
ample, two robbers may be allied to each other.

The second part of world creation involves setting up an
environment instance (or scene) within the world. In our ex-
ample, we define a bank within a city. Lights are added to
the scene and navigation functionality is configured using
NavMesh in Unity3D. Additional components are attached
to the scene as required by an automated story planner.

Smart Object Creation
Although it is not necessary, we differentiate between smart
objects and smart characters. The smart characters require

additional components to enable additional functionality.
For example, a component for inverse kinematics enables
a character to do complex physical actions, such as pressing
a button and grasping objects.

Figure 3 shows the interface for creating a smart object.
The user chooses a model (of type FBX in Unity3D) and
selects affordances to associate with that model. Initial states
of the smart object are defined from those available in the
world. For example, a bank robber is created in Figure 3
with the states isStanding and HoldingWeapon set to
true. We also assign the role state of RoleRobber to true.
We also add a relation isAllied with another character.
The initial state of an instance of the robber will be standing,
holding a weapon and allied with another character.

In a second step of smart object creation, the smart ob-
ject can be instantiated multiple times. This part includes se-
lecting a representative icon, setting the initial position and
defining the instance of a relation to another smart object (or
character). For example, two robbers are instantiated and al-
lied with each other. Figure 4 shows the instantiation of a
bank robber.

Event Creation
There are two steps for event creation: (1) desiging param-
eterized behavior trees that describe interactions between
multiple smart objects and characters in the scene and, (2)
specifying the preconditions and postconditions of an event,
and associating it with the corresponding PBT.

PBT’s are inherently graphical in nature, and afford intu-
itive graphical user interfaces for design. We have integrated
the popular NodeCanvas library for authoring behavior trees
within our platform and extended it for PBT’s, as utilized
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De�ne Name and Model

Select A�ordances

De�ne State

De�ne Role

De�ne Relationship}
}
}

}
}

Figure 3: Smart Object Creation. Choose a model, add af-
fordances and define a state to create a smart object.

Set Participants
to Relationships}
Choose Icon}
Set Position
and Instantiate}

Figure 4: Smart Object Instantiation. Instantiate a smart
object by defining position and a representative icon. Set the
participants to the relationships.

by our system. Figure 5(a) shows the process of creating a
PBT by adding action tasks (leaf nodes) and control nodes
to a PBT. In the example, an affordance task is selected. Fig-
ure 5(b) shows the selection of the affordance of the action
task. Figure 5(c) visualizes a simple PBT that was designed
using a sequence control node.

In the last step, an event instance is created. A name and
representative icon are defined. A previously created PBT
is designated for the event. Note that the same PBT may
be used for multiple event definitions. For example, a log-
ical conversation may have different ramifications depend-
ing on its event semantics which are defined at the event
level. Pre- and post-conditions are defined as conjunctive
normal form (CNF) expressions on the state and relations
of the PBT participants. Figure 6 shows an example event
called DistractAndIncapacitate. An icon to visually repre-
sent the event may be selected. The previously created PBT,

Select Name and Icon}
Select Behavior Tree}
De�ne Pre and Post
Conditions for States}

De�ne Pre and Post
Conditions for Relations}

Figure 6: Event Specification. Create an event by selecting
a representative icon and selecting a behavior tree. Define
preconditions and postconditions on states and relations for
the parameters of the behavior tree.

also called DistractAndIncapacitate, is selected. The param-
eter, target, which represents the guard in the scene has ini-
tial state RoleGuard and isStanding, for example. As
post condition, the state isStanding is negated.

The above three parts enable creation of the world with
semantics required by a story planning tool, which is exe-
cuted to achieve the results visualized in Figure 2.

Conclusions
This paper motivates the importance of accessible
metaphors for domain specification, as a precursor to
computational narrative synthesis. We describe two rep-
resentations of domain knowledge: agent-centric and
event-centric. Agent-centric domain representations are
used to author the traits and capabilities of unique char-
acters at the cost of computational complexity and lack
of scalability in number and complexity of characters.
Event-centric domain representations mitigate the combi-
natorial complexity of authoring individual characters to
more efficiently achieve desired narrative structure, at the
cost of additional overhead of authoring events. Our aim of
creating an accessible graphical interface for building story
worlds can be applied to both domains.

We demonstrate a graphical platform for event-centric
authoring of story worlds, which entails three main steps:
Story World Creation, Smart Object Creation and Event
Creation. These parts are designed to support the require-
ments of automated story planning systems to synthesize
stories. We demonstrate the process of building a story
world and creating stories in the context of a bank robbery
scenario. Our tools are accessible to expert and novice users.

Limitations and Future Work. Development of our story
building platform is ongoing. The interfaces and function-
ality continue to be tested and improved. Our story build-
ing platform is currently limited to creating events based
on pre-defined affordances of smart objects, which con-
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(a) (b) (c)

Figure 5: Parameterized Behavior Tree Design. (a) Select an affordance task to add to an action node. (b) Select an affordance
to use in the behavior tree. (c) Graph of created behavior tree.

strains the narrative space. As future work, we intend to
extend the platform to give more creative freedom to the
author. Our tools may also be used to assist in the de-
velopment of interactive narratives (Kapadia et al. 2015a;
2015b). We also plan to conduct user studies to improve
the interface and identify the appropriate level of abstrac-
tion of domain representations. Hybrid domain representa-
tions (Riedl, Saretto, and Young 2003) must also be consid-
ered and integrated into the story building platform as well
as techniques for automatic domain learning (Li, Lee-Urban,
and Riedl 2013). The far-reaching goal of our research is to
democratize story world building and digital story synthe-
sis, by providing accessible metaphors for narrative content
creation.
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