
Toward Natural Language Generation by Humans

James Owen Ryan1, Andrew Max Fisher2, Taylor Owen-Milner2,
Michael Mateas1, and Noah Wardrip-Fruin1

1 Expressive Intelligence Studio
2 Department of Computer Science
University of California, Santa Cruz
{jor, michaelm, nwf}@soe.ucsc.edu
{anmfishe, towenmil}@ucsc.edu

Abstract

Natural language generation (NLG) has been featured
in at most a handful of shipped games and interactive
stories. This is certainly due to it being a very spe-
cialized practice, but another contributing factor is that
the state of the art today, in terms of content quality,
is simply inadequate. The major benefits of NLG are
its alleviation of authorial burden and the capability it
gives to a system of generating state-bespoke content,
but we believe we can have these benefits without ac-
tually employing a full NLG pipeline. In this paper, we
present the preliminary design of EXPRESSIONIST, an
in-development mixed-initiative authoring tool that in-
stantiates an authoring scheme residing somewhere be-
tween conventional NLG and conventional human con-
tent authoring. In this scheme, a human author plays
the part of an NLG module in that she starts from a
set of deep representations constructed for the game or
story domain and proceeds to specify dialogic content
that may express those representations. Rather than au-
thoring static dialogue, the author defines a probabilis-
tic context-free grammar that yields templated dialogue.
This allows a human author to still harness a computer’s
generativity, but in a capacity in which it can be trusted:
operating over probabilities and treelike control struc-
tures. Additional features of EXPRESSIONIST’s design
include arbitrary markup and realtime feedback show-
ing currently valid derivations.

Introduction
Current dialogue-authoring practice, in which individuals
or even teams of writers tirelessly produce huge amounts
of content by hand, is largely seen as both untenable and
constraining of the form of interactive narrative (Mateas
2007). Natural language generation (NLG) would seem
to be the answer, and indeed there has been in the last
decade a significant amount of work toward integrating NLG
systems into playable media (Cavazza and Charles 2005;
Rowe, Ha, and Lester 2008; Reed and others 2011; Walker
and others 2013). But why then have we not seen shipped
games or interactive stories that meaningfully incorporate
NLG?

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Outside of Bot Colony (Joseph 2012), we are not aware
of any commercial game that has done this. Even in re-
search contexts, we cannot name disseminated playable ex-
periences that have featured significant NLG. The obvious
reason for this is that NLG is an extremely difficult task.
There is a huge amount of domain knowledge that its practi-
tioners must have, and beyond this there remain several ma-
jor technical challenges in incorporating NLG into playable
media (Horswill 2014). We contend, however, that another
major reason that NLG has yet to be popularly or even suc-
cessfully incorporated into these media is that the current
state of the art is simply inadequate.

Computer-generated dialogue, here and now, is so impov-
erished relative to the human-authored equivalent that its
huge alleviation of authorial burden is not worth the atten-
dant drop in content quality. This is not to say that NLG will
never be successfully or popularly incorporated into games
and interactive stories—we simply mean to express that the
state of the art of NLG must be significantly advanced be-
fore this can happen. Moreover and more specifically, the
state of the art of expressive NLG must markedly improve.
We believe that major advances in NLG will not necessarily
open the door to fully generative dialogue in expressive me-
dia, because the central concerns of NLG research are not
the central concerns of expressive-NLG research (Mairesse
and Walker 2011). The fundamental difference is that NLG
seeks to generate informative text, while we seek to generate
expressive text. This means that fully generative character
dialogue may be much further off than has been anticipated.

So, if we cannot employ full NLG, what do we lose? First,
we miss out on getting content essentially for free, which
alleviates authorial burden, affords variability, and reduces
repetitiveness. Beyond this obvious appeal, there is another
significant advantage to using NLG in a game or interactive
narrative. The typical NLG pipeline proceeds from a deep
representation of an utterance to its realized surface form.
This deep representation is in a machine-understandable
form and specifies the semantic content of the utterance and
potentially also its pragmatic force. If a game were to have
an NLG module that could generate surface dialogue from
arbitrary deep representations, it could employ character di-
alogue flexibly and expressively in a way that is tailored to
system state. Of course, this would require the system to rea-
son over its state in order to construct an appropriate deep

Intelligent Narrative Technologies and Social Believability in Games: 
Papers from the AIIDE 2015 Joint Workshop

53



representation, but this is certainly feasible. While these ad-
vantages afforded by NLG would seem exclusive to the em-
ployment of that technique, we contend that we can still have
them without actually generating dialogue from scratch.

In this paper, we present the preliminary design of EX-
PRESSIONIST, which is not an NLG module, but rather a
mixed-initiative authoring tool. With this tool, a human au-
thor plays the part of an NLG module in that she starts from
a set of deep representations constructed for the game or
story domain and proceeds to specify dialogic content that
may express those representations. This yields a database
of lines of dialogue that are each explicitly annotated for
the deep representations they express, allowing a game sys-
tem to deploy dialogue in the way described above. Rather
than authoring static dialogue, the author defines a proba-
bilistic context-free grammar that yields templated dialogue.
This allows dialogue components that have already been au-
thored to be reused and makes authoring dialogue variations
quite easy; moreover, the natural combinatorics of genera-
tive grammars yields a huge database of dialogue with rela-
tively little authoring effort. By yielding templated dialogue,
EXPRESSIONIST leaves certain kinds of variation that are
highly sensitive to system state, such as the gender of a char-
acter, to be handled by the game system. Additionally, EX-
PRESSIONIST supports arbitrary markup and features real-
time feedback that presents dialogue that may be generated
given the production rules the author has already defined, en-
suring that the tool’s output will always be near the quality
of conventionally authored dialogue. Due to space consider-
ations, in this paper we assume a reader who is familiar with
the basic terminology of generative grammars.

Prior Work
A number of systems have featured templated dialogue, such
as Curveship (Montfort 2009), Prom Week (McCoy and oth-
ers 2013), and Versu (Evans and Short 2014). This scheme
allows an author to include variables in a line of dialogue
that the system resolves when it gets displayed. Because
variables may specify things like the person and gender of a
pronominal reference to a character, or a command to ran-
domly choose from a list of text segments, templated dia-
logue facilitates reuse across different contexts, with guaran-
tees about correct conjugation and surface variation. By uti-
lizing generative grammars, EXPRESSIONIST takes this tem-
plated approach to the extreme, with variables that may re-
solve to expressions that themselves have variables in them
(and so forth recursively), all with realtime feedback show-
ing surface derivations. Moreover, these surface derivations
are actually templated dialogue in the vein of what these
systems employ. In the sense that this dialogue is derived
probabilistically using a Monte Carlo method, as we explain
below, EXPRESSIONIST takes after the expressive-NLG sys-
tem PERSONAGE (Mairesse and Walker 2011). In a sense,
our system also follows a series of template-based NLG sys-
tems (Van Deemter, Krahmer, and Theune 2005), but a com-
parison to these is beyond the scope of this paper. As an
endeavor in explicitly mapping underlying game states to
natural language that may express those states, this project
again follows Curveship, as well as our own work on proce-

durally recombining annotated Prom Week dialogue (Ryan
and others 2014). Finally, EXPRESSIONIST is influenced by
the grammar-based story-authoring tool Tracery (Compton,
Filstrup, and Mateas 2014).

Tool Design
EXPRESSIONIST is a mixed-initiative tool for defining prob-
abilistic context-free grammars that yield templated dia-
logue;1 it is currently still in development. Our overarch-
ing design principle is to produce an authoring environment
that maximally utilizes two complementary strengths of hu-
mans and computers—humans’ deep knowledge of natural-
language expressivity (and all its attendant nuances), and a
computer’s capacity to efficiently operate over probabilities
and large treelike control structures—while simultaneously
minimizing both entities’ huge deficiencies in the converse.
In other words, we want a tool that makes humans respon-
sible for things they are good at and not for things they are
bad at, and likewise with computers. The design of our tool’s
interface has four distinct panes—IN, TODO, WRITE, and
OUT—which we will proceed to discuss in this section.

In the IN pane, an author populates a list of the deep repre-
sentations that she will proceed from. EXPRESSIONIST does
not enforce a specific notion of what a deep representation
is, but conventionally (in NLG) it is a structured represen-
tation of the semantic content of an utterance, and possibly
also its pragmatic force (e.g., that it is a question). Less con-
ventionally, but perhaps more powerfully, a deep representa-
tion could specify higher-level concerns—for example, what
a line is intended to express to the player about its speaker
(rather than its actual semantic content). In any event, a deep
representation can be thought of as the logical form of a line
of dialogue that would be uttered by a character in the game
or story domain, one that specifies concerns that are primary
to the expressive goals of the interactive experience. How
the author actually formats her representations is up to her,
but we envision something like predicate logic (tell(speaker,
interlocutor, location(item))) being used. Whenever an au-
thor submits a new deep representation in the IN pane, it is
added to a list of such representations in the TODO pane.

The core of EXPRESSIONIST is its WRITE pane, in which
the author specifies production rules that will yield tem-
plated dialogic expressions of the deep representations in
the TODO pane. To work on some representation, the author
drags it from the TODO pane to the WRITE pane. Here, the
author works in free text, but has at her disposal two syn-
tactic constructs and an annotation field. The syntactic con-
structs are double brackets, which are used to specify non-
terminal symbols (elements that will get expanded by a pro-
duction rule), and single brackets, which are used to indicate
system variables, by which we mean variables that must be
resolved at runtime by the system deploying the dialogue.
Let us consider an example production rule:

[[tell(speaker, interlocutor, location(item))]] →
‘[[greeting]], the [name(item)] is in the [loca-
tion(item)].’
1We note that our tool could also be used to produce content that

is not dialogue, for instance textual narration or in-game artifacts.

54



Here, greeting is a nonterminal symbol whose expan-
sion must be specified by another production rule, and the
single-bracketed expressions are system variables. The lat-
ter will eventually have to be filled in by a game sys-
tem (not EXPRESSIONIST), which will bind item to some
item in the game world and resolve name(item) and
location(item) to strings of its name and current lo-
cation respectively. It is in this sense that EXPRESSIONIST
is a tool for authoring templated dialogue, like that used in
Prom Week and Versu, rather than static dialogue. Because of
this, an author must use a consistent formatting style for her
tags for system variables (and for her deep representations)
and then make her game system capable of parsing (and
constructing) expressions in this format. Whenever the au-
thor specifies a new nonterminal symbol—e.g., greeting
in the example above—the system will add it to the TODO
pane. The author can then drag such symbols back to the
WRITE pane to specify how they may be expanded, just as
she does for deep representations (which are treated like all
other nonterminal symbols). Multiple production rules may
be defined for any nonterminal symbol, and such a symbol
(even a deep representation) may be reused on the right-hand
side of production rules for any other nonterminal symbol.

Next, EXPRESSIONIST affords the specification of prob-
ability distributions for production rules. If a nonterminal
symbol has multiple production rules, the author can ex-
press how often, relative to one another, each rule should be
applied in expanding the symbol. As such, the central task
in EXPRESSIONIST is to define a probabilistic context-free
grammar (Jelinek, Lafferty, and Mercer 1992). For instance,
if the nonterminal symbol greeting has rules specifying
expansions to the strings ‘Hello’, ‘Hi’, and ‘Hey’, the au-
thor might attribute application rates 3, 2, and 1 to their
respective rules, which would cause greeting to expand
to ‘Hello’ three times more often than it would to ‘Hey’ and
1.5 times more often than it would to ‘Hi’. Because non-
terminal symbols may expand to templates with (arbitrarily
many) nested nonterminal symbols, and because these have
their own specified application rates, the full grammar that
the author defines yields a rich probabilistic space of possi-
ble content derivations.

Further, any symbol can be annotated using arbitrary
markup that is specified in a free-text field, and all deriva-
tions will inherit the markup of the nonterminal symbols that
were expanded to yield them and the terminal symbols in-
cluded in them. For instance, the speech act of a line of dia-
logue that is derived by the nonterminal symbol greeting
might be attributed to that line by annotating the symbol it-
self with a tag speech act:greeting. (Again, the au-
thor must do some work to make her game system capable of
parsing the markup she attributes using the tool.) One possi-
ble type of markup could facilitate control structures in the
game system. For instance, in a system with character per-
sonality modeling, a tag extroversion:>5 could spec-
ify that a line of dialogue should only be uttered by char-
acters whose personality component extroversion re-
solves (at runtime) to a value greater than 5. Further, markup
could be used to specify how lines might be sequenced
into larger dialogic units, for example, by using tags like

sequence1:setup and sequence1:payoff.
Our tool also features realtime feedback showing valid

derivations of the production rules that an author has com-
pleted at some point. Specifically, if she completes a produc-
tion rule for a nonterminal symbol and the expansion that
it specifies includes no nonterminal symbols that cannot be
expanded (given the other production rules she has defined),
the author may ask the system to present valid derivations of
that symbol. This allows the author to sanity-check the pro-
duction rules that she has authored so far, to make sure that
their derivations are grammatical and of sufficient quality.

Finally, in the OUT pane, the author asks the system to
derive templated dialogue using the production rules she
has specified and then requests that it export the result-
ing database in a structured format. Here, we have not de-
cided which export format(s) we will support; one possibil-
ity would be to let the author specify her own format. For
the actual derivation, we will likely implement something
like a Monte Carlo method (Metropolis and Ulam 1949): for
each deep representation, the system simulates its derivation
many times, choosing expansions probabilistically accord-
ing to the distributions specified by the author. Lastly, the
OUT pane also affords exportation of a list of all deep repre-
sentations and system variables that have valid derivations,
given the grammar the author has defined. This is for con-
venience, since the author may take this list and work on
her game system to make sure it can resolve all the system
variables and potentially request dialogue for all the deep
representations.

System Integration
After a session with EXPRESSIONIST, an author will have a
database of templated lines of dialogue that are each anno-
tated for their deep representations and for any other type of
markup that the author has attributed. To use this dialogue, a
game system will operate over the database in the following
way. First, it must reason over its state to construct a deep
representation for the line of dialogue that it wants to de-
ploy. Next, it queries the database using that representation
as a key and receives an array of all the templated lines of di-
alogue that are annotated as expressing it. Having this array,
the system may then reason about the markup of its members
to select a specific templated line. Finally, the game system
fills in any variables in the template before displaying it.

A Brief Example
Let us consider the brief example of an author using EX-
PRESSIONIST to yield templated dialogue that expresses
the deep representation inquire about workplace(speaker,
interlocutor, referent), which specifies dialogue by which a
speaker may inquire with an interlocutor as to the workplace
of some third character, the referent. After submitting this
representation to the IN pane, the tool automatically adds it
to the TODO pane; the author then drags it from there to the
WRITE pane to begin working on it. At the WRITE pane, the
author writes her first production rule:

[[inquire about workplace(speaker, interlocutor,
referent)]] → ‘[[polite preliminary]][[ask where]]
[name(referent)] [[work]]?’

55



After submitting this production rule, the system au-
tomatically adds the nonterminal symbols polite
preliminary, ask where, and work to the TODO
pane (because they are double-bracketed). Next, the author
proceeds to drag ask where to the WRITE pane and com-
poses production rules by which it may expand to ‘Where
does’, ‘Where exactly does’, and ‘Where the hell does’,
respectively, and attributes application rates to each rule.
Additionally, she annotates the symbol ask where with
the tag speech act:request and the terminal symbol
‘Where the hell does’ with the tag agreeableness:low.
From here, she moves on to polite preliminary and
writes two rules for it: one expands to the empty string, and
the other to ‘I’m wondering [[modal request]] help me: ’,
which she annotates with the tag agreeableness:high
and whose specification causes modal request to be
added to the TODO pane. Subsequently, she brings modal
request to the WRITE pane and specifies rules that
expand it to ‘if you could’, ‘if you would’, and ‘whether you
could’. Again, she assigns application rates to each rule.
All that remains in the TODO pane now is the nonterminal
symbol work; the author specifies rules that expand the
symbol to ‘work’, ‘work at’, and ‘earn [poss pron(referent)]
keep’, before assigning application rates to each rule.

Having done this, the system indicates that surface deriva-
tions can now be yielded for the deep representation, be-
cause all of its component nonterminal symbols have pro-
duction rules specified for them (and so forth recursively).
The user now asks the system for an example derivation.
Starting from the production rule for the deep representa-
tion, the system probabilistically expands (using the appli-
cation rates attributed to the production rules) its nontermi-
nal symbols from left to right to give the example deriva-
tion ‘I’m wondering if you could help me: Where does
[name(referent)] work?’. Other valid derivations would in-
clude ‘Where does [name(referent)] work at?’ and ‘Where
the hell does [name(referent)] earn [poss pron(referent)]
keep?’. In fact, this simple grammar yields a total of 36 tem-
plates that each express the deep representation differently.

Finally, upon moving to the OUT pane, the author
requests to export her dialogue, which causes the sys-
tem to enact its Monte Carlo derivation procedure. The
result is a database of dialogue templates that are each
associated with a probability, as well as the annotations
deep rep:inquire about workplace(speaker,
interlocutor, referent) and speech act:
request (since all of them inherit the mark-up of the
symbol ask where); additionally, some will have the tags
agreeableness:high and agreeableness:low
(inherited from the symbols ‘I’m wondering [[modal
request]] help me: ’ and ‘Where the hell does’ respectively).
To actually deploy the dialogue, the author’s game system
will have to retrieve the 36 variants from the database
(by using the deep representation as a key), reason over
their respective annotations to choose the most appropriate
variant, bind the variable referent to the appropriate
character, and fill in the template gaps name(referent)
(and poss pron(referent), if that is included) with
that character’s name (and gendered possessive pronoun).

Conclusion
In this paper, we have outlined the preliminary design of EX-
PRESSIONIST, a mixed-initiative authoring tool in which a
human plays the part of an NLG module. We have argued
that this yields much of the the benefit of having such a sys-
tem, but without its attendant reduction in the quality of gen-
erated content. Using our tool, a human author starts from
a set of deep representations constructed for the game or
story domain and proceeds to specify dialogic content that
may express those representations. Rather than authoring
static dialogue, the author defines a probabilistic context-
free grammar that yields templated dialogue. This allows a
human author to still harness a computer’s generativity, but
in a capacity in which it can be trusted: operating over prob-
abilities and treelike control structures. EXPRESSIONIST is
currently in development.

References
Cavazza, M., and Charles, F. 2005. Dialogue generation in
character-based interactive storytelling. In Proc. AIIDE.
Compton, K.; Filstrup, B.; and Mateas, M. 2014. Tracery:
Approachable story grammar authoring for casual users. In
Proc. (int)7.
Evans, R., and Short, E. 2014. Versu—a simulationist story-
telling system. Computational Intelligence and AI in Games.
Horswill, I. D. 2014. Architectural issues for compositional
dialog in games. In Proc. GAMNLP.
Jelinek, F.; Lafferty, J. D.; and Mercer, R. L. 1992. Basic
methods of probabilistic context free grammars.
Joseph, E. 2012. Bot colony—a video game featuring in-
telligent language-based interaction with the characters. In
Proc. GAMNLP.
Mairesse, F., and Walker, M. A. 2011. Controlling user
perceptions of linguistic style. Computational Linguistics.
Mateas, M. 2007. The authoring bottleneck in creating ai-
based interactive stories [panel]. In Proc. INT.
McCoy, J., et al. 2013. Prom Week: Designing past the
game/story dilemma. In Proc. FDG.
Metropolis, N., and Ulam, S. 1949. The Monte Carlo
method. Journal of the American Statistical Association.
Montfort, N. 2009. Curveship: An interactive fiction system
for interactive narrating. In Proc. CALC.
Reed, A. A., et al. 2011. A step towards the future of role-
playing games: The SpyFeet mobile RPG project. In Proc.
AIIDE.
Rowe, J. P.; Ha, E. Y.; and Lester, J. C. 2008. Archetype-
driven character dialogue generation for interactive narra-
tive. In Proc. IVA.
Ryan, J. O., et al. 2014. Combinatorial dialogue authoring.
In Proc. ICIDS.
Van Deemter, K.; Krahmer, E.; and Theune, M. 2005. Real
versus template-based natural language generation: A false
opposition? Computational Linguistics.
Walker, M. A., et al. 2013. Using expressive language gen-
eration to increase authorial leverage. In Proc. INT6.

56




