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Abstract

Just as there exists varied uses for computational models of
narrative, there exists a wide variety of languages aimed at
representing stories. A number of them have historic roots in
automated generation, for which these languages have to be
limited in order to make the generation process computation-
ally feasible. Other are focused on story understanding, with
close ties to natural language making many reasoning pro-
cesses computationally intractable. In this paper, we discuss
the trade-off between expressivity and computational com-
plexity of the reasoning process and argue that Impulse, a
temporal, modal logic provides more expressivity than lan-
guages historically associated with story generation, while
still affording reasoning capabilities. We show that these
properties enable certain aspects of narrative discourse gener-
ation by using two examples from different genres, and claim
that this generalizes to a broader class of problems.

Introduction
The wide range of past and current research on compu-
tational generation and analysis of narratives has resulted
in the development of a variety of languages to represent
them. It is critical to understand the strengths and limita-
tions of these languages to discuss their applicability to spe-
cific tasks. In this paper, we provide a foundation for this
discussion by investigating one particular trade-off that has
to be considered when choosing a language: expressivity vs.
computational cost. To discuss this trade-off in the context
of narrative, we make use of the bipartite model proposed
by various narratologists (e.g., (Chatman 1980)), which dis-
tinguishes between story and discourse. In this model, the
story consists of the world in which the narrative happens,
along with all its characters, objects, and actions performed.
The discourse describes how the narrative is told to an audi-
ence, specifying which elements of the story are conveyed,
in which order they are conveyed and what medium-specific
resources are used to convey them. The same story can be
used to create multiple discourses: Movies, texts, or even
interactive experiences can convey the story from the point
of view of a particular character — what Genette refers to
as focalization (Genette 1983). The task of creating narra-
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tive discourse from an existing story in an automated way is
what we call “narrative discourse generation”.

This paper presents a discussion of how the choice of a
language for story representation is a trade-off between ex-
pressivity and computational cost of reasoning about it, and
how this affects the task of narrative discourse generation in
particular. We argue that Impulse (Eger, Barot, and Young
2015), a story representation language based on a temporal,
modal logic, addresses this trade-off and affords reasoning
capabilities about stories that extend the range of narrative
discourses that can be created from other story representa-
tions.

Related Work
Due to the multitude of narrative generation and processing
tasks, a wide variety of story representations have been de-
veloped. When approached from the vantage point of story
generation, the output or internal data structures of gener-
ation algorithms are often used as the representation of the
story itself. For example, automated planning techniques
have been used in a variety of ways to generate stories, and
the representation such systems use are that of their under-
lying planning algorithms. For example, Riedl and Young
(2010) proposed a story generation system based on a mod-
ified partial-order causal link (POCL) planning algorithm
called IPOCL, and the stories generated by this algorithm
are represented as IPOCL plans. Logic-based languages
are similar to plan-based languages in that they allow a for-
mal representation of how the story world works. Examples
range from linear logic (Martens et al. 2014) to modal logic
(Barbosa et al. 2014). Depending of the kind of logic that
they are built from, these languages afford more or less rea-
soning capabilities on the generated stories.

Other languages originate not from AI or logic-grounded
generation approaches, but from a need to describe exist-
ing narratives. This is the case with Story Intention Graphs
(SIGs) (Elson and McKeown 2007) and their implementa-
tion in the Scheherazade system. This system is built to fa-
cilitate the encoding of textual stories in specialized graph
structures. The contents of the nodes of this graph structure
are drawn from WordNet and VerbNet, and they are ordered
temporally with respect to one another, reflecting story time.
These nodes can be associated to specific constructs repre-
senting character goals and beliefs, along with edges that
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specify which action causes, fulfills or prevents such a goal
or belief.

Once a story is encoded in one of these languages, a com-
putational process can reason about it to generate narrative
discourse. For example, Rishes et al. (2013) use SIGs to
generate different versions of the same story which vary in
style, e.g., by telling the story in a more “formal” or “laid-
back” way. Similarly, Hoek et al. (2014) transform story
graphs generated by a multi-agent system to create focalized
tellings, i.e. a retelling of the story from the point of view
of a particular character. Montfort describes how his interac-
tive fiction system uses focalization to e.g., inform the player
when their character refuses to perform a particular action
versus when other characters do so (Montfort 2011). Jhala
and Young (2010) use stories represented as POCL plans as
input to a camera planning system called Darshak to gen-
erate movie output for the story. Darshak itself also uses a
planner to determine which shot types to use, and uses the
story and authorial goals to create the movie.

Motivation
While many languages exist for representing stories, they
are typically either highly expressive, with associated high
computational cost when reasoning about stories encoded in
them, or provide significantly more efficient inference pro-
cedures with an associated reduction in expressive power.
We will first describe what we mean by expressivity and
by computational complexity of the reasoning process, and
then discuss how this trade-off affects different languages.
We will illustrate this point with two of the formalisms de-
scribed in the previous section: SIGs (Elson and McKeown
2007) and IPOCL (Riedl and Young 2010).

Expressivity
A story consists of a multitude of features: Characters, ob-
jects, locations, static properties and actions are the most
tangible ones, but there are also more abstract concepts like
the mental states of the characters at different times, which
describe their emotions and goals. For our purpose, we use
the word expressivity to describe the abstract measure for
how many of these features a language can represent, and in
what detail. Of course, this is not a linear metric, since one
language may support the representation of character’s de-
sires, but not their beliefs, and another vice versa, so none of
these languages would be “more expressive” than the other.
We claim, however, that it is still a relevant measure on a
less granular scale. For example, languages based on natu-
ral language are very expressive, since natural language can
express complex character mental states and timing relations
in addition to the sequence of actions that happens in a story.
That is not to say that they are without limitation, though.
SIGs, for example, only directly support goals and beliefs of
characters as first-class objects for mental models, anything
else has to be annotated in natural language content. The
expressivity of natural language, however, also comes with
a lack of formal semantics, which can result in ambiguity.
This is one of the reasons why other languages are more re-
strictive. Story-centric planning languages, for example, are

typically limited to instantaneous actions, without any rep-
resentation for characters’ mental models. IPOCL extends
a classical planning formalism with a notion of intentional-
ity, but is not able to represent characters’ beliefs or desires,
which would be required to actually reason about their in-
tentions.

Computational Complexity of Reasoning
Most tasks that process a story encoded in a language for
story representation will need to reason about the story. For
example, to summarize this story, a process would need to
reason about what parts can be left out because they can be
inferred. To explain characters’ choices in a story a process
would need to reason about possible alternatives that were
available to the characters. Some languages are kept de-
liberately simple to keep that reasoning process (relatively)
cheap computationally. Planning, for example, is PSPACE-
complete in the worst case, but most problems are actually
in NP or even easier in practice (Bäckström and Jonsson
2011), making them quite applicable to real-world prob-
lems. Reasoning about the plan itself is also generally easier
than generating it in the first place, making these languages
even cheaper in terms of computational cost of the reason-
ing process. On the other hand, languages that utilize natural
language are very hard to reason about and can only be rea-
soned about in limited cases in practice.

The Trade-off
Ideally, a story-representation language would be both very
expressive and computationally tractable. However, these
two properties are in direct opposition to one another. As
features are added to a language, reasoning about it becomes
more complex, and therefore also more computationally ex-
pensive. In fact, the very reason why less expressive lan-
guages are used is because reasoning about very expressive
languages is intractable. Referring back to the languages
discussed above, SIGs are very expressive, but make it hard
to reason about represented content because of their reliance
on natural language to provide annotations to describe a
range of narrative features. On the other hand, planning lan-
guages are limited in their expressivity but reasoning about
IPOCL plans is tractable in practice. We claim that there is a
need for languages that are more expressive than planning-
and related languages but easier to reason about than nat-
ural language-based languages, particularly for the task of
narrative discourse generation.

Impulse
Impulse (Eger, Barot, and Young 2015) is a story repre-
sentation language based on a representation of actions and
events in Interval Temporal Logic (ITL) (Allen and Fergu-
son 1994), which it combines with a model of characters’
beliefs, desires and intentions (BDI) (Cohen and Levesque
1990). ITL provides the means to encode complex tempo-
ral relations between when actions happen, when predicates
hold and when characters hold their beliefs, desires and in-
tentions. The BDI model, on the other hand, allows reason-
ing about several aspects of the characters’ mental models.
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A story encoded in Impulse consists of 6 parts:

• A time basis T , which is a set of intervals

• An object type hierarchy, which consists of subset defini-
tions of a root set O that contains all objects

• An action type hierarchy, which consists of subset defini-
tions of a root set Actions, that contains all actions

• A set of action properties P , which is a set of functions,
mapping from an action to either an object or an interval

• A set of action instances Σ that make up the story

• A set of Impulse sentences Ψ that encode additional in-
formation about the story

The object type hierarchy always has to define the two
subsets A ⊆ O, which contains all actors, and L ⊆ O,
which contains all locations. Other subsets can be defined
as needed for a given story. For example, a medieval set-
ting may have a subset Weapons ⊆ O, with other subsets
Swords ⊆Weapons and Bows ⊆Weapons . Each of these
sets then contains the actual objects, which are constants in
the predicate logic sense. Similarly, the action type hierar-
chy defines how actions that can happen in the story world
are related to one another. For example, the medieval setting
could have an action type attack ⊆ Actions , with subtypes
shootBow ⊆ attack and swingSword ⊆ attack . This hi-
erarchy is used to define the action properties. In our ex-
ample, all attack actions might have a common property
target : attack 7→ A, but only the shootBow action has
a property projectile : shootBow 7→ Arrows . The set Σ
contains all actions that actually happen in the story, and is
used to define the values of the action properties for those.
We could, for example, have an action s1 ∈ shootBow ,
with projectile(s1) = bodkin . Finally, the set Ψ contains
Impulse sentences, that is ITL with a BDI model, that de-
scribe how the story world operates. These sentences are
typically in one of two forms: Facts are conjunctions of
ground atomic literals that describe what is true, or false,
in the world, while rules are implications where both the
antecedent and the consequent are conjunctions of ground
atomic literals. Rules describe how the world changes in re-
sponse to what happens in it. As a special case of rules, ac-
tion effect definitions describe what happens when an action
is performed in a particular circumstance. For example, the
shootBow action will have different effects when the actor
has arrows versus when they do not. These could be written
as:

∀s ∈ shootBow occurs(s)∧
has(actor(s),projectile(s),pre1(s))

→
shotfired(location(s), eff1(s))

∀s ∈ shootBow occurs(s)∧
¬has(actor(s),projectile(s),pre1(s))

→
confused(actor(s), eff2(s))

This means that if the shootBow -action occurs, and the actor
has the projectile that should be used for the shot, a shot
will be fired. However, if the action occurs when the actor
does not have the projectile, the second sentence applies and
the result is that the actor becomes confused. Note that the
functions pre1, eff1 and eff2 refer to times that a particular
precondition or effect of the action holds, which depend on
the instantiation of the action.

Impulse’s use of Interval Temporal Logic allows for the
representation of complex timing relations between predi-
cates and actions using intervals, while the use of a BDI
model allows for the representation of characters’ beliefs,
desires and intentions. We claim that this makes Impulse
very expressive, yet that its formal semantics can be used
to reason about the stories it is used to describe. As for
its computational cost, Impulse is an extension of predi-
cate logic, which is generally undecidable in theory (Tur-
ing 1936), (Church 1936). Yet in practice predicate logic
can be reasoned on, as is evidenced by the fact that multiple
theorem provers have been implemented (Fitting 2012), and
we claim that the same holds for Impulse. Levesque also
argues that the reasoning that is actually done by humans
is tractable in logic (Levesque 1988). Impulse thus holds
a middle ground between planning- and natural language-
based languages, since reasoning about it is possible in prac-
tice, even if computationally expensive in the worst case.

Narrative Discourse Generation
The importance of the trade-off between expressivity
and computational complexity of reasoning is particularly
salient for the task of narrative discourse generation. We de-
fine this task as generating a discourse with particular autho-
rial goals for a given story, that is encoded in a language for
story representation. The authorial goals define how the au-
thor wants to convey the story to the audience, for example
by defining what the audience should know at which point
in time, or the perspective from which the story is told. We
will present two examples from very different genres, fables
and murder mysteries, and compare the suitability of differ-
ent languages for the task. Again, we will refer to SIGs as
a representative for languages that encode a story utilizing
natural language databases like WordNet, and to IPOCL as
a representative for languages that only have basic support
for actions, objects and ordering. We suggest, however, that
our point also holds for other languages in these two classes.

The Fox and the Crow
The Fox and the Crow is one of Aesop’s fables, where a cun-
ning Fox tricks a gullible Crow into singing so that a piece
of cheese that she had in her beak would fall out and the
Fox could get it. The full text of the fable, as cited by El-
son (2012), is given in Figure 1. As previously mentioned,
the perspective of the character used for the telling of the
story is one of the properties of narrative discourse, called
focalization. An example of the same story, as told from the
point of view of the Crow, is presented in Figure 2. Gen-
erating this telling in an automated way poses the challenge
of accurately representing the beliefs and thought process
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of the Crow. Most planning-based languages, such as Riedl
and Young’s IPOCL, do not formally distinguish characters
beliefs from other world states. Story Intention Graphs are
better suited for this task, but since they do not provide a way
to represent action outcomes in a general way, the reasoning
of the Crow at the end, that if she had not cawed, she would
still have her cheese, would require reasoning about the nat-
ural language contents of the nodes if it was to be done with
SIGs1. Impulse, on the other hand can represent the Crow’s
beliefs over time, as well as reason about the effects of an ac-
tion that did not happen. One action that happens in the story
is the cawing of the Crow, which is encoded as an action type
caw ⊆ Actions . The effect this action has is encoded using
these Impulse sentences:

∀s ∈ caw occurs(s)

→
openBeak(actor(s), eff1(s)) ∧ sound(eff2(s))

∀t, t1 ∈ T ∀a ∈ A ∀i ∈ Items

openBeak(a, t) ∧ has(a, i, t) ∧ t : t1
→

¬has(a, i, t1)

∀s ∈ caw BCrow(t) (occurs(s) ∧ actor(s) = Crow

→
Blistener(s) sweetvoice(Crow, eff1(s))

)
This means that, if the caw -action occurs, the actor’s beak
will be open, and a sound is heard. The second sentence
states that if someone’s beak is open, and they have some
item, they no longer have that item (because it is dropped)2.
Finally, the third sentence states that the Crow believes that,
if she caws, any listener will believe that she has a sweet
voice. This third sentence is a direct cause of the cawing of
the Crow, and should therefore be mentioned when the story
is told from the point of view of the Crow. The first two
sentences, on the other hand, describe why the cheese was
dropped. By following the reasoning chain backwards from
when the cheese drops to the fact that the caw action oc-
curred in the story we can determine that the cawing was the
cause of the cheese dropping, and by doing forward reason-
ing on an alternate world, where it did not happen, we can
generate the last assertion of the Crow “Had I not cawed, I
would still have my cheese!”3.

1However, once we have this focalized telling it is possible to
encode it in a SIG, including the Crow’s reasoning about what
would have happened had she not cawed.

2Splitting this up into two sentences allows us to provide other
actions that make an actor open their beak, with the same side effect
of an item dropping “automatically.”

3For additional plausibility, this whole reasoning could be done
within the beliefs of the Crow, i.e. “because the cheese dropped,
she now believes that cawing results in her opening her beak, and
that results in the cheese dropping, so now the Crow beliefs that
had she not cawed, she would still have the cheese”

A Crow was sitting on a branch of a tree with a piece of
cheese in her beak when a Fox observed her and set his
wits to work to discover some way of getting the cheese.

Coming and standing under the tree he looked up and
said, “What a noble bird I see above me! Her beauty
is without equal, the hue of her plumage exquisite. If
only her voice is as sweet as her looks are fair, she ought
without doubt to be Queen of the Birds.”

The Crow was hugely flattered by this, and just to show
the Fox that she could sing she gave a loud caw.

Down came the cheese,of course, and the Fox, snatching
it up, said, “You have a voice, madam, I see: what you
want is wits.”

Figure 1: “The Fox and the Crow,” as cited by (Elson 2012)

I was sitting on a branch of a tree with a piece of cheese
in my beak.
A fox came and stood under the tree, and looked up to me
and said “What a noble bird I see above me! Her beauty
is without equal, the hue of her plumage exquisite. If
only her voice is as sweet as her looks are fair, she ought
without doubt to be Queen of the Birds.”

I was hugely flattered by this, but also taken aback
that the Fox did not believe just how sweet my voice
was. I knew that if he heard me, I could convince him
otherwise, so I gave a loud caw. What I forgot was that
the cheese was still in my beak and that it would fall
when I gave the loud caw.

When I gave a loud caw, the cheese dropped from my
beak, and the Fox, snatching it up, said, “You have a
voice, madam, I see: what you want is wits.” Had I not
cawed, I would still have my cheese!

Figure 2: Manually authored version of “The Fox and the
Crow” retold from the point of view of the Crow

Murder mystery
Our second example is a murder mystery story. Todorov ar-
gued that such a story actually consists of two stories: one
about the crime and one about the investigation (Todorov
1977). However, a telling of the story in the style called
whodunit omits details of the murder that would identify the
culprit and focuses on describing the investigation process.
The murderer is then only revealed at the end of the story,
when the detective finally catches them. When presenting
a murder mystery in this style it is therefore essential to be
able to reason about what the detective believes at which
point in time, to be able to convey the same information to
the audience as is conveyed to the detective as the narrative
unfolds. At the end of the story, though, the detective and
the audience should have sufficient information to make it
plausible beyond reasonable doubt that the person the detec-
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tive caught is indeed the murderer, and other suspects are
innocent. The process of generating the investigation story
therefore consists of conveying information to the detective
so that they can identify the murderer, which can be viewed
as an in-world narrative discourse generation problem about
the murder story.

To illustrate this point, we will now present a very simple
murder mystery story. The story revolves around Victor ,
who is murdered in his mansion by Mario. The detective
Diana is investigating the case who finds Isabel in the gar-
den shed of the mansion and suspects her of the murder. The
resolution of the case comes with Diana’s realization that it
was raining at the time of and after the murder, but there
were no footprints in the muddy garden, so Isabel could not
possible have ended up in the garden shed after the murder.
The investigation could then proceed (and be conveyed to
the audience) in the following order:

1. Victor is murdered, but it is not told by whom.

2. Diana starts investigating in and around the house.

3. Diana finds Isabel in the garden shed.

4. Diana realizes that it is raining, and that walking through
the garden would have left footprints.

5. Diana concludes that Isabel is innocent.

6. Diana finds footprints in another part of the grounds,
which lead her to find the real culprit, Mario.

The two key realizations in step 4 are the start time of the
rain relative to the murder and what effect walking through
the garden during the rain would have had. Generating this
from an encoding of the murder part of the story therefore
hinges on being able to represent and reason about these two
things. Additionally, at each step it is necessary to be able to
know what the beliefs of the detective (and therefore also the
audience) are, because that is what drives the investigation
process.

To encode this as an IPOCL plan, one could introduce a
step that represents “the rain is starting” that is ordered be-
fore the murder step, which has an effect of “the garden is
muddy”. Walking from the mansion to the garden shed then
has a conditional effect that, if the garden is muddy, foot-
prints will be left behind. A system can then reason about
which ordering constraints are important to be discovered by
the detective, and told to the audience in this way:

1. Drop a subset of ordering constraints from the plan

2. For each actor a other than the murderer:

(a) Replace the actor in the murder action with a

(b) Check if the plan is consistent

If a consistent plan can be found this way for any sub-
set of dropped ordering constraints, (some of) these con-
straints were essential for the requirement that the murderer
is uniquely identifiable.

In a SIG encoding of a story the events that happen are to-
tally ordered in the timeline layer. Since each node contains
a natural language representation of its event without any as-
sociated formal semantics, it is not possible to reason about

what would have happened had the events been ordered dif-
ferently. In fact, as far as SIGs are concerned, the sequence
of events “Victor is murdered by Victor ; Victor goes to
the garden shed” would be perfectly fine.

Finally, Impulse is based on Interval Temporal Logic,
which is inherently suited for expressing durations and or-
derings of events and states. For example, the fact that rain
makes the garden muddy can simply be expressed by 4

∀t raining(t)→ muddy(t)

It is also possible to express that the walk -action has an ad-
ditional effect when it is muddy:

∀s ∈ walk occurs(s)

→
at(actor(s), to(s), eff1(s))

∀s ∈ walk occurs(s) ∧muddy(pre1(s))

→
footprints(eff2(s))

The first sentence just states that the walk -action has the
effect of the actor being at the location they walked to,
while the second sentence expresses the additional effect
when it is muddy, which is footprints being left behind.

As with IPOCL plans, a system can use this represen-
tation to deduce what the detective needs to know to
uniquely identify the murderer. As before, by replacing the
actor that performs the murder action with every other actor
in the story, and deriving a contradiction, the system can
deduce what the detective has to know. For example, the
line of reasoning when assuming Isabel to be the murderer
would be: Since there are no footprints in the garden, either
no walk occurred, or it wasn’t muddy. Since Isabel is at
the garden shed, a walk must have occurred (assuming her
initial location was in the house). Therefore, it must not
have been muddy at the time of the walk. However, since it
started raining before the murder happened, the walk must
also have happened before the murder. But then Isabel
would not have been at the murder site when the murder
happened, which contradicts her being the murderer. A
system can then start changing time intervals that occur in
this line of reasoning, like the duration of the rain, and try
to find a consistent story. Like before, having the rain start
after the murder leads to a consistent story, and therefore
this information must be discovered by the detective and
conveyed to the audience.

Simply being able to reason about what needs to be dis-
covered by the detective is not enough, though. The inves-
tigation process is driven by what the detective beliefs over
time, and this is used to determine which further beliefs he
needs to form to find the murderer. To be able to do that a

4This is actually a simplified representation that says “while it
is raining, it will be muddy”. Impulse could also express more
complex relations like “5 minutes after it starts raining it will start
being muddy, and will stay so until the sun comes out for more than
an hour”.
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representation of the belief state of the detective is necessary.
IPOCL plans do not have the capabilities to represent actor
beliefs, although a system could track actor beliefs over time
separately, and use IPOCL states for each of them. In Im-
pulse beliefs and their durations are directly representable.
When telling the detective story above, a system must then
ensure that at each time only the facts that are in the detec-
tive’s belief state are told to the audience. SIGs can represent
actor beliefs, but their contents consist of natural language
nodes without formal semantics. It is, however, possible to
deduce which beliefs are actualized at each point in time in
the story world, if they have been encoded in SIGs priorly.
Therefore, SIGs could be used for this stage of the narrative
discourse generation process, if the knowledge about action
effects and character beliefs is generated in another way, e.g.
utilizing IPOCL plans or Impulse.

Limitations and Future Work
As we discussed in the previous sections, Impulse provides
a trade-off between expressivity and computational com-
plexity of the reasoning process that is necessary for tasks
such as narrative discourse generation. This does not how-
ever come without limitations. Predicate logic is undecid-
able in theory, and the addition of time and mental models
does nothing to change that. Even on problems that are de-
cidable, the additional expressivity increases computational
complexity. Limiting the sentences to facts and rules, as de-
scribed, reduces the computational complexity for practical
applications, by using forward chaining. We acknowledge
that determining temporal consistency is still undecidable in
the general case (Bresolin et al. 2008), but it is tractable for
practical applications, like the ones discussed above.

Another limitation of Impulse is that it does not use any
linguistic model, and therefore its representation of stories is
not fit for human consumption. In the case of Impulse, it is
actually by design rather than an oversight. By not being tied
to any particular medium of narrative, Impulse can be used
in a variety of situations, and can be augmented by a media
model for the desired output mode. For example, a text real-
izer can be used to translate Impulse stories into text, while
a camera planning system could do the same for a movie.
Since the underlying representation is medium-independent,
it is also possible to combine the two, with some parts of the
story told in text, and video clips for others.

Another point of concern is the acquisition and the mod-
eling of the stories themselves in Impulse. For SIGs, for ex-
ample, one of the driving goals was to create a user-friendly
tool that allows easy annotation of existing stories through
a visual graph-based representation. Impulse sentences, on
the other hand, may seem challenging to write. However,
it is possible to automatically convert IPOCL plans to Im-
pulse, even though these would not use the full capabilities
of the temporal representation and BDI model. Likewise, it
is possible to convert SIGs to Impulse, which would result
in some loss of the subtlety of a natural language represen-
tation. However, this baseline Impulse representation could
be improved in both cases by using the additional capabil-
ities that Impulse provides. For example, an Impulse story
created from a IPOCL plan could be extended through the

use of a micro-theory of beliefs and perceptions to automat-
ically generate beliefs for the actors, for example by using
actor-action and actor-actor co-location to build up actor be-
liefs about the state of the world. On the other hand, an
Impulse translation of a SIG could be augmented with defi-
nitions of action effects that can be used to verify the story
consistency, by checking if every action really has the effects
it should have, and is only performed in situations where it
could be performed. Such an encoding could also be used to
reason about potential alternative stories.

Conclusion
We discussed the trade-off between expressivity and compu-
tational cost of the reasoning process that languages for story
representation have to make. Generally speaking, more ex-
pressive languages are also more computationally expensive
to reason about than less expressive languages. In particu-
lar, it is not currently feasible to reason about story content
represented purely in natural language. Even relatively sim-
ple languages like those based on planning are hard to rea-
son about in theory. Problems encountered in practice, how-
ever, are simple enough to be solved in reasonable time. Im-
pulse, which combines Interval Temporal Logic as used by
Allen and Ferguson with a BDI model like the one described
by Cohen and Levesque, is more expressive than planning-
based languages, but also more computationally expensive
to reason about.

To illustrate our point, we have described the task of
narrative discourse generation, which consists of creating
a telling of a story that satisfies author-defined goals. We
showed two examples where a logic-based language like Im-
pulse provides the necessary expressivity for the task, while
still being feasible to reason about. The first example is a
telling of Aesop’s fable “The Fox and the Crow” from the
point of view of the Crow which requires a model of the
Crow’s beliefs, and what she believes about the effects of
her actions. The second example is a simple murder mys-
tery story, where we draw parallels between conveying in-
formation to the audience and the detective learning about
the murder. We argue that to uniquely identify the murderer,
the detective and the audience have to reason about what
effects actions have or could have had and the order they
happen in. Furthermore, a system would have to keep track
of the detective’s belief about the world.

We conclude that Impulse offers more expressivity than
plan-based and similar languages, but unlike languages
based on natural language, it is still feasible to reason about
stories it is used to encode. While this property proved to be
important for narrative discourse generation, we believe that
it would also benefit many other narrative-related tasks.
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