
Monte-Carlo Tree Search for Persona Based Player Modeling

Christoffer Holmgård1, Antonios Liapis2, Julian Togelius1,3, Georgios N. Yannakakis1,2
1: Center for Computer Games Research, IT University of Copenhagen, Copenhagen, Denmark

2: Institute of Digital Games, University of Malta, Msida, Malta
3: Department of Computer Science and Engineering, New York University, New York, USA

Abstract

Is it possible to conduct player modeling without any play-
ers? In this paper we use Monte-Carlo Tree Search-controlled
procedural personas to simulate a range of decision making
styles in the puzzle game MiniDungeons 2. The purpose is
to provide a method for synthetic play testing of game levels
with synthetic players based on designer intuition and experi-
ence. Five personas are constructed, representing five differ-
ent decision making styles archetypal for the game. The per-
sonas vary solely in the weights of decision-making utilities
that describe their valuation of a set affordances in MiniDun-
geons 2. By configuring these weights using designer ex-
pert knowledge, and passing the configurations directly to the
MCTS algorithm, we make the personas exhibit a number of
distinct decision making and play styles.

Introduction
This paper investigates new methods for automatic play-
testing in games. Play-testing is an integral step of iterative
game development. It allows game designers to test their as-
sumptions about player behavior and to observe dynamics
of the game system (Fullerton, Swain, and Hoffman 2004).
In a sense, it is a partial mapping of the game space itself
through observing where human players are capable of and
interested in going within that space. As crucial as human
play-testing is, it is also time consuming and potentially ex-
pensive. Further, it does not necessarily support a quick iter-
ative loop when game designers are creating or fine-tuning
new content for a game (e.g. game levels). Level design-
ers can only test their levels with human players so many
times, and for many developers minor changes cannot real-
istically mandate human play-testing. Instead, the designer
informally infers or formally analyses the expected atomic
and holistic impacts on each minor change in a level design,
imagining what players might do, observing her own behav-
ior in the level, or testing internally with her team. While this
works for current game development practices we propose
that there is a potential for supporting the level design pro-
cess with generative player models. Generative player mod-
els acting as agents which play the game in lieu of play-
ers may provide game designers with surrogate play-traces

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to inform their design decisions or to integrate in their con-
tent creation systems. When a designer defines such an agent
for a particular game we call them procedural personas. As
player types akin to those described by Bartle (1996) and the
play personas described by Tychsen and Canossa (2008) and
Canossa and Drachen (2009), they describe archetypal ways
of interacting with the game. They are formal representa-
tions of the game designer’s assumptions about her players.

Each persona may be used interactively or automatically
in the level design process. Interactively, a level designer
can inspect different interaction patterns (e.g. play-traces or
completion statistics) in the level and iteratively adapt ei-
ther the level or the persona behavior (Yannakakis, Liapis,
and Alexopoulos 2014). Automatically, a procedural content
generation system can use the personas as critics that eval-
uate and change the generated content (Liapis et al. 2015)
as part of a search based procedural content generation loop
(Togelius et al. 2011). The purpose of procedural personas
is thus to create easily configurable artificial game playing
agents that believably simulate a variety of human decision
making styles.

Inspired by decision theory the behaviors of procedural
personas are controlled with simple utility functions (Mark
2009) that designers can easily interpret, change and use
to describe archetypal decision making styles. By assign-
ing utility weights to game affordances, the designer pre-
scribes what the different personas should prioritize. Meth-
ods for modeling player behavior from observed play traces
and methods for creating AI agents that function as believ-
able opponents are research areas that have seen much at-
tention and progress in the last decade (Hingston 2012).
However, methods that encode and model designer’s notions
and expectations of player behavior from simple parame-
ters, and realize these as observable behavior in-game, is
still an under-explored part of Game AI (Smith et al. 2011;
Yannakakis and Togelius 2014).

In this paper we contribute to the development of AI
agents as generative models of expected player behavior by
demonstrating the use of procedural personas, configured by
utility weights and controlled by Monte-Carlo Tree Search
(MCTS), in our test-bed game MiniDungeons 2. We start out
by grounding our work in decision theory, followed by a de-
scription of the MiniDungeons 2 test-bed game. Afterwards,
we describe our specific implementation of an MCTS con-

Player Modeling: Papers from the AIIDE 2015 Workshop

8



troller for MiniDungeons 2. This controller is then used with
5 different procedural persona configurations. The personas
are used to play a number of MiniDungeons 2 levels, and
their behaviors are recorded and contrasted to test whether
meaningful differences arise from the different persona con-
figurations.

Related Work
Two fundamental assumptions about games, drawn from de-
cision theory, underlie the method suggested here.

The first assumption is that players’ decisions in games
can be understood as being driven by utility. Whenever a
player is making a move in a game she is trying to max-
imize her expected utility. The utility function is personal
in the sense that different players will have different pref-
erences when playing games. Their preferences need not be
perfectly aligned with the rules of the game and may even
change over the course of the game — although this prob-
lem is not treated here, as we try to express static utility func-
tions. The utility function is expressed through play style or,
more specifically, decision making style.

The second assumption is that players try to optimize their
utility in a boundedly rational fashion, using analytic think-
ing to solve parts of the decision making task while using
heuristics to solve other parts of the decision making task
(Gigerenzer and Selten 2002; Kahneman 2011). The extent
to which the player applies each kind of thinking depends
on the player’s ability to do so — the player’s analytic skill
and experience. It also depends on the player’s interest in
devoting cognitive resources to solving the decision task in
the first place, and the extent to which the player possesses
specialized heuristics (from expertise) that can replace ana-
lytic effort (Gigerenzer and Gaissmaier 2011). MCTS may
be a well-suited algorithm for approximating this decision
making process in a simulation, since it supports utility
weights directly, is composed of an analytical and a heuris-
tic part, and its performance can be varied by changing its
computational budget (Lorentz 2011; Bourki et al. 2010;
Zook, Harrison, and Riedl 2015). In this paper we explore
the feasibility of using MCTS for generating different deci-
sion making styles in our test-bed game MiniDungeons 2.
Before describing MiniDungeons 2, we briefly describe its
predecessor that guided its design: MiniDungeons 1.

MiniDungeons 1 Game Design
Earlier attempts at modeling human decision making were
made using the game MiniDungeons 1 (MD1) (Holmgård et
al. 2014b). As a predecessor to the MiniDungeons 2 game,
described in this paper, MD1 had a much simpler rule set
and a smaller set of affordances which affected human de-
cision making. MD1 levels were laid out on a grid of 12
by 12 tiles, and tiles could be impassable walls, or passable
tiles which could be empty or contain potions, treasures, or
monsters. Unlike MiniDungeons 2, its predecessor only had
one type of monster, which did not move. Combat in MD1
was stochastic: if a hero moved into the position of a mon-
ster, the monster would deal a random number of hit point
(HP) damage and then die (with the hero moving to its tile).

MD1 therefore revolved around the calculated risk of com-
bat: could the hero survive another monster fight and what
reward did the monster guard? Personas in MD 1 attempted
to model how players pursued various affordances while de-
ciding under uncertainty.

In contrast, MiniDungeons 2 acts as a test-bed for model-
ing combinations of analytical and heuristic decision mak-
ing, moving closer to the puzzle genre. For this reason,
monsters in MiniDungeons 2 move in a completely deter-
ministic manner and their combat damage is easily pre-
dictable. Therefore, MiniDungeons 2 (with larger levels and
more complicated mechanics) challenges the decision mak-
ing skill of a player not in her decision making under uncer-
tainty, but on the long-term risk of the level play-through,
which is harder to analyze than in the smaller, simpler MD1
levels.

MiniDungeons 2 Game Design
MiniDungeons 2 is a deterministic one-and-a-half player
game with full game state information available to the player
(Elias, Garfield, and Gutschera 2012). The game is designed
specifically to have a high decision density, meaning that ev-
ery action matters, while requiring little to no manual skill.
It is a turn-based puzzle game where a hero travels from
the entrance of a dungeon level to the exit (which loads the
next level), similarly to many games in the rogue-like genre.
Within the level, there are potions, treasures and monsters
of different types. The monsters move in response to the
hero’s action. Fighting happens when characters collide or
when the hero or certain monsters conduct ranged attacks by
throwing a spell attack or, in the case of the hero, a javelin.
The hero may kill most monsters by fighting, but crucially, a
special monster called the minitaur cannot be killed, but can
only be knocked out for 3 turns through fighting. Every turn
the minitaur will move directly toward the hero along the
shortest path as determined by A* path-finding, if it is not
knocked out. This helps drive the game toward a terminal
state, though it does not guarantee it. A state in MiniDun-
geons 2 will typically have 3-4 actions available, depending
on the level in question. A typical level in MiniDungeons 2
takes 15-30 turns to play, depending on which goals a player
chooses to pursue. Depending on monster setup some levels
allow the player to play indefinitely, if she so chooses, by
running away from the minitaur forever. Figure ?? shows an
example MiniDungeons 2 level; the detailed rules of MD2
are described in Holmgård et al. (2015).

Persona Design for MiniDungeons 2
As described above, the personas for MiniDungeons 2 are
defined by their individual utility functions and mediated by
their computational budget.

The sources of utility in MiniDungeons 2 are defined by
the authors, acting as the designers of the game. They are
comprised of what we consider to be the most important
seven events that can occur in the game: spending a turn,
moving toward the exit, killing a monster, collecting a trea-
sure, drinking a potion, dying (and losing the level), and ex-
iting (and completing the level). Table 1 shows the configu-

9



Figure 1: Map 7 from MiniDungeons 2.

Utility weights of affordances
Persona Tu Di M Tr P D E
Exit -0.01 1 0.5
Runner -0.02 1 0.5
Survivalist -0.01 0.5 0.5 -1 0.5
Monster K. -0.01 0.5 0.5 0.5
Treasure C. -0.01 0.5 0.5 0.5

Table 1: All personas tested in the experiments. The five dif-
ferent personas are awarded utility from seven affordances in
MiniDungeons 2: Taking a turn (Tu), reducing the distance
to the exit (Di), killing a monster (M), collecting a treasure
(Tr), drinking a potion (P), dying (D) or reaching the exit of
a level (E).

rations of the five personas that were defined for MiniDun-
geons 2. The personas represent different imagined play
styles: Exit (E) simply tries to finish the level. So do the
other personas, but they have auxiliary goals shaping their
decisions: Runner (R) tries to complete the level in as few
turns as possible, Survivalist (S) tries to avoid damage and
collect potions, Monster Killer (MK) tries to kill as many
monsters as possible, and Treasure Collector (TC) tries to
collect as many treasures as possible.

Monte Carlo Tree Search for Persona Control
Monte Carlo Tree Search (MCTS) is a stochastic tree search
algorithm that has seen considerable success in some board
games and digital games (Browne et al. 2012; Jacobsen,
Greve, and Togelius 2014; Champandard ; Perez et al. 2015).
It works by expanding each state depending on how promis-
ing it is (based on its reward) and on an estimate of how

under-explored it is. Reward is calculated by repeatedly
playing the game from the given state until a terminal state,
and averaging the terminal state reward (win or loss). When
using the algorithm for games where random play-outs are
not guaranteed (or even likely) to lead to a terminal state
within a reasonable time (e.g. many arcade games), the algo-
rithm needs to be modified (Jacobsen, Greve, and Togelius
2014). A common modification is to only perform the play-
out for a set number of actions, and then evaluate the end
state using some heuristic. We use the standard UCB1 for-
mulation of MCTS (Browne et al. 2012), but only perform
play-outs for a maximum length of 10,000 actions and then
use the utility function of the persona to evaluate the state.
In practice, however, very few play-outs reach the 10,000
action limit and reach a terminal state long before. The util-
ity function is applied to terminal states as well, and termi-
nal states are specifically flagged as such by the game logic.
The intent of our work is not only to develop agents that
play the game well, but to develop agents that can model
player preferences and skill as personas. Skill can be repre-
sented through the computational budget allocated to MCTS
play-outs. We investigate this by varying the computation
time available to the personas. It is important to note that
the different utility functions require different information
and therefore have marginally different complexities. How-
ever, all necessary information for all utility functions is al-
ways calculated by the game logic during game-play and
play-outs. Therefore, we assume that the personas have the
same amount of computation time available and are playing
at similar “skill” levels. In spite of this we do not assume that
the different persona preferences are equally easy or hard to
enact. Being a Monster Killer may be a more difficult deci-
sion making style than being a Runner. While this is an in-
teresting question in itself, this paper focuses on behavioral
differences between personas with identical computational
budgets and performance differences within personas across
different computational budgets. Below, we briefly outline
our strategy for comparing the behaviors of the various per-
sonas and their performances under varying computational
budgets.

Metrics
In this section we describe the three different types of met-
rics we use to evaluate the implemented personas as pro-
cedural representations of imagined decision making styles:
Action agreement ratios, summary statistics, and heat-maps.

Action Agreement Ratio
In order to establish that the personas are in fact enacting dif-
ferent decision making styles, we apply an agreement metric
across individual actions. The metric we use to evaluate per-
sona likeness, developed in previous work (Holmgård et al.
2014a) on persona/human comparison, is the action agree-
ment ratio (AAR). AAR considers each step of a play-trace
a distinct decision, in line with the high decision density of
MiniDungeons 2. To produce the AAR between two per-
sonas, all distinct game states of a persona play-trace, the
original, are reconstructed. For each game state, the other

10



persona being compared for agreement is inserted into the
game state and queried for the next preferred action, essen-
tially asking: “What would you do?”. If the two personas
choose the same action, one point is registered. Finally, the
AAR is computed by dividing the number of points with
the number of decisions in the original play-trace. A perfect
AAR score of 1.0 represents two personas that agree on ev-
ery single decision.

In Results we describe the experiments we ran to gener-
ate persona behaviors and examine their performances and
differences through summary statistics and through AAR.

Summary Statistics and Heat-Maps for Persona
Identification and Skill Evaluation
Since the different personas are constructed to pursue differ-
ent affordances in MiniDungeons 2 it is difficult to evaluate
all of them using a simple unidimensional score system. In-
stead, we summarize the number of affordances reached dur-
ing game-play and interpret these as indications of whether
a persona is enacting a desired style. While this arguably is a
subjective approach to determining whether personas enact a
desired decision making style, the fundamental persona con-
cept is subjective to the designer. Future work will focus on
determining if personas are recognizable across observers,
but here we directly interpret the summary statistics from a
game design perspective. Further, we examine a number of
heat-maps representing persona play-traces to identify pat-
terns that characterize the behavior of the various personas.

For evaluating whether varying the computational budget
has an impact on persona performance we apply a straight-
forward operationalist approach: For each persona we deter-
mine whether variation in the computational budget impacts
the interaction with affordances that factor into the partic-
ular persona’s utility function. If a Monster Killer manages
to kill more monsters or if a Treasure Collector manages to
collect more treasure, we interpret this as an indication of
greater skill. In the following section we first present the ex-
periments we ran to obtain results and then analyze each of
the metrics.

Results
The five MCTS personas (Exit, Runner, Survivalist, Mon-
ster Killer and Treasure Collector) were tested on 10 hand-
crafted maps in MiniDungeons 2. The levels were crafted
to represent varying degrees of difficulty and to allow for
the expression of all five decision making styles. The levels
were informally tested to ensure that this was the case. Five
test conditions were defined with 10ms, 100ms, 1s, 10s,
and 60s of computation time, respectively. Each controller
was run 20 times on each map in order to take into account
the effect of stochasticity, and the means of the scores are
reported here. All experiments were run on an Intel Xeon
E5-2680 Ivy Bridge CPU at 2.80GHz.

Action Agreement Ratios
AAR values were obtained by cross-comparing all personas
against each other with 1s of computation time. For each
persona, the other four personas as well as a new instance

E R S MK TC
Exit 0.65 0.49 0.42 0.40 0.43
Runner 0.43 0.65 0.59 0.46 0.56
Survivalist 0.42 0.56 0.61 0.45 0.51
Monster Killer 0.47 0.49 0.48 0.64 0.46
Treasure Collector 0.44 0.58 0.52 0.40 0.68

Table 2: Action Agreement Ratios (AAR) between all per-
sonas. The AARs range from 0 to 1 and indicate the extent
to which two personas agree on atomic in-game decisions.
The results indicate that personas agree with themselves to
a larger extent than with other personas. However, it is also
evident that some variation happens within personas, likely
due to the stochasticity of the MCTS algorithm. All AARs
were calculated with 1s of decision making time per action.

of the same persona were presented with all 1s play-traces
from the original persona (20 per map) and asked to evalu-
ate each decision, yielding an AAR value. Each play-trace
was evaluated 20 times to account for stochasticity. The av-
erage AAR values resulting from this process are presented
in Table 2.

The results indicate a number of interesting things. No
personas achieve perfect agreement, not even with them-
selves. This may be due to the stochasticity of the MCTS
algorithm. The state space of MiniDungeons 2 is too large
to be fully explored by MCTS. Hence, each instance of a
persona may end up exploring slightly different parts of the
state space and reach different conclusions about the best
course of action. In particular, sometimes an agent walks
back and forth while still implementing an overall optimal
path. Secondly, all personas agree more with themselves
than with any other persona, with a mean AAR within per-
sonas of 0.65 in contrast to a mean AAR between per-
sonas of 0.48. This difference is significant as measured
by Welch’s t-test (t = 128.3, p < 0.01), showing that the
designer-defined utility weights for the different affordances
clearly and consistently affect persona behavior.

Summary Statistics and Heat-Maps
Table 3 shows summary statistics for each persona, summed
across all levels when different computational budgets are
allocated. The results show similar patterns across all com-
putational budgets and highlight the similarities and differ-
ences in the behaviors of the personas.

In general the personas fail at completing the levels. In a
few instances they do succeed in reaching the exit, mainly in
the case of the Exit persona, but in general they die before
completing any levels. This may be due to a general weak-
ness in the MCTS controller design. The controller does not
implement domain knowledge in the play-outs, which are
completely random. This can lead to most play-outs provid-
ing little information which in turn can hamper performance.
It can, however, also be due to the fact that the levels are
somewhat hard. Future work comparing persona skill to hu-
man player skill should investigate this.

In relative terms, the Exit persona is by far the most suc-
cessful of the personas. Depending on the computational

11



budget, it completes between 15% and 39% of the levels.
However, it may be argued that the Exit persona has the sim-
plest decision making style, as it only has to optimize for re-
ducing the distance to the exit, reaching the exit, and taking
as few turns as possible; all of these goals align well within
the rules of the game. The Runner persona, on the other
hand, is typically unsuccessful in reaching the exit. The only
difference to the Exit persona is a higher cost to spending a
turn, but this changes the behavior to be unsuccessful. No-
tably, the Runner pursues almost no potions which stands in
contrast to the Exit persona which seems to exploit potions
to make it all the way to the exit. The Survivalist seems to
focus shortsightedly on potions, which it collects to a great
extent, but the number of potions in the levels seems to be
too low to make this a viable strategy for also reaching the
exit. The Monster Killer kills by far the most monsters of
any persona, and collects a large number of potions too, to
enable this mission. Finally, the Treasure Collector collects
more treasure than anyone else, but typically fails at reach-
ing the exit. This could either be because it prefers treasures
over finishing the levels or the controller can not look ahead
far enough to avoid trapping itself in fatal situations.

Figure 2 shows persona behaviors on various maps. The
maps are chosen to highlight the behavior of each persona as
different maps cater to different personas’ decision making
styles. The green color indicates tiles visited by the persona
and the red color indicates tiles onto which the persona threw
the javelin. Each map is shown in its final state.

All together the results indicate that the personas exhibit
variation in behavior based on their utility functions. The
differences in AAR values and summary statistics support
this and the heat-maps serve as demonstrations. At the more
general level, the personas exhibit a somewhat weak ability
to play the game successfully, although this might be ad-
dressed by changing details in the MCTS controller imple-
mentation and by fine-tuning the personas’ utility functions.

Discussion
In this paper we demonstrated that combining the idea
of varying simple utility functions with Monte-Carlo Tree
Search for agent control allows us to express archetypally
different decision making styles in MiniDungeons 2. The
decision making styles modeled in this paper do not repre-
sent models of observed human players but instead represent
formal models of archetypal players imagined by game de-
signers. On the one hand, it is possible to criticize this as
being altogether different from the usual conception of data-
driven player modeling. On the other hand, it is our belief
that game designers always work with informal, imaginary
player models when designing games, and that helping the
designer formalize these assumptions procedurally may be
valuable to the design process, in line with play persona the-
ory (Canossa and Drachen 2009). The use of MCTS itself
brings new possibilities to embedding synthetic play-testing
in iterative level design processes. In previous work focusing
on MiniDungeons 1 we have shown how other agent control
methods, including reinforcement learning (Holmgård et al.
2014b) and neural networks configured through evolution
(Holmgård et al. 2014a), can be used for the same purpose.

10 milliseconds
E R S MK TC

Turns 5368 3853 4106 4386 3982
Deaths 170 195 197 200 197
Monsters 721 531 571 741 531
Minitaurs 718 589 634 627 631
Treasures 111 90 78 86 175
Potions 57 11 34 32 14
Javelins 359 354 317 327 311

100 milliseconds
E R S MK TC

Turns 5017 2645 3328 4210 2778
Deaths 144 194 194 196 196
Monsters 800 481 554 931 490
Minitaurs 580 415 507 539 427
Treasures 113 77 84 92 210
Potions 75 0 57 65 3
Javelins 291 274 282 278 249

1 second
E R S MK TC

Turns 4116 2263 2831 3907 2513
Deaths 138 195 200 197 199
Monsters 761 482 570 969 476
Minitaurs 416 358 418 461 377
Treasures 110 57 68 88 203
Potions 45 0 70 63 5
Javelins 283 224 237 287 235

10 seconds
E R S MK TC

Turns 4066 2250 2576 3648 2603
Deaths 123 197 196 200 195
Monsters 769 455 544 1002 478
Minitaurs 459 372 375 403 417
Treasures 106 56 60 59 190
Potions 58 0 67 62 5
Javelins 243 233 225 237 217

60 seconds
E R S MK TC

Turns 3885 2110 2579 3611 2336
Deaths 122 197 199 198 192
Monsters 759 473 577 967 493
Minitaurs 408 337 392 406 349
Treasures 89 58 49 70 201
Potions 53 0 85 52 3
Javelins 230 202 215 253 223

Table 3: Play summary statistics summed across the 10 maps
under different computational budgets: 10ms, 100ms, 1s,
10s, and 60s. Each condition totaled 200 runs per persona,
20 per map.

However, the methods used for that game would not perform
well in MiniDungeons 2, which has a dynamic environment
(monsters move); the models learned for MiniDungeons 1
presumed a static world. Other recent work has shown how
game playing agents that play across multiple games (while
not incorporating any explicit notions of style or prefer-
ence) can be produced using a combination of reinforcement
learning and neural networks (Mnih et al. 2015) or MCTS
(Perez et al. 2015). While off-line machine learning-based

12



(a) Exit (b) Runner (c) Survivalist (d) Monster Killer (e) Treasure Collector

Figure 2: Heat-maps of end game states exemplifying differences in the personas’ behaviors, taken from personas given 1s of
decision making time. Different maps are chosen to best showcase the personas’ decision making styles. Green indicates tiles
a persona moved to and red indicates a javelin attack. In sub-figures (a) and (b) the Exit and Runner personas manage to finish
the level, while in sub-figures (c), (d), and (e) the personas die before reaching the end of the level. The Survivalist pursues two
potions, but ultimately dies, and the Monster Killer manages to kill all monsters in the level, but does not survive. Finally, the
Treasure Collector gets all the treasure, but dies in the process.

player modeling methods perform well when trained for a
sufficiently long time and with a sufficient amount of train-
ing material, the need for training also constitutes their ma-
jor disadvantage. If a game designer fundamentally changes
the rules of a game, previously trained agents or personas
may be rendered invalid in an instant. In contrast, on-line
search based methods like MCTS are capable of adapting to
unseen problems within the rules of a game (e.g. new maps)
or to rule changes. If we add a new monster with an entirely
new behavior to MiniDungeons 2 and include this in the sim-
ulations of the MCTS personas, it is likely that the personas
would retain their individual characteristics while respond-
ing to the new element of the game. Prior work in MCTS
for general game playing supports this assumption (Finnsson
and Björnsson 2008), but future work should focus on inves-
tigating this for the particular case of MiniDungeons 2. The
scalable aspects of MCTS allow for a straightforward way of
simulating player skill for personas. The results in this paper
suggest that skill may be represented through computational
budgets, and recent work has provided deeper insight into
MCTS and skill for other games (Zook, Harrison, and Riedl
2015). It is an open question to what extent MCTS based
personas can replicate the behavior of a human player on
an unseen map in MiniDungeons 2. The current personas
are defined by hand, and are in a sense extremes within the
space of strategies that can be represented with the current
set of primary utilities. When sufficient player data has been
collected from players of MiniDungeons 2, we should try to
learn personas directly from player behavior, by varying the
utility weights of the MCTS agents until the best possible
fit is obtained. Future work revolves around using these per-

sonas as level design critics in procedural content generation
tools for MiniDungeons 2.

Conclusion
In this paper we have demonstrated how a number of sim-
ple utility functions, representing game designers’ assump-
tions about player behavior, can be used with a Monte-Carlo
Tree Search implementation to provide game playing per-
sonas that enact a gallery of decision making styles. We also
argued that MCTS has a number of advantages for model-
ing player decision making styles: It matches contemporary
high-level models of the human decision making process,
it accepts utility functions in a straightforward manner, and
can be adjusted to represent different skill levels by changing
its computational budget. These characteristics make MCTS
a good candidate for constructing generative player models
across a wide range of games. Future work will focus on
building MCTS-based data-driven generative player mod-
els from human play-traces, comparing these to the expert-
knowledge-driven ones built from game designer expecta-
tions, and eventually applying these player models as critics
for procedural level generation.

Acknowledgments
The research was supported, in part, by the FP7 ICT project
C2Learn (project no: 318480), the FP7 Marie Curie CIG
project AutoGameDesign (project no: 630665), and by the
Stibo Foundation Travel Bursary Grant for Global IT Tal-
ents.

13



References
Bartle, R. 1996. Hearts, Clubs, Diamonds, Spades: Players
who Suit MUDs. Journal of MUD research 1(1):19.
Bourki, A.; Chaslot, G.; Coulm, M.; Danjean, V.; Doghmen,
H.; Hoock, J.-B.; Hérault, T.; Rimmel, A.; Teytaud, F.; Tey-
taud, O.; et al. 2010. Scalability and Parallelization of
Monte-Carlo Tree Search. In Computers and Games, 48–
58. Springer.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Compu-
tational Intelligence and AI in Games 4(1):1–43.
Canossa, A., and Drachen, A. 2009. Patterns of Play: Play-
Personas in User-Centred Game Development. In Proceed-
ings of the 2009 DiGRA International Conference.
Champandard, A. J. Monte-Carlo Tree Search in TO-
TAL WAR: ROME II’s Campaign AI. AIGameDev.com:
http://aigamedev.com/open/coverage/mcts-rome-ii/.
Elias, G. S.; Garfield, R.; and Gutschera, K. R. 2012. Char-
acteristics of Games. MIT Press.
Finnsson, H., and Björnsson, Y. 2008. Simulation-Based
Approach to General Game Playing. In AAAI, volume 8,
259–264.
Fullerton, T.; Swain, C.; and Hoffman, S. 2004. Game
Design Workshop: Designing, prototyping, and playtesting
games. Focal Press.
Gigerenzer, G., and Gaissmaier, W. 2011. Heuristic Deci-
sion Making. Annual Review of Psychology 62:451–482.
Gigerenzer, G., and Selten, R. 2002. Bounded rationality:
The adaptive toolbox. MIT Press.
Hingston, P., ed. 2012. Believable Bots. Springer.
Holmgård, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2014a. Evolving Personas for Player Decision Model-
ing. In IEEE Conference on Computational Intelligence and
Games.
Holmgård, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2014b. Generative Agents for Player Decision Mod-
eling in Games. In Foundations of Digital Games.
Holmgård, C.; Liapis, A.; Julian, T.; and Yannakakis, G. N.
2015. MiniDungeons 2: An Experimental Game for Captur-
ing and Modeling Player Decisions. In Proceedings of the
10th Conference on Foundations of Digital Games.
Jacobsen, E. J.; Greve, R.; and Togelius, J. 2014. Monte
Mario: Platforming with MCTS. In Proceedings of the 2014
conference on Genetic and evolutionary computation, 293–
300. ACM.
Kahneman, D. 2011. Thinking, Fast and Slow. Farrar, Straus
and Giroux.
Liapis, A.; Holmgård, C.; Yannakakis, G. N.; and Togelius,
J. 2015. Procedural Personas as Critics for Dungeon Gener-
ation. In Applications of Evolutionary Computation, volume
9028, LNCS. Springer.
Lorentz, R. J. 2011. Improving Monte–Carlo Tree Search in
Havannah. In Computers and Games. Springer. 105–115.

Mark, D. 2009. Behavioral Mathematics for Game AI.
Course Technology Cengage Learning.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-Level
Control through Deep Reinforcement Learning. Nature
518(7540):529–533.
Perez, D.; Samothrakis, S.; Togelius, J.; Schaul, T.; Lucas,
S.; Couëtoux, A.; Lee, J.; Lim, C.-U.; and Thompson, T.
2015. The 2014 General Video Game Playing Competition.
IEEE Transactions on Computational Intelligence and AI in
Games.
Smith, A. M.; Lewis, C.; Hullett, K.; Smith, G.; and Sullivan,
A. 2011. An Inclusive Taxonomy of Player Modeling. Uni-
versity of California, Santa Cruz, Tech. Rep. UCSC-SOE-
11-13.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-Based Procedural Content Generation:
A Taxonomy and Survey. IEEE Transactions on Compu-
tational Intelligence and AI in Games 3(3):172–186.
Tychsen, A., and Canossa, A. 2008. Defining Personas in
Games Using Metrics. In Proceedings of the 2008 Confer-
ence on Future Play: Research, Play, Share, 73–80. ACM.
Yannakakis, G. N., and Togelius, J. 2014. A Panorama of
Artificial and Computational Intelligence in Games.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-Initiative Cocreativity. In Proceedings of the 9th
Conference on the Foundations of Digital Games.
Zook, A.; Harrison, B.; and Riedl, M. O. 2015. Monte-
Carlo Tree Search for Simulation-based Strategy Analysis.
In Proceedings of the 10th Conference on the Foundations
of Digital Games.

14




