
Mystical Tutor: A Magic: The Gathering Design Assistant
via Denoising Sequence-to-Sequence Learning

Adam James Summerville and Michael Mateas
Expressive Intelligence Studio

Center for Games and Playable Media
University of California, Santa Cruz

asummerv@ucsc.edu , michaelm@soe.ucsc.edu

Abstract

Procedural Content Generation (PCG) has seen heavy
focus on the generation of levels for video games, aes-
thetic content, and on rule creation, but has seen little
use in other domains. Recently, the ready availability of
Long Short Term Memory Recurrent Neural Networks
(LSTM RNNs) has seen a rise in text based procedural
generation, including card designs for Collectible Card
Games (CCGs) like Hearthstone or Magic: The Gath-
ering. In this work we present a mixed-initiative design
tool, Mystical Tutor, that allows a user to type in a par-
tial specification for a card and receive a full card de-
sign. This is achieved by using sequence-to-sequence
learning as a denoising sequence autoencoder, allow-
ing Mystical Tutor to learn how to translate from partial
specifications to full.

Introduction
Procedural Content Generation (PCG) in the context of
video games has most commonly focused on level genera-
tion or decorative content. Level generation has seen a wide
number of approaches from the earliest days of PCG starting
with Beneath Apple Manor in 1978 and being popularized
by Rogue in 1980. Decorative content in games has largely
come from non-critical components such as texture gener-
ation (ALL 2016) or tree generation (SPE 2016). The pro-
cedural creation of content other than these has been lim-
ited. There have been multiple attempts to generate games
(Nelson and Mateas 2007)(Browne and Maire 2010)(Tre-
anor et al. 2012)(Cook and Colton 2014)(Zook and Riedl
2014)(Lim and Harrell 2014), but this has largely been fo-
cused on the creation of game rules or mechanics. Perhaps
the best example of non-level based PCG in videogames is
the user guided evolution of weapons in Galactic Arms Race
(Hastings, Guha, and Stanley 2009).

Text generation in the context of games has mostly been
focused on decorating templates with variations authored
by a user a la the work of Compton et al. (Compton, Fil-
strup, and Mateas 2014). Outside of games, text generation
has seen a number of approaches, perhaps most simply with
Markov chains. The Markov chain is typically learned from

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a corpus that learns transition probabilities from word-to-
word and then generates chains following these probabili-
ties. A key problem with Markov chain generation is that
they have good local coherence (word-to-word probabilities)
but tend to have poor global coherence (sentences make no
sense). This can be remedied by increasing the historicity of
the chain, but this has two main problems:

• The amount of data needed to learn all possible transitions
increases exponentially with the length of the history

• The ability to generalize decreases due to learning more
and more specific transitions as the transition matrix be-
comes sparser and sparser.

Long Short Term Memory (LSTM) Recurrent Neural Net-
works (RNNs) represent the state of the art for sequence
learning. They can train with history sizes well beyond what
would be feasible in a Markov chain (on the order of tens
or hundreds of items instead of twos or threes). They can
also generalize and learn higher order rules that are not ca-
pable of being learned by the local probabilities of a Markov
chain. They have been shown to be able to generate valid C
code (or at least syntactically correct) when properly trained
(Karpathy 2015). Recent work has focused on Sequence-To-
Sequence learning which can “translate” from arbitary se-
quence to arbitrary sequence. This technique has even been
used to “compile” simple Python code, producing program
output given the source code of a python program and the
program’s input, though this has been limited to basic arith-
metic and simple for/while loops (Zaremba and Sutskever
2014).

LSTMs have also been used to generate cards for Magic:
The Gathering (Billzorn 2016). This code even provides the
underpinnings of a twitter bot entitled “RoboRosewater” (so
named because of Magic’s lead designer Mark Rosewater)
that generates a new card every day (Milewicz 2016). While
it is fun to see the output of the generator, it is not capable of
working as a mixed-initative design tool, as it simply gener-
ates a sequence of characters one at a time. There are only
two possible ways a user could provide input to the gener-
ator: 1) The user has to specify all fields prior to the field
they want to set (e.g. if the user wished to set the cost of
the card, which is the last field in RoboRosewater’s order-
ing, they would have to fill in all the other fields leaving the
system nothing to generate) or 2) Allow the system to gen-

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

86



Figure 1: A card from Magic: The Gathering. 1) Name,
2) Cost, 3) Sub Type, 4) Type, 5) Set (shape of the sym-
bol) and Rarity (color of the symbol), 6) Card Text 7)
Power/Toughness. Super Type would appear to the left of
(4) if it were present and Loyalty would appear in place of
(7) if the card were a Planeswalker.

erate everything other than what they specify, creating the
problem that fields which occur earlier in the sequence have
no information about later fields (e.g. setting a card cost to
be 3 colorless mana, the system does not know this until
the end - meaning it very likely will not generate a card for
which that cost makes sense). In this work, we obviate the
need for these workarounds through the use of Sequence-to-
Sequence learning with attention.

A breakdown of a card can be seen in figure 1. Cards
can be some number of 8 different types (Land, Crea-
ture, Artifact, Enchantment, Sorcery, Instant, Planeswalker,
Tribal), although only certain types, such as Artifact and En-
chantment, support mixtures of types (e.g. Artifact-Land or
Enchantment-Creature). There are also 5 different colors in
Magic of which a card be any combination (or even have the
lack of a color). There are also other, higher-order attributes
that a designer might care about, such as whether the card is
a certain color (without needing to specify a complete mana
cost) or the converted mana cost (a card that costs 5 colorless
mana and a card that costs 1 white, 1 red, 1 blue, 1 green,
and 1 black both have a converted mana cost of 5). Given all
of these meaningful aspects to cards, a designer might wish
to be able to specify specific portions of a card, say the type
and cost, and let the system fill in the rest.

In this work we introduce Mystical Tutor (named after a
powerful card that allows players to search their deck for an
instant or sorcery card), a mixed-initiative Magic The Gath-
ering card generator that can take a partial card specification
as input and generate a valid card. A user can input as much
or as little as they want and Mystical Tutor will work with
those soft constraints to generate a card. Mystical Tutor uses
a sequence-to-sequence denoising decoder-encoder LSTM
to learn how all of the parameters of a card work in con-

versation with each other as opposed to just learning linear
traces through the text of a card. The contribution of this
work is a novel denoising sequence-to-sequence neural net-
work as well a novel use of machine learning as a mixed
iniative design tool.

Related Work
As mentioned above, the state-of-the-art for machine learned
Magic card generation is RoboRosewater. RoboRosewater
uses an LSTM trained at the character level to generate card
strings character by character. Figure 2 has 4 examples of
cards generated by RoboRosewater. The same approach has
also been used for the game Hearthstone (scfdivine 2015).
These systems are good at producing random cards that are
generally coherent and interesting, but have no way for a
user to specify specific sub-pieces since they generate in a
lock-step one character at a time. Any information that a
user specifies must come at the beginning of the sequence
and there can be no gaps in the information that they spec-
ify. LSTMs have also seen use for generating other game
content, namely Mario levels in the work by Summerville
and Mateas (Summerville and Mateas 2016).

Sequence-to-Sequence learning is a statistical machine
translation technique that generates output sequences as a
result of input sequences. It has been used to translate from
one language to another (Sutskever, Vinyals, and Le 2014),
from source code to the output of the code, (Zaremba and
Sutskever 2014), or from English sentences to grammati-
cal parsings (Vinyals et al. 2014). They operate by training
LSTMs on input sequences and use the hidden state of the
encoding neural network as the input to a decoding neural
network which then generates the output sequence. Recent
work by Ling et al. (Ling et al. 2016) used Magic: The Gath-
ering and Hearthstone cards as the source trace and then
learned to generate code for open source implementations
of the games given a card specification via Latent Predictor
Networks that utilize sequence-to-sequence learning as well
as pointer networks to copy from the input to the output (e.g.
for instance, copying the name or cost of the card).

Denoising autoencoders are a neural network technique
that tries to replicate the input as the output. However, in-
stead of just exactly duplicating the input, noise is added to
corrupt the input, typically by setting input fields to 0 at ran-
dom. This forces the system to learn how different pieces of
the input interact to be able to infer the corrupted pieces of
the input.

Machine learning has seen little use in mixed-initiative
design tools. Bruni, et al. (Bruni et al. 2011) used Bayesian
inference to learn how a user goes about planning a UAV
mission, and uses this to support future mission planning
work.Xia et al. built a system that uses a Bayesian network
to learn how to cooperate with a human user during mu-
sic performance (Xia et al. 2015). Both of these systems
learned how people act creatively by observing them in the
creative process. In contrast, work by Hoover et al. (Hoover,
Togelius, and Yannakakis 2015) only makes use of human
output rather than information about the creation process. In
this work, they trained a neural network to predict the low-
est y-value for specific “voices” of tile types in Super Mario

87



Figure 2: Cards generated by @RoboRosewater. The left two are are good examples of evocative, sensical output, while the
right two make sense grammatically but are nonsense from a gameplay perspective.

Bros. (e.g. ground, ?-block, pipe, etc.) based on the other
tiles in the same column. This supports a user in drawing in
a portion of the level and having the system fill in the rest.

Design Support as Translation
The core idea of using sequence-to-sequence generation is
the novel architecture of denoising LSTM autoencoders. Au-
toencoders are common in the realm of artificical neural net-
works where they most commonly act as a form of feature
compressor by which a given input is fed to a network that
then squishes down to a smaller hidden layer (or multiple
hidden layers) than the input layer which is then fed to an
output layer which tries to recreate the input. A subclass of
these are known as denoising autoencoders. A denoising au-
toencoder operates on “noised” or “corrupted” input (typ-
ically some percentage of the input is set to 0 although it
could be replaced with a random value) and then tries to re-
construct the original “non-corrupted” input. This forces the
neural network to learn not just a discriminative algorithm
but rather a generative one. That is, if we have two random
variables X and Y , a discriminative algorithm would try to
learn:

P (Y |X)
where a generative algorithm would try to learn:
P (Y,X)
By learning a joint rather than a conditional probability

distribution, the generative algorithm learns the relationships
between all variables as opposed to just classifying one sub-
set based on the others.

As previously mentioned, LSTMs represent the current
state of the art for sequence learning. However, they typi-
cally operate under the assumption that the input is the out-
put, not a corrupted representation of the output. We can
use the lens of “translation” if we see the approach used to
take an input string in the “corrupted” language and gener-
ate a string in the “non-corrupted” language and as such act
as a denoising LSTM. By randomly permuting and corrupt-
ing data, the hope would be that Mystical Tutor would learn
to generalize from snippets of sequences to full sequences,
in this case from partial specifications to full cards. Where
RoboRosewater operates on a character-level predicting the

next character in a string based on the history, our work pro-
cesses the entire input string at once and then produces an
output via the attentional Sequence-to-Sequence architec-
ture. The contribution of the denoising aspect allows Mys-
tical Tutor to seamlessly handle partial input with no regard
for ordering of the fields, unlike RoboRosewater.

Data Specification
We used the full set of Magic: The Gathering cards, 13,651
cards in total as our data set. The set was duplicated 30 times
with each duplication shuffled. Each card had 1

3 of its com-
ponents randomly corrupted, which means that each compo-
nent in a card is expected to be seen 20 times. The simplest
way of handling the corruption would be applying dropout
on the input layer of the network; However,this was not used
as the corruption was wanted at the component level, not the
word level. The goal for our denosing task was to handle
partial specifications, but it is unlikely that users will spec-
ify partial strings. Returning to the Argothian Enchantress
example, the word level corruption might look like “Crea-
ture – Human Druid – you an spell card” whereas the com-
ponent level might be “Whenever you cast an enchantment
spell, draw a card”. The former is unlikely to be entered by
a user, while the latter is highly likely. As mentioned above,
there are many different components to a card, of which we
considered:

• Cost - The mana cost of a card. There are 5 different col-
ors, colorless, generic, and “hybrid” mana (half one color,
half another) that can be combined in countless ways

• Type - Creature, Artifact, Enchantment, Sorcery, Instant,
Land, Planeswalker, and Tribal - but again these can be
combined (e.g. Artifact Land, Enchantment Creature)

• Sub Type - Only applicable to certain card types, but most
commonly creatures which are generally a race (e.g. hu-
man, elf, goblin, etc.) and a class (e.g. soldier, shaman,
warrior, etc.)

• Super Type - Modifiers of type with specific rule effects,
such as Legendary which means that there can only be 1
instance of that card on the battlefield for a given player

88



Figure 3: Demonstration of Mystical Tutor. Each LSTM layer consists of 256 LSTM cells. The input would not actually be
corrupted on a word-to-word basis but instead fields of the card are corrupted. Encoding and decoding happen at the word level.

Figure 4: This card seems entirely plausible. The ability
tends towards red, but enchantments that pump your entire
team (commonly referred to as anthems) are mostly white
enchantments. This is probably overcosted by 1 mana, but is
a plausible uncommon.

• Power - A number denoting the offensive capability of a
creature

• Toughness - Conversely, the defensive capability

• Card Text - The core of the game. Magic is a game of
rules and exceptions. The exceptions come from the card
text. This can be simple such as Flying (can’t be blocked
by creatures without flying) or extremely complex modi-
fications upwards of 90 words and 11 lines of text.

• Loyalty - A special resource for Planeswalker cards, the
rarest, most tactically dense card type

Cards are treated as a series of tokens, with each word
on the card being a token along with the special tokens:

Figure 5: There are a lot of moving parts on this card and in
all likelihood would probably have 1 or 2 abilities stripped
from it. Flying and Lifelink (which causes a player to gain
life when the creature deals damage) are very common in
Vampires. Discarding a card less so, but is a black abil-
ity. The fighting clause is an oddity that exists nowhere
else in the game, but with the proper flavor (a vampire lord
that fights enemies based on her minions’ strength, perhaps)
could work.

Start of Card, End of Card, Section Delimiter, Section ID,
Card Text New Line, Start and End of Mana Cost, Start of
Power/Toughness or Power/Toughness modifier (e.g. -3/+3).

Numbers, whether they are generic mana costs, power,
toughness, or power or toughness modifiers, are handled as
strings of tokens with length equal to the number e.g. the
number 3 is denoted as %%%. Numbers which are repre-
sented as English text are left alone. A few special numbers
are also treated as special tokens, namely 10, 15, and 20.
This brings the total size of the vocabulary up to 637 distinct

89



Figure 6: An entirely plausible card. The only real detraction
is the Devoid, which is an ability that states that the creature
is colorless. In this case it is redundant.

Figure 7: This card text exists as an instant that costs 3 blue
mana and X generic mana, so it is interesting that Mystical
Tutor did not copy that card and instead discounted it a mana
by making it less versatile timing wise (shifting from instant
to sorcery).

tokens.
Two variants of Mystical Tutor were trained, the first of

which left corrupt information as missing. The second added
another token to the encoding vocabulary which acted as a
denotation that a section had been corrupted and should nor-
mally be present. The intention of the second variant is to act
as an indicator to the decoder that a specific section needs to
be filled in as opposed to naturally not being present (e.g.
A Planeswalker has no power and toughness so that sec-
tion would never be present, but a Planeswalker missing the
mana cost section would be flagged as it should be present).

Each variant consisted of an encoding LSTM and decod-
ing LSTM each of which consisted of 3 layers each with
256 LSTM cells. The encoder operates by learning the in-
put sequence and encoding it to a state vector. The decoder
then generates the output sequence using that state vector as
well as by using an attentional system allowing it to attend to
the encoded state vector. Without attentional system the en-
coded state vector would simply be used as the starting seed
of the decoding sequence, but the attentional system allows
the system to look back and move its focus to different parts
of the input. This is a key advantage over RoboRosewater,
as this allows the system to look at portions of the input as
they are relevant in the decoding process (e.g. While decod-
ing the Mana Cost, it can look back at the specific portion
of the input that contained the Mana Cost, if present). The

Figure 8: The wolves should probably be replaced by Sapro-
ling (a fungus creature in Magic) tokens. The biggest prob-
lem is triggering on token creatures causes this to create an
unlimited number of creatures ready to attack (since they
have haste).

Figure 9: A four mana 3/3 is a workhorse creature that bal-
ances limited formats (limited is a format where players are
given random packs of cards and they must form decks on
the spot). The ability costs a lot of mana, but the reasonable
body + ability that can potentially break stalls is a common
trope often referred to as “invokers”.

architecture can be seen in figure 3. Decoding takes place by
greedily taking the tokens with the maximum likelihood.

Evaluation
There exist two evaluations for this work, Accuracy and Aes-
thetics. Accuracy measures how well Mystical Tutor per-
forms the sequence-to-sequence task on unseen data. Aes-
thetics is a more challenging evaluation, as it requires human
judgment of expert Magic players, but there are three major
criterion that Mystical Tutor should be graded on:

• Coherence - How well does this hold up as Magic card?
Did it do obviously ludicrous things (Flying to a Sorcery
card) or did it do something that would be allowed by
game rules but not by the design rules (e.g. making a tra-
ditionally Black creature, a Zombie, White)?

• Novelty - Was the generated card a previously unseen
card, or was it simply a previous card regurgitated ver-
batim? Was the card interesting in an unexpected way?

• Utility - How useful was the generated card for the user?
This is perhaps the most difficult to assess as different
cards can fulfill different roles, and the usefulness of the

90



generated card is very contextual (e.g. A user might want
to use the generator to try to determine the cost of a mostly
designed card or they might want to roll the die and give
minimal input).

Method Training Perplexity Test Perplexity
Standard 1.07 1.21

Missing Tokens 1.06 1.08

Table 1: Perplexity measures for both generators for training
and test sets.

The accuracy results can be seen in table 1. Mystical Tutor
was able to achieve a Perplexity of 1.06 on the training data
and a Perplexity of 1.08 on held out test data. This test data
is still derived from the original set of Magic cards that are
again randomly corrupted. Of the corrupted dataset that was
previously described there was a 90% - 10% training - test
split. Perplexity is a measure most commonly used in nat-
ural language processing that measures roughly how many
choices a probability distribution has to choose between, e.g.
a fair 6-sided die has perplexity of 6, a fair coin a perplexity
of 2, and perfect knowledge a perplexity of 1. A perplex-
ity of 1.08 means that it is almost perfectly able to recreate
the correct output from the input. The two variants produced
training perplexity scores that were very close, but the vari-
ant with missing tokens produced a better perplexity on the
test set (1.08 vs 1.21), so the remaining work showcases the
work of the missing token variant.

Due to this high level of accuracy, the coherence of the
cards tends to be very high, qualitatively. All of the cards
that have been observed were grammatically sound, al-
though there are the occasional ludological hiccups. Figures
4 through 9 represent 6 interactions with Mystical Tutor. On
the left in each figure is the input that was given to Mys-
tical Tutor, and the right represents the output of Mystical
Tutor. The inputs were chosen to demonstrate Mystical Tu-
tor working across different colors, card types, and types of
input:

• Figure 4 - This effect, increasing the power of all attacking
creatures, could be seen on a number of different cards
(e.g. a one time effect on an instant, a “leader” creature,
an artifact, or an enchantment) as well as a number of
different colors (Red, White, or Artifact).

• Figure 5 - Vampires are predominantly a black creature
(although they have also shown up in Red and Blue as sets
dictate) and Warriors are most commonly Red or Green
showing up roughly half as often in Black, one quarter as
often in White, and one tenth as often in Blue. We would
expect this card to be black but were interested in seeing
if the Warrior pushed it to Red.

• Figure 6 - Eldrazi are an oddity in Magic as they are col-
orless creatures. Prior to their introduction, the only way
for a creature to be colorless was to also be an artifact.
They are gigantic Lovecraftian horrors and tend to have
large costs, effects, and sizes.

• Figure 7 - This effect has been seen on one card, a blue
instant, but similar effects have shown up on a number of
blue spells.

• Figure 8 - Legendary creatures represent singular entities
and tend to have high power, flavorful abilities. There has
only been 1 Legendary Fungus Shaman in Magic, and we
wished to see if Mystical Tutor had simply memorized it.
It did not, and instead produced an entirely novel card.

• Figure 9 - Scarecrows are only ever artifact creatures, tend
to cost between 3 and 5 mana, and are usually smallish
(3/3 or smaller). There are a few that are anti-flying, some
that have abilities that cost colorless mana, and some that
have special interactions with -1/-1 counters, but there is
no strong cohesion between them as a whole. The gen-
erated card is well within the realm of a plausible Scare-
crow.

Discussions of Mystical Tutor’s output can be seen below
each input-output pair.

We also conducted a small user study with 4 designers
interested in Magic card design pulled from visitors to a
Magic design blog and from a group of MFA design stu-
dents’ weekly Magic group. The users were asked to provide
5 partial card specifications and then were given the results
from Mystical Tutor, which they then rated on Sensibleness,
Novelty, and Usefulness on a 5 point scale. The results can
be seen in table 2.

Sensibleness Novelty Usefulness
3.70 3.45 3.65

Table 2: User ratings for cards generated by Mystical Tutor.
All were significantly different from a rating of 3.0 with p <
0.025.

Conclusion and Future Work
In this paper we propose the metaphor of translation as a way
for a mixed initiative design assistant to help a user design
content. To support this, we have presented Mystical Tutor,
a design assistant for Magic: The Gathering that allows a
user to input a partial specification and get a full card as
output. The core technical contribution is a novel denoising
sequence-to-sequence LSTM RNN.

There are two core facets for future work. First, addi-
tional technical work. Currently, this work uses a greedy
decoding scheme, but using beam search it may be possi-
ble to get multiple sequences of higher quality. Similarly,
currently Mystical Tutor is deterministic at run-time, but a
user might like to “re-roll” and see different outputs for the
same input. This is possible as-is, but might result in non-
sensical results if a low probability word is sampled during
the middle of the output sequence. Instead, utilizing a quasi-
randomized beam-search should allow for variation that is
still robust. The work of Ling et al. (Ling et al. 2016) treated
Magic cards as structured input instead of one text string. By
treating each section of the card differently, Mystical Tutor
should be more robust to missing input.

91



This work could also be easily applied to other structured,
text-heavy inputs such as cards for Netrunner or Hearth-
stone. However, a key disadvantage to these is the much
smaller dataset as Netrunner has 700 cards and Hearthstone
has 900 which are over an order of magnitude smaller than
the size of the Magic dataset.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1409992.

References
2016. Allegorithmic. https://www.allegorithmic.com/.
Billzorn. 2016. mtg-rnn. https://github.com/billzorn/mtg-
rnn.
Browne, C., and Maire, F. 2010. Evolutionary game design.
Computational Intelligence and AI in Games, IEEE Trans-
actions on.
Bruni, S.; Schurr, N.; Cooke, N.; Riordan, B.; and Freeman,
J. 2011. Designing a mixed-initiative decision-support sys-
tem for multi-uas mission planning. In Proceedings of the
Human Factors and Ergonomics Society Annual Meeting.
Compton, K.; Filstrup, B.; and Mateas, M. 2014. Tracery:
Approachable story grammar authoring for casual users. In
Proceedings of the Seventh Intelligent Narrative Technolo-
gies Workshop.
Cook, M., and Colton, S. 2014. Ludus ex machina: Build-
ing a 3d game designer that competes alongside humans. In
Proceedings of the Fifth International Conference on Com-
putational Creativity.
Hastings, E. J.; Guha, R. K.; and Stanley, K. O. 2009. Evolv-
ing content in the galactic arms race video game. In Pro-
ceedings of the 5th International Conference on Computa-
tional Intelligence and Games, CIG’09, 241–248. Piscat-
away, NJ, USA: IEEE Press.
Hoover, A. K.; Togelius, J.; and Yannakakis, G. N.
2015. Composing video game levels with music metaphors
through functional scaffolding. In Proceedings of the ICCC
Workshop on Computational Creativity and Games.
Karpathy, A. 2015. The Unreasonable Ef-
fectivenss of Recurrent Neural Networks.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
Lim, C.-U., and Harrell, D. 2014. An approach to gen-
eral videogame evaluation and automatic generation using
a description language. In Computational Intelligence and
Games (CIG), 2014 IEEE Conference on.
Ling, W.; Grefenstette, E.; Hermann, K. M.; Kocisky, T.; Se-
nior, A.; Wang, F.; and Blunsom, P. 2016. Latent predictor
networks for code generation.
Milewicz, M. 2016. RoboRosewater.
https://twitter.com/roborosewater?lang=en.
Nelson, M. J., and Mateas, M. 2007. Towards automated
game design. In AI* IA 2007: Artificial Intelligence and
Human-Oriented Computing. Springer. 626–637.

scfdivine. 2015. Hearthstone cards as created by
a neural network. https://www.reddit.com/r/ hearth-
stone/comments/3cyi15/hearthstone cards as created by
a neural network/.

2016. Speed Tree. http://www.speedtree.com/.
Summerville, A., and Mateas, M. 2016. Super mario as a
string: Platformer level generation via lstms.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In CoRR.
Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I. 2012.
Game-o-matic: Generating videogames that represent ideas.
In Procedural Content Generation Workshop at the Founda-
tions of Digital Games Conference.
Vinyals, O.; Kaiser, L.; Koo, T.; Petrov, S.; Sutskever, I.; and
Hinton, G. E. 2014. Grammar as a foreign language. CoRR.
Xia, G.; Wang, Y.; Dannenberg, R. B.; and Gordon, G. 2015.
Spectral learning for expressive interactive ensemble mu-
sic performance. In Proceedings of the 16th International
Society for Music Information Retrieval Conference, ISMIR
2015.
Zaremba, W., and Sutskever, I. 2014. Learning to execute.
In CoRR.
Zook, A., and Riedl, M. 2014. Automatic game design via
mechanic generation. In AAAI Conference on Artificial In-
telligence.

92




