
An Approach to Domain Transfer in Procedural
Content Generation of Two-Dimensional Videogame Levels

Sam Snodgrass and Santiago Ontañón
Drexel University,

Department of Computer Science
Philadelphia, PA, USA

sps74@drexel.edu, santi@cs.drexel.edu

Abstract

Statistical models, such as Markov Chains, have been re-
cently studied in the context of procedural content genera-
tion (PCG). These models can capture statistical regularities
of a set of training data and use them to sample new content.
However, these techniques assume the existence of sufficient
training data with which to train the models. In this paper we
study the setting in which we might not have enough train-
ing data from the target domain, but we have ample train-
ing data from another, similar domain. We propose an algo-
rithm to discover a mapping between domains, so that out-of-
domain training data can be used to train the statistical model.
Specifically, we apply this to two-dimensional level genera-
tion, and experiment with three classic video games: Super
Mario Bros., Kid Icarus and Kid Kool.

Introduction
Procedural content generation (PCG) studies the generation
of content (e.g., textures, levels, stories, etc.) algorithmi-
cally, allowing players to experience new and unique con-
tent. Recent work on machine learning approaches to PCG
offers the promise of general PCG algorithms applicable to
a wide range of domains (Dahlskog, Togelius, and Nelson
2014; Guzdial and Riedl 2015; Summerville and Mateas
2015). However, these approaches require training data, and
a sufficient amount of training data may not be available.

In this paper we present an approach to adapt training data
from a source domain to train a procedural content generator
for a target domain for which we do not have enough train-
ing data. We study this in the context of a PCG approach
based on Markov chains. We study how levels from one
domain can be translated to levels of another domain via a
low-level tile-by-tile mapping, and used as training data in
the target domain. We evaluate our approach using three
classic videogames: Super Mario Bros., Kid Icarus, and Kid
Kool (two of them being very similar, and one being less
similar, in order to study near and far transfer).

The remainder of the paper is organized as follows. First
we give an introduction to statistical techniques for level
generation, and to domain transfer. Next, we discuss our
Markov chain-based level generation approach, and a con-
strained sampling modification. We then describe our ap-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proach for transforming out-of-domain levels into in-domain
levels. After that, we describe our experimental set-up. Fi-
nally, we discuss our results and draw conclusions.

Background
Procedural Content Generation. Procedural content
generation (PCG) studies the algorithmic creation of con-
tent (Shaker, Togelius, and Nelson 2015), typically for video
games. Of particular interest to our work are statistical and
machine learning approaches to level generation.

For example, Dahlskog et al. proposed sampling new
levels using n-grams trained on input levels (Dahlskog, To-
gelius, and Nelson 2014). Related approaches include gen-
erating levels using a statistical model trained on game-
play footage (Guzdial and Riedl 2015), and treating lev-
els as strings and training a recurrent neural network in or-
der to sample new levels (Summerville, Philip, and Mateas
2015). There has also been work on combining multiple ma-
chine learning techniques (including Bayes nets and prin-
cipal component analysis) to sample action RPG levels at
multiple levels of detail (Summerville and Mateas 2015).

In our previous work, we proposed techniques that com-
bine statistical sampling with constraint satisfaction via a
constrained multi-dimensional Markov chain (MdMC) level
generator (Snodgrass and Ontañón 2016).

Domain Transfer. Domain transfer studies adapting
knowledge, data, or models from a one domain to be of use
in or supplement a related target domain. Domain trans-
fer is a powerful idea that allows an approach to leverage
data from outside of its target domain, avoiding the draw-
backs of a low amount or low quality of training data. Do-
main transfer techniques (and domain adaptation, compu-
tational analogy, and related techniques) have been explored
in the context of cognitive simulation (Falkenhainer, Forbus,
and Gentner 1986), where concepts are modeled with predi-
cates and objects and analogies between concepts are found
via a search over the mapping of predicates and objects.
More recently, domain transfer has been used to supple-
ment the training of classifiers (Duan, Tsang, and Xu 2012;
Layne, Hospedales, and Gong 2013) and for transferring
textures and styles between images via convolutional neu-
ral nets (Yoo et al. 2016; Hertzmann et al. 2001) .

We are interested in developing a domain transfer tech-

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

79



nique that will allow a statistical level generator to supple-
ment its training data using out-of-domain training data.

Markov Chain-based Map Generation
In this section we give a brief introduction to multi-
dimensional Markov chains (MdMCs). We then discuss how
they are used to model and sample levels.

Markov Chains. Markov chains (Markov 1971) model
stochastic transitions between states over time. A Markov
chain is defined as a set of states S = {s1, s2, ..., sn} and
the conditional probability distribution (CPD) P (St|St−1),
representing the probability of transitioning to a state St ∈ S
given that the previous state was St−1 ∈ S. The set of pre-
vious states that influence the CPD are referred to as the
network structure of the model.

Multi-dimensional Markov chains (MdMCs) are an exten-
sion of higher-order Markov chains (Ching et al. 2013) that
allow any surrounding state in a multi-dimensional graph
to be considered a previous state. For example, the CPD
defining the MdMC in Figure 1 (ns3) can be written as
P (St,r|St−1,r, St,r−1, St−1,r−1). By redefining what a pre-
vious state can be in this way, the model is able to more eas-
ily capture relations from two-dimensional training data, as
shown in our previous work (Snodgrass and Ontañón 2014).

Map Representation. A level is represented by an h× w
two-dimensional array, M, where h is the height of the level,
and w is the width. Each cell of M is mapped to an element
of S, the set of tile types which correspond to the states of
the MdMC. We add sentinel tiles to signify the boundaries.

Training. Training an MdMC requires two things: 1) the
network structure and 2) training levels. Figure 1 shows ex-
ample network structures that can be used to train an MdMC.
Training happens in two steps: Absolute Counts and Proba-
bility Estimation. First, given the network structure, we are
able to determine the tile configuration (i.e., positions and
types of the previous tiles) for a position in the level. We
then count the number of times each tile follows each tile
configuration. Next, the conditional probability distribution
that defines the MdMC is estimated from these counts as the
observed tile frequencies in the training data.

Sampling. Given a desired level size, h × w, a level is
sampled one tile at time, starting, for example, in the bot-
tom left corner, and completing an entire row before moving
onto the next row. For each tile, the MdMC is used to sam-
ple a tile based on the tile configuration and the probability
distribution of the trained chain.

While sampling, this method may encounter a tile config-
uration not seen during training. The probability distribu-
tion would thus have not been properly estimated (absolute
counts would be 0 for each tile given the previous states).
We call this an unseen state. Our approach tries to avoid un-
seen states, since they force the method to generate tiles ran-
domly. We incorporate two strategies to avoid unseen states:
look-ahead and fallback. The look-ahead process samples
a fixed number of tiles in advance, trying to ensure that no
unseen state is reached. If the look-ahead fails and a tile can-
not be found that results in no unseen states, then our method

S1,1 

P(St,r) 

ns0 :! S1,1 S2,1!

P(St,r | St-1,r) 

ns1 :!

S2,2!

S1,1! S2,1!

P(St,r | St-1,r , St,r-1) 

ns2 :! S1,1 S2,2!

S1,2! S2,1!

P(St,r | St-1,r , St,r-1, St-1,r-1) 

ns3 :!

Figure 1: The network structures used in our experiments.

falls back to an MdMC trained with a simpler network struc-
ture. In our experiments, we start with network structure ns3
(shown in Figure 1), which can fall back to ns2, which itself
can fall back to ns1, and then to ns0, the raw distribution of
tiles in the training levels. More details on this approach can
be found in (Snodgrass and Ontañón 2014).

Constraint-based Sampling
Given the approach in this paper will sample levels by trans-
ferring data from another domain, it is likely that the result-
ing levels will not be playable. Thus, the sampling algorithm
we propose, in addition to an MdMC, allows the specifica-
tion of a set of constraints that we want a sampled level to
satisfy (such as “making sure the level is playable” or “en-
suring a minimum number of enemies”). Specifically, we
use a constrained sampling approach called Violation Lo-
cation Resampling (VLR) (Snodgrass and Ontañón 2016).
This algorithm (seen in Algorithm 1) takes a width, w, and
height, h, of the output level, and a set of constraints, C,
and returns a h× w level satisfying the constraints by using
the MdMC approach described above internally. We assume
the existence of two functions: cost(c,Map) that checks if a
level, Map, satisfies a constraint c or not, and returns the as-
sociated cost (0 if the constraint is satisfied, and higher if it
is not); and violations(c,Map), which returns a set of sec-
tions of the level that violate the constraint. The algorithm
works by first sampling a new level (line 1). It then checks
if any constraints are violated (line 2). If a constraint is vio-
lated, then each section of the level that violates a constraint
(line 4) is resampled until its cost is improved (lines 5-18).
This is repeated until all constraints are satisfied. For our
experiments we use sections of size 12× 10.

Domain Transfer
VLR (explained above) is able to sample levels for a target
domain when provided with training levels. However, there
is no guarantee that the amount of training data available
will be enough to train an accurate model. This can result in
low quality output levels and a lack of diversity in the levels
sampled with the model. To address a lack of training data,
we propose an approach that is able to convert levels from
other domains into training levels for the target domain.

Tile Mappings. To use levels from one domain to train
a model for another domain, the out-of-domain levels need
to be translated to the same representation as the in-domain
levels. That is, the out-of-domain levels, which use a set of

80



Algorithm 1 ViolationLocationResampling(w, h,C)
1: Map = MdMC([0, 0], [w, h])
2: while

(∑
c∈C cost(c,Map)

)
> 0 do

3: for all c ∈ C do
4: for ([x1, y1], [x2, y2]) ∈ violations(c,Map) do
5: for all ci ∈ C do
6: costci = cost(ci,Map[x1, y1][x2, y2])
7: end for
8: repeat
9: m = MdMC([x1, y1], [x2, y2])

10: for all ci ∈ C \ c do
11: if costci > cost(ci,m) then
12: GoTo line 9
13: end if
14: end for
15: until cost(c,m) < costc
16: Map[x1, y1][x2, y2] = m
17: end for
18: end for
19: end while
20: return Map

tiles, Tout, need to use the same set of tile types as the in-
domain levels, Tin. This is achieved via a tile mapping. A
tile mapping is function that takes an out-of-domain tile type
and returns an in-domain tile type. Formally a tile mapping
is defined as a function m : Tout[i]→ Tin[j].

Moreover, finding an appropriate tile mapping is non-
trivial. For example, while empty space tiles are similar
in many domains, Kid Icarus levels contain moving plat-
form tiles which do not have a direct equivalent in the Su-
per Mario Bros. levels we use for training. We propose an
approach which automatically defines tile mappings using
multi-staged filtering which initially considers the set of all
possible mappings that can be defined, and removes unde-
sirable tile mapping with different sieves at each stage.

Searching for Tile Mappings. A sketch of our approach
for finding tile mappings from a source to target domain can
be seen in Figure 2. Our approach takes the number of de-
sired mappings, d, a threshold, f , for the second filter (Jaro-
Winkler), a (possibly empty) set of manual constraints on
the tile mappings, a set of in-domain levels, Lin, and a set of
out-of-domain levels, Lout. Our approach returns a set, M3,
of d tile mappings, satisfying the provided constraints.

1. Filter 1: Manual Constraints: The first filter in our ap-
proach allows the user to define a set of constraints (e.g.,
“empty tiles should map to empty tiles”, “no more than
two out-of-domain tiles should be mapped to the same in-
domain-tile”) that she believes should be satisfied in all
mappings. Mappings that do not satisfy these constraints
are removed from the search space. Note that the user may
choose to not define any constraints, in which case the en-
tire search space will be explored. This step allows the
user some control over the types of mappings explored.

2. Filter 2: Jaro-Winkler Distance: The second filter in
our approach automatically reduces the set of tile map-

M0 = {m0, m1, ..., mn0}

Filter 1: Manual Constraints

Filter 2: Jaro-Winkler Distance

Filter 3: Unseen Configurations

M3 = {m000
0 , m000

1 , ..., m000
d }

M1 = {m0
0, m

0
1, ..., m

0
n1

}

M2 = {m00
0 , m00

1 , ..., m00
n2

}

Figure 2: The three stage filtering process that we employ
to find appropriate tile mappings. We start with the full set
of tile mappings, M0, and reduce this set to the final set of
mappings, M3, by applying three consecutive filters.

pings by comparing the relative frequencies of the tiles
in the out-of-domain levels once translated with a map-
ping, m, to the frequencies of the tiles in the in-domain
training levels, and removing those that result in tile fre-
quencies too different from those in the in-domain levels.
The idea here is to remove mappings that, intuitively, will
lead to poor mappings (e.g., mapping empty tiles to solid
tiles. Specifically, for each remaining mapping, m, in the
search space, the levels in Lout are converted to in-domain
levels using m. Then the tile types are ordered by fre-
quency of appearance in the translated levels, generating
a string with each of the tile types in order. We compare
this order with the order resulting from sorting the tile
types according to their frequency in the in-domain levels
using, the Jaro-Winkler distance (Winkler 1999), a dis-
tance measure between strings. Each tile mapping whose
Jaro-Winkler distance to the in-domain tile ordering is not
below a threshold, f , is discarded from the search space.

3. Filter 3: Unseen Configurations: The final filter in our
approach, filters all but the top d mappings from the cur-
rent set of mappings by considering the number of unseen
configurations in the translated out-of-domain levels. An
unseen configuration is a combination of tiles that was not
observed in the in-domain levels. In order to determine
the number of unseen configurations, we first define the
window of tiles that makes up a configuration (e.g., 2×2,
3×3). Next, for each configuration appearing in the trans-
lated out-of-domain levels, we count the number of times
it appears in the in-domain levels. The d mappings with
the lowest number of unseen configurations are kept, and
returned as the output of this filter. Intuitively, this step
trims the search space by removing mappings that have
structures that vary greatly from the in-domain levels.

81



Experimental Evaluation
In order to test our approach, we consider the following sce-
nario: we assume that a single in-domain level is available
for training, but a large number of out-of-domain levels are
available. We use Super Mario Bros. as the target domain,
and two games as out-of-domain sources: Kid Kool, which
is very similar to the target domain, and Kid Icarus, which
is less similar to the target domain. The technique described
in this paper is used to translate the out-of-domain levels to
in-domain levels, and use them to train an MdMC model
that can then be used to sample new levels using the Vio-
lation Location Resampling (VLR) algorithm. By choosing
one similar and one different domain, we are able to see the
varying effects of out-of-domain training data on the model.
The remainder of this section describes these domains, ex-
perimental set-up and reporting the obtained results.

Super Mario Bros. is a platforming game with linear lev-
els (as defined by (Dahlskog, Togelius, and Nelson 2014)).
The player traverses the levels from left to right while avoid-
ing enemies and holes. Our training set contains 16 levels
from Super Mario Bros. and Super Mario Bros.: The Lost
Levels. These levels are represented using nine tile types: S
is a sentinel tile, denoting the borders of a level; G represents
solid tiles, such as the ground and unbreakable blocks; B
represents breakable blocks; ? represents power-up and coin
blocks; p represents the left section of a pipe; P represents
the right section of a pipe; C represents a bullet bill cannon;
X represents an enemy; and E represents empty space. For
our experiments we use the first level in the set that contains
all the tile types as our only in-domain training level.

Kid Kool is a platforming game with linear levels, though
many levels have multiple sections separated by height (i.e.,
a sky section that is reachably via platforms, a ground sec-
tion, and an underground section reachable by some holes
in the ground section). Our training set contains 12 levels
from Kid Kool and the Quest for the Seven Wonder Herbs.
These levels are represented using 12 tile types: S is a sen-
tinel tile; G represents solid tiles; b represents collapsing
bridges; B represents air cannons that blow the player in var-
ious directions; M represents a spring that allows the player
to jump higher when jumped on; H represents a tube that
can be entered which transports the player to the other end
of the same tube; I represents a pole that the player can use
to launch themselves forward; W represents water, which
the player can slide across if running, but otherwise is fatal;
T represents treasure, which can be collected for points; c
represents cannons which launch bouncing cannonballs; X
represents enemies; and E represents empty space.

Kid Icarus is a platforming game with vertically oriented
levels (i.e., the player traverses the levels from bottom to
top). Our training set includes six vertically-oriented levels
from Kid Icarus. These levels are represented using seven
tile types: S is a sentinel tile; G represents solid tiles; M
represents the entire path of a moving platform; T represents
a stationary platform (both stationary and moving platforms
could be jumped through by a player from the bottom); H
represents hazards which damage the player; D represents

Table 1: Tile Mappings
Mapping Kid Kool Kid Icarus
Original SEGXbBMHWTcI SEGHMTD

R1
1 SEGX?G?PEE?X SEGX?B?

R1
2 SEGXBXGEP?Pp SEBGppp

R1
3 SEGXXpXcG?XP SEXpBBc

R2
1 SEGX?cX?GBEE SEE?EBc

R2
2 SEGX??XGGBEE SEE?PEG

R2
3 SEGXXBB?GBEE SEcGB?X

B1 SEGXXEGEBG?E SEpBXcG
B2 SEGXXGGEBG?E SEPBXcG
B3 SEGXXEEEBG?E SE?BXcG
M1 SEGX?BGpBEEc SEGGXGG
M2 SEGXGG?pBE?c SEBBX?G
M3 SEGXGB?PEE?c SEBBXGG

a section of a door which leads to various bonus areas; and
E represents empty space. The levels from this domain are
structurally different from the levels in Super Mario Bros.
and Kid Kool because of their vertical orientation.

Experimental Setup
In order to evaluate our approach, we compare the tile map-
pings found using our approach against tile mappings found
with other methods. The sets of tile mappings we compare
are defined below and can be found in Table 1.

• R1: chosen at random from the set of tile mappings that
satisfy the manual constraints (i.e., from the set of tile
mappings after applying the first filter). We chose three
such mappings for Kid Icarus and Kid Kool. They are
denoted: R1

1, R1
2, and R1

3.

• R2: chosen at random from the set of tile mappings re-
maining after the second filter is applied. We chose three
such mappings for Kid Icarus and Kid Kool. They are
denoted: R2

1, R2
2, and R2

3.

• M : defined manually based on our knowledge of the do-
mains. We defined three such mappings for Kid Icarus
and Kid Kool. They are denoted: M1, M2, and M3.

• B: found using our approach with the manual constraints
defined below, d = 3, and f set to the lowest computed
Jaro-Winkler distance among mappings for each domain.
Notice, many mappings in our experiments had the same
Jaro-Winkler distance. We assumed the existence of a sin-
gle in-domain training map for this process. These map-
pings are denoted: B1, B2, and B3.

As mentioned previously, our approach allows the user to
define constraints for the first filtering. Below we describe
the sets of constraints we used in our experiments:

• Kid Kool:

1. The sentinel tile, S, must map to the Super Mario Bros.
sentinel tile, S.

2. The empty tile, E, must map to the empty tile, E.
3. The solid tile, G, must map to the solid tile, G.
4. The enemy tile, X, must map to the enemy tile, X.

82



Table 2: Comparison of Mappings. One corresponds to one
map used for training. All corresponds to all the original
maps in the Super Mario Bros. data set, and BL is the base-
line of training an MdMC with a single training level.

Super Mario Bros. Training Maps
Likelihood Linearity Leniency

One −174.00 1.06 0.13
All −285.69± 63.27 2.15± 0.85 0.14± 0.06
BL −174.44± 15.43 0.93± 0.36 0.14± 0.03

Kid Kool to Super Mario Bros.
m Likelihood Linearity Leniency
R1

1 −363.75± 40.44 1.44± 0.29 0.14± 0.06
R1

2 −424.50± 64.11 1.52± 0.30 0.06± 0.04
R1

3 −442.19± 47.45 1.50± 0.29 0.08± 0.04
R2

1 −412.75± 45.83 1.55± 0.32 0.07± 0.02
R2

2 −406.38± 37.54 1.54± 0.25 0.06± 0.03
R2

3 −357.13± 52.00 1.76± 0.34 0.06± 0.03
B1 −336.00± 27.97 1.49± 0.30 0.06± 0.02
B2 −337.50± 36.51 1.49± 0.27 0.06± 0.03
B3 −334.63± 45.33 1.56± 0.29 0.05± 0.02
M1 −337.00± 32.69 1.51± 0.30 0.15± 0.06
M2 −361.81± 63.79 1.53± 0.35 0.14± 0.06
M3 −340.44± 46.64 1.63± 0.32 0.15± 0.06

Kid Icarus to Super Mario Bros.
m Likelihood Linearity Leniency
R1

1 −906.06± 133.75 5.03± 0.56 0.11± 0.05
R1

2 −902.63± 207.70 2.59± 1.19 0.53± 0.17
R1

3 −1087.62± 111.10 4.98± 0.65 0.46± 0.13
R2

1 −1042.19± 136.87 4.88± 0.65 0.42± 0.11
R2

2 −843.69± 106.71 5.01± 0.57 0.06± 0.05
R2

3 −820.06± 135.63 3.02± 0.72 0.98± 0.22
B1 −729.31± 148.21 5.31± 0.72 0.09± 0.05
B2 −681.31± 140.16 5.34± 0.75 0.09± 0.05
B3 −736.56± 125.18 5.28± 0.69 0.09± 0.06
M1 −523.63± 42.68 5.14± 0.56 0.13± 0.04
M2 −750.19± 81.29 5.39± 0.62 0.11± 0.05
M3 −704.13± 95.57 5.26± 0.65 0.10± 0.05

• Kid Icarus:

1. The sentinel tile, S, must map to the Super Mario Bros.
sentinel tile, S.

2. The empty tile, E, must map to the empty tile, E.

To evaluate our approach, we configure an MdMC with
12 row splits and a lookahead of 3 and train it using the con-
verted maps and only one training level from Super Mario
Bros. More details on configuring our MdMC models can
be found in (Snodgrass and Ontañón 2014). For our one in-
domain level, we chose the first level in the training set that
contained all of the tile types. Once trained, we sampled
100 levels of size 12× 210 (height × width) using the VLR
algorithm with a single constraint (ensuring playable levels).

We recorded average linearity and leniency of sam-
pled levels (Smith and Whitehead 2010), and average log-
likelihood of sampled levels (with a Laplacian smoothed
MdMC distribution trained on the single in-domain level).

Original
BL

Manual
Best
Random 1
Random 2

Manual
Best
Random 1
Random 2

Kid Icarus:

Kid Kool:

Figure 3: 2-D projection of the original Super Mario Bros.
levels (green), levels sampled using Kid Kool to supplement
the training set (yellow and red), and the levels sampled us-
ing Kid Icarus to supplement the training set (blue).

Results
Table 2 shows the results of our experiments. The top three
rows show our metrics applied to the single training level
from the Super Mario Bros. training set we used, all levels
from the Super Mario Bros. training set, and levels sampled
using an MdMC trained with the single training level. We
highlight the evaluation scores most closely matching the
set of all training levels for both domains.

The table shows manual mappings and those found by
our approach (Mi and Bi) produce levels with higher log-
likelihoods than levels sampled using random mappings.
This shows that choice of mapping impacts the quality of
the levels sampled, and that our method is able to choose
quality mappings. Additionally, we see the Kid Kool map-
pings produce levels closer in likelihood to the in-domain
training levels than the Kid Icarus mappings, which is to be
expected since we believe Kid Kool is more closely related
to Super Mario Bros. than Kid Icarus is. Further, some ran-
dom mappings’ levels have linearity and leniency similar to
the training levels, showing that these mappings capture the
general layouts of the levels, but not which tiles should be
used to create those layouts (as shown by the lower likeli-
hoods). Furthermore, while the baseline levels closely mir-
ror the single training level, all levels generated by training
the MdMC just with one training level are very similar to
each other and do not cover the full spectrum of levels. Sup-
plementing the training data with Kid Kool mappings found
with our method greatly extends the range of levels gener-
ated, covering a larger area of the space of levels.

Table 2 also shows much higher linearity values (mean-
ing, less linear levels) for the Kid Icarus mappings when
compared to the Kid Kool mappings and training levels,

83



Figure 4: An example level sampled with each mapping method (i.e., manual, random, our approach). From the top, the
mappings are Kid Icarus: R1

2, R2
3, B2, M1; Kid Kool: R1

1, R2
3, B3, M3.

showing the effects of the vertical orientation of the Kid
Icarus. Conversely, the Kid Kool mappings have linearity
values falling between the training level and the Kid Icarus
mappings, likely as a result of the mountainous structures
and multiple height sections in the Kid Kool levels.

Lastly, we see that the manually defined mappings for Kid
Kool and Kid Icarus and the mappings found with our ap-
proach for Kid Icarus are able to approximate the leniency
value of the original training level, whereas the random map-
pings for Kid Icarus vary wildly (due to mappings that as-
sign common tiles to enemies), and are often too low in the
remaining Kid Kool mappings (due to the vastness of the Kid
Kool levels paired with the relative infrequency of enemies).

To visualize the space of different levels generated by
each approach, Figure 3 shows a two-dimensional projection
of the sampled levels along with the 16 Super Mario Bros.
levels, where each dot represents one level. Levels were pro-
jected based on a measure of distance between them. To
determine the distance between two levels, we represented
them as a histogram of high-level tiles, and computed the
Euclidean distance between these histograms. High-level
tiles were found by clustering 4 × 4 tile sections using k-
medoids (k = 40) with all the training levels and one trans-
formed level from each tile mapping. It is interesting to see
how closely grouped all the levels sampled using the Kid
Kool levels are (red, yellow, orange). This may be due to
our constraints locking more tiles, or due to how similar Kid
Kool is to Super Mario Bros. Additionally, the original Su-
per Mario Bros. levels and the levels sampled with the base-
line (green) are closer to the Kid Kool level clusters than to
the Kid Icarus level clusters, which further supports that the
Kid Kool levels are more similar to the training levels. No-
tice, levels sampled using the Kid Icarus (shades of blue)

mappings are mostly separated into different clusters corre-
sponding to the different methods (i.e., Mi, R

j
i , Bi). Fur-

thermore, levels produced with the manual mappings (dark
blue), are close to the levels produced using the mappings
found with our approach (blue), showing that our approach
can find mappings more similar to human devised mappings
than to random mappings. The figure also shows the narrow
space covered by the original levels in the training set.

Figure 4 shows example levels sampled with each tile
mapping. The Kid Icarus mapping levels contain a large
amount of platforms (made of enemies, pipe pieces, and
solid tiles), which mimic the structures in the Kid Icarus
maps. Also note the mountainous structures in the Kid Kool
mappings levels, which are present in the Kid Kool maps.

Conclusions and Future Work
This paper describes an approach for transforming
videogame levels from one game to another to supplement
a set of training levels in a target domain for use by a statis-
tical procedural level generator. These transformations are
done by finding a mapping between the tile types in one
game to the tile types in the target domain. Our approach
is able to find tile mappings that provide better output than
random tile mappings, and similar output to manually pro-
duced mappings. Additionally, we find the choice of out-of-
domain levels has a large impact on the output levels (i.e.,
Kid Icarus mappings produced levels very different from
Kid Kool mappings). However, this approach is limited to
transferring only what is represented by the current tile for-
mat, which does not include gameplay mechanics. In the
future, we will explore more complex representations to al-
low for more complex domains and cross-genre adaptation.

84



References
Ching, W.-K.; Huang, X.; Ng, M. K.; and Siu, T.-K. 2013.
Higher-order markov chains. In Markov Chains. Springer.
141–176.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. Proceedings of the 18th Interna-
tional Academic MindTrek.
Duan, L.; Tsang, I. W.; and Xu, D. 2012. Domain trans-
fer multiple kernel learning. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 34(3):465–479.
Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1986. The
structure-mapping engine. Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign.
Guzdial, M., and Riedl, M. 2015. Toward game level gener-
ation from gameplay videos. In FDG 2015.
Hertzmann, A.; Jacobs, C. E.; Oliver, N.; Curless, B.; and
Salesin, D. H. 2001. Image analogies. In Proceedings of the
28th annual conference on Computer graphics and interac-
tive techniques, 327–340. ACM.
Layne, R.; Hospedales, T. M.; and Gong, S. 2013. Do-
main transfer for person re-identification. In Proceedings of
the 4th ACM/IEEE international workshop on Analysis and
retrieval of tracked events and motion in imagery stream,
25–32. ACM.
Markov, A. 1971. Extension of the limit theorems of prob-
ability theory to a sum of variables connected in a chain.
In Dynamic Probabilistic Systems: Vol. 1: Markov Models.
Wiley. 552–577.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2015. Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 4.
ACM.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using markov chains. In FDG 2014.
Snodgrass, S., and Ontañón, S. 2016. Controllable proce-
dural content generation via constrained multi-dimensional
Markov chain sampling. In Twenty-Fifth International Joint
Conference on Artificial Intelligence.
Summerville, A. J., and Mateas, M. 2015. Sampling hyrule:
Multi-technique probabilistic level generation for action role
playing games. In Eleventh Artificial Intelligence and Inter-
active Digital Entertainment Conference.
Summerville, A. J.; Philip, S.; and Mateas, M. 2015. Mcm-
cts pcg 4 smb: Monte carlo tree search to guide platformer
level generation. In Eleventh Artificial Intelligence and In-
teractive Digital Entertainment Conference.
Winkler, W. E. 1999. The state of record linkage and cur-
rent research problems. In Statistical Research Division, US
Census Bureau. Citeseer.
Yoo, D.; Kim, N.; Park, S.; Paek, A. S.; and Kweon,
I. S. 2016. Pixel-level domain transfer. arXiv preprint
arXiv:1603.07442.

85




