
Data-Driven Sokoban Puzzle
Generation with Monte Carlo Tree Search

Bilal Kartal, Nick Sohre, and Stephen J. Guy
Department of Computer Science and Engineering

University of Minnesota
(bilal,sohre, sjguy)@cs.umn.edu

http://motion.cs.umn.edu/r/sokoban-pcg

Abstract

In this work, we propose a Monte Carlo Tree Search (MCTS)
based approach to procedurally generate Sokoban puzzles.
Our method generates puzzles through simulated game play,
guaranteeing solvability in all generated puzzles. We perform
a user study to infer features that are efficient to compute
and are highly correlated with expected puzzle difficulty. We
combine several of these features into a data-driven evalua-
tion function for MCTS puzzle creation. The resulting algo-
rithm is efficient and can be run in an anytime manner, ca-
pable of quickly generating a variety of challenging puzzles.
We perform a second user study to validate the predictive ca-
pability of our approach, showing a high correlation between
increasing puzzle scores and perceived difficulty.

Introduction
Puzzle games play an integral role in entertainment, intel-
lectual exercise, and our understanding of complex systems.
Generating these puzzles automatically can reduce bottle-
necks in design, and help keep games new, varied, and excit-
ing. Furthermore, generating a variety of puzzles with con-
trolled difficulty allows us to custom tailor game experiences
to serve a much wider population, including those with little
previous video game or puzzle solving experience.

Here, we study the above challenges within the context
of the puzzle game of Sokoban. Developed for the Japanese
game company Thinking Rabbit in 1982, Sokoban involves
organizing boxes by pushing them with a player controlled
agent on a discrete grid board. The goal of this work is to
produce a system that automatically generates Sokoban puz-
zles. In order to support the dynamic needs of a large variety
of users, our system needs to address several challenges in-
herent in the field of puzzle generation. These include the
speed of the system, supporting on-demand puzzle genera-
tion, and producing a variety of puzzles. These properties
support a range of player skills, and are key factors in keep-
ing player experiences engaging.

Current methods for Sokoban puzzle generation tend to
use exponential time algorithms that require templates or
other human input. Achieving the goal of a fast, varied, and

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This work has been supported in part by the NSF through grant
#CHS-1526693.

predictive system requires overcoming several challenges in
automating the understanding of puzzle difficulty and gen-
erating puzzles of desired difficulty levels. Our work moves
towards addressing these challenges via the following con-
tributions:

• Assessing level difficulty. We utilize a user study to anno-
tate the perceived difficulty of an initial set of Sokoban
puzzles.

• Learning features predictive of difficulty. We use statisti-
cal analysis to infer features that are predictive of puzzle
difficulty and are efficient to compute.

• Generating varied, solvable puzzles that optimize key fea-
tures. We formulate puzzle generation as an MCTS opti-
mization problem, modeling the search tree structure such
that puzzles are generated through simulated game play.

The result is an anytime algorithm that produces levels of
varying difficulty that are guaranteed to be solvable. To the
best of our knowledge, this is the first such system to com-
bine simulated gameplay and level optimization into a single
stochastic tree search for puzzle generation

Background
There have been many applications of Procedural Con-
tent Generation (PCG) methods to puzzle games, such as
genetic algorithms for Spelunky (Baghdadi et al. 2015),
Bayesian Network based approaches (Summerville et al.
2015) for dungeons generation, map generation for video
games (Snodgrass and Ontanon 2015), and regular expres-
sion based level generation (Maung and Crawfis 2015).
Other approaches propose search as a general tool for puz-
zle generation (Sturtevant 2013), and generation of dif-
ferent start configurations for board games to tune diffi-
culty (Ahmed, Chatterjee, and Gulwani 2015). Some even
dynamically adapt to player actions (Stammer, Gunther, and
Preuss 2015). Smith and Mateas (2011) propose an answer
set programming based paradigm for PCGs for games and
beyond. A recent approach parses game play videos to gen-
erate game levels (Guzdial and Riedl 2015). We refer the
reader to the survey (Togelius et al. 2011) for a more detailed
overview. Closely related to our work, Shaker et al. (2015)
proposed a method for the game of Cut the Rope where the
simulated game play is used to verify level playability.

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

58



Figure 1: A high scoring 5x5 Sokoban puzzle generated by
our method. The goal is to move the agent to push boxes
(brown squares) so that all goals (yellow discs) are covered
by the boxes. Yellow filled boxes represent covered goals.
Obstacles (gray squares) block both agent and box move-
ment

Figure 2: A generated Sokoban puzzle with solution (score
= 0.31).

Sokoban Puzzle
The Sokoban game board is composed of a two-dimensional
array of contiguous tiles, each of which can be an obsta-
cle, an empty space, or a goal. Each goal or space tile may
contain at most one box or the agent. The agent may move
horizontally or vertically, one space at a time. Boxes may
be pushed by the agent, at most one at a time, and neither
boxes nor the agent may enter any obstacle tile. The puzzle
is solved once the agent has arranged the board such that
every goal tile also contains a box. We present an example
solution to a Sokoban puzzle level in Figure 2.

Previous work has investigated various aspects of com-
putational Sokoban including automated level solving, level
generation, and assessment of level quality.

Sokoban Solvers Previously proposed frameworks for
Sokoban PCG involve creating many random levels and an-
alyzing the characteristics of feasible solutions. However,
solving Sokoban puzzles has been shown to be PSPACE-
complete (Culberson 1999). Some approaches have focused
on reducing the effective search domain (Junghanns and
Schaeffer 2001). Recently, Pereira et al. (2015) have pro-
posed an approach for solving Sokoban levels optimally,
finding the minimum necessary number of box pushes.
Pure MCTS has been shown to perform poorly for solving
Sokoban puzzles (Perez, Samothrakis, and Lucas 2014).

Level Generation While there have been many attempts
for solving Sokoban puzzles, the methods for their proce-
dural generation are less explored. To the best of our knowl-
edge, Murase et al. (1996) proposed the first Sokoban puzzle
generation method which initializes a level by using tem-
plates, and proceeds with an exponential time solvability
check. More recently, Taylor and Parberry (2011) proposed

a similar approach, using templates for empty rooms and
enumerating box locations in a brute-force manner. Their
method can generate compelling levels that are guaranteed
to be solvable. However, the run-time is exponential, and
the method does not scale to puzzles with more than a few
boxes.

Level Assessment There have been several efforts to as-
sess the difficulty of puzzle games. One example is the very
recent work of (Van Kreveld, Loffler, and Mutser 2015),
where features common to puzzle games are combined into
a difficulty function, which is then tuned using user study
data. Others consider Sokoban levels specifically, compar-
ing heuristic based problem decomposition metrics with user
study data (Jarušek and Pelánek 2010), and using genetic al-
gorithm solvers to estimate difficulty (Ashlock and Schon-
feld 2010). More qualitatively, Taylor et al. (2015) have con-
ducted a user-study and concluded that computer generated
Sokoban levels can be as engaging as those designed by hu-
man experts.

Monte Carlo Tree Search (MCTS)
Monte Carlo Tree Search is a best-first search algorithm
that has been successfully applied to many games (Fryden-
berg et al. 2015; Steinmetz and Gini 2015; Sturtevant 2015;
Silver et al. 2016), and a variety planning domains such
as multi-agent narrative generation (Kartal, Koenig, and
Guy 2014). More recently, MCTS has been employed to
simulate different player models to improve game design
process (Zook, Harrison, and Riedl 2015; Holmgård et al.
2015). For a more comprehensive discussion on MCTS, we
refer the reader to the MCTS survey in (Browne et al. 2012).

MCTS proceeds in four phases of selection, expansion,
rollout and backpropagation. Each node in the tree repre-
sents a complete state of the domain. Each link in the tree
represents one possible action from the set of valid actions
in the current state, leading to a child node representing the
resulting state after applying that action. The root of the
tree is the initial state, which is the initial configuration of
the Sokoban puzzle board including the agent location. The
MCTS algorithm proceeds by repeatedly adding one node
at a time to the current tree. Given that a single action from
any one node is unlikely to find a complete solution, i.e. a
Sokoban puzzle for our purposes, MCTS adds several ran-
dom actions referred to as rollouts. The full action sequence,
which corresponds to the candidate puzzle, is evaluated. For
each action, we keep track of the number of times it is tried,
and its average evaluation score.

Exploration vs. Exploitation Dilemma Choosing which
child node to expand (i.e., choosing which action to take)
becomes an exploration/exploitation problem. We want to
primarily choose actions that had good scores, but we also
need to explore other possible actions in case the observed
empirical average scores do not represent the true reward
mean of that action. In this work, we employ Upper Con-
fidence Bounds (UCB) (Auer, Cesa-Bianchi, and Fischer
2002), a selection algorithm that seeks to balance this ex-
ploration/exploitation dilemma. By using UCB, the tree can
grow in an uneven manner, biased towards better solutions.

59



Anytime Formulation with MCTS
One of the challenges for generating Sokoban puzzles is
ensuring solvability of the generated levels. Since solving
Sokoban has been shown to be PSPACE-complete, directly
checking whether a solution exists for a candidate puzzle be-
comes intractable with increasing puzzle size. To overcome
this challenge, we exploit the fact that a puzzle can be gen-
erated through simulated gameplay. To do so, we decom-
pose the puzzle generation problem into two phases: puzzle
initialization and simulated gameplay. Puzzle initialization
refers to assigning the box start locations, empty tiles, and
obstacle tiles. Simulated gameplay consists of a simulated
player performing sequences of box pushes to determine
goal locations. As the agent moves around during the simu-
lation, it pushes boxes to different locations. A final snapshot
of the resulting board configuration defines goal locations
for boxes.

We apply MCTS by formulating the puzzle creation prob-
lem as an optimization problem. The main reasons for us-
ing MCTS to generate Sokoban puzzles include its success
in problems with large branching factors, the anytime prop-
erty, and the search structure that guarantees solvability. As
discussed above, the search tree is structured such that the
game can be generated by simulated gameplay. The search
is conducted over both puzzle initializations and gameplay
actions. Because the simulated gameplay is conducted using
Sokoban game rules, invalid paths are never generated. In
this way, our method is guaranteed to generate only solvable
levels.

Anytime algorithms return a valid solution (if a solution
exists) even if it is interrupted at any time. Given that our
problem formulation is completely deterministic, MCTS can
store the best found puzzle after rollouts during the search
and optionally halt the search at some quality threshold. This
behavior also enables us to create many puzzle levels from a
single MCTS run with monotonically increasing scores.

Action set
Our search tree starts with a board fully tiled with obstacles,
except for the agent start position. Initially, the following
actions are possible at any node in the search tree:

1. Delete obstacle: An obstacle that is adjacent to an empty
space is replaced with an empty space. This progressive
obstacle deletion prevents boards from containing un-
reachable regions.

2. Place box: A box may be placed in any empty tile.

3. Freeze level: This action takes a snapshot of the board and
saves it as the start configuration of the board.

After the Freeze level action is chosen, the action set for de-
scendant nodes of the frozen puzzle node is replaced by two
new actions:

1. Move agent: This action moves the agent on the game
board. The agent cannot move diagonally. This action
provides the simulated gameplay mechanism, where the
boxes are pushed around to determine goal positions.

Figure 3: Our user study application, which presents pairs
of puzzles to subjects and asks them to identify the one that
is more challenging. Subjects were able to play each level
presented as much or as little as desired before making a
decision.

2. Evaluate level: This action is the terminal action for any
action chain; it saves the rearranged board as the solved
configuration of the puzzle (i.e. current box locations are
saved as goal locations).

These two action sets separate the creation of initial puz-
zle configurations (actions taken until the level is frozen)
from simulated gameplay (agent movements to create goal
positions). A key property of this two-phase approach is that
it maintains the uniqueness of states throughout the tree; no
two nodes represent the same board layout and agent path.
This helps improve efficiency by reducing redundant search
paths.

Once the Evaluate level action is chosen, we apply a sim-
ple post-processing to the board in order to remove elements
that are known to be uninteresting. In particular, we turn all
boxes that are never pushed by the agent into obstacles as
this does not violate any agent movement actions. We also
replace boxes that are pushed only once with an empty space
(and delete the associated goal). This post-processing is per-
formed before evaluating the level.

A critical component of our MCTS formulation that has
yet to be addressed is the evaluation function. As MCTS is
an optimization algorithm, we must provide it with an ob-
jective function that describes the desired properties of can-
didate puzzles. To accomplish this, the function maps from
candidate puzzles to a score dependent upon how difficult
or interesting the puzzle is. This involves finding features of
Sokoban puzzles that can be computed quickly and are pre-
dictive of puzzle difficulty. We propose a data driven way to
produce such a function in the following section.

Data-Driven Evaluation Function
Our goal is to generate levels which are not only solvable,
but also engaging or difficult. We address this with a data-
driven approach. First, we perform a user study analyzing
the perceived difficulty of Sokoban puzzles. We then use this
analysis to propose and validate new features estimating the
level difficulty. Finally, we utilize these inferred features in
our MCTS framework to efficiently generate Sokoban puz-

60



zles.

Estimating Perceived Difficulty
One challenge in taking a data-driven approach for difficulty
estimation is the lack of large datasets of Sokoban puzzles
that have known difficulty. The purpose of our user study
was to create such a dataset. To facilitate this, we developed
a custom Sokoban player application where users are shown
two levels and asked to select the one that is more difficult
(Figure 3). The users can switch between shown levels any-
time and decide on the harder level without needing to com-
plete the games. This application was placed on an Android
tablet and users were allowed to rate as many puzzle pairs as
they liked.

We collected user ratings for 120 preexisting puzzles in-
cluding both human-designed puzzles obtained from (Skin-
ner 2000) and computer generated ones obtained from (Kar-
tal, Sohre, and Guy 2016). Over the course of two weeks,
we had approximately 30 participants provide 945 pairwise
comparisons.

In order to estimate the perceived difficulty of each puz-
zle, we employed the TrueSkill Bayesian skill estimation
system (Herbrich, Minka, and Graepel 2006). Briefly, each
puzzle’s estimated difficulty is represented by a Gaussian,
with a mean at the estimated difficulty score, and a stan-
dard deviation representing the uncertainty in the estima-
tion. Each time a puzzle is decided to be more difficult
than another, its mean (estimated difficulty) increases and
the other puzzle’s mean decreases. The estimated uncer-
tainty decreases as more ratings are gathered for each puz-
zle. These TrueSkill means typically range from 0 (least dif-
ficult) to 50 (most difficult), and are referred to in this paper
as Perceived Difficulty.

Feature Analysis
The comparison results from the user study were compiled
and used to annotate the puzzles with their perceived diffi-
culty. Because the evaluation function is invoked for every
Evaluate level action of MCTS, we restricted our search for
features to only those that were efficient to compute. In par-
ticular, we do not include features based on an optimal so-
lution, as finding an optimal solution is a PSPACE-complete
task.

We tested several features for correlation with perceived
difficulty, including:
Metrics analyzing the layout of obstacles and free space

• Tile Mixing. The number of free space tiles next to obsta-
cle tiles, and obstacle tiles next to free space.

• 3x3 Block Count. The number of tiles not in a 3x3 block
of solid obstacles or open space.

Metrics which measured the placement of boxes and goals:

• Box Count. The number of boxes on the board.

• Goal Distance. The average distance between all possible
pairings of boxes and goals

And metrics which measured how congested the paths from
boxes to their goals were:

• Congestion v1. A weighted sum of the number of boxes,
goals, and obstacles in the bounding rectangle between a
box and its goal.

• Congestion v2. A refinement on the above congestion
measure designed to maximize correlation with perceived
difficulty (see below).

Importantly, each of these metrics can be computed in just a
few microseconds, even for larger boards, allowing them to
be efficiently used during MCTS rollout evaluation.

To test the efficacy of candidate features, the signed Pear-
son correlation coefficient r was computed for each fea-
ture with respect to perceived difficulty of the puzzles. For
features which contained tuning parameters, we ran a grid
search to find which parameters yielded the highest corre-
lation. Table 1 shows the correlation between each metric
and the perceived difficulties of the puzzles. We also show
the correlation with only the procedural generated puzzles
(PCG) tested, as the human crafted puzzles tended to have a
significant effect on the analysis.

Looking at the correlations we can see several interesting
trends. For example, the tile mixing metric is well correlated
with difficulty for the entire dataset, but when only computer
generated levels are considered the metric is not very predic-
tive. In contrast, the simpler metric penalizing 3x3 blocks is
more consistent. Likewise, the total distance the user must
push all the boxes is slightly less correlated than the simpler
approach of just counting the number of boxes to push (re-
call that boxes that are not pushed at least two spaces will be
removed).

Simpler methods were not always the most predictive. In
particular, the first version of the congestion metric was a
weighted sum of the number of initial box positions bi, num-
ber of goals gi, and number of obstacles oi within the bound-
ing rectangle between the start and the goal for each box i.
That is

n∑
i=1

αbi + βgi + γoi. (1)

where, n is the number of boxes to be pushed, and α, β, and
γ are scaling weights. While intuitive and relatively well cor-
related with difficulty for computer generated puzzles, this
simple metric was almost completely uncorrelated with level
difficulty when including human designed puzzles, even af-
ter tuning the values of α, β, and γ. Investigating the puzzles
suggests this lack of correlation arises in part because the
metric rewards pushing a box past obstacles even if there
are no other boxes directly in the way. To address this issue,
we refined the metric to be

n∑
i=1

αbi + βgi
γ(Ai − oi)

, (2)

where Ai is the total area enclosed in the rectangle from the
box i to its goal. The intent was to make the metric reward
box paths that actually encounter boxes and obstacles, in-
stead of just having them nearby an otherwise unconstrained
path. While this was a small change to the measure of con-
gestion, this new metric now correlates well with difficulty
in both procedurally-generated and human-generated levels.

61



0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250
time (seconds)

s
c

o
re

Figure 4: Generating Level Sets. Top: The evolution of the best score from a single run of MCTS. Bottom: Several levels
generated from the same run. Later levels have higher score, and are therefore predicted to be more difficult.

r value r value
Feature (PCG levels) (all levels)

Tile Mixing -0.05 0.17
3x3 Block 0.09 0.24
Box Count 0.48 0.23

Goal distance -0.16 0.20
Congestion v1 0.41 0.05
Congestion v2 0.43 0.32

Table 1: Correlation (Pearson r correlation coefficients) for
six features from the user study. The most correlated features
were used for level evaluation function.

Level Evaluation

Using the results from our feature analysis, we developed an
evaluation function for use in MCTS. For game playing AI,
evaluation functions generally map to 0 for loss, 0.5 for a tie,
and 1 for a win, with MCTS implementations typically cali-
brated to optimize on this scale. For Sokoban puzzle genera-
tion, this is not directly applicable (as the measure of success
is not analogous to loss/tie/win). Instead, we propose to use
a weighted combination of puzzle features to estimate the
difficulty on a scale close to this 0 to 1 range.

By optimizing several metrics which are each indepen-
dently correlated with puzzle difficulty, MCTS can be used
to find more difficult puzzles than optimizing any one fea-
ture alone. Here, we used the Box Count, 3x3 Blocks, and
Congestion v2, as they were the most positively correlated
with difficulty. Additionally, each of these metrics captures
an intuitive aspect of what makes an interesting Sokoban
level: the 3x3 Blocks metric (Pb) rewards heterogeneous
landscapes, and discourages large clearings which are easy
to navigate; the Congestion metric (Pc) rewards box paths
which overlap with each other and are thereby likely to de-
velop precedence constraints between box pushes; and the
Box count (n) rewards levels with more boxes which makes
complex interactions between boxes more likely. The result-
ing function is as follows:

f(P ) =
wbPb + wcPc + wnn

k
(3)

The parameter k is employed to help normalize scores to the
range of 0 to 1, though some of our top scoring puzzles can
fall outside of this range.

While generating puzzles, f(P ) was used to evaluate
MCTS rollouts. The weights wc, wb, and wn were set em-
pirically to be 10, 5, and 1 respectively and k was set to 50.
Other weights can be used, and will lead to different puzzles
being generated.

Generating Level Sets
A given run of the MCTS tree search will generate several
levels of increasing (predicted) difficulty. We exploit this
feature to reach our goal of creating a level set, that is, a se-
ries of levels that are of increasing difficulty. Because MCTS
is an anytime algorithm that explores a wide, randomized
section of the search space, it is well suited for this task; each
run of MCTS creates several levels as it explores deeper in
the tree, each with increasing difficulty.

While each run of MCTS can generate a large number of
levels, many are slight variations of each other. To help cre-
ate variation in the level sets, we chose a subset of these lev-
els with different estimated difficulty scores. Figure 4 shows
the results from one of these level sets. The entire run of
MCTS for this set took 240s, and generated 20 of levels of
varying difficulty.

Analysis and Discussion
Our approach efficiently generates dozens of levels with
monotonically increasing scores within 5 minutes on on a
laptop using a single core of an Intel i7 2.2 GHz processor
with 8GB memory. We observe that it generates more levels
with low and medium scores than high scores. An instance
of this behavior can be seen in Figure 4.

To validate our updated evaluation function, we per-
formed a second user-study on 20 levels generated in a sin-
gle run (a subset of which is shown in Figure 4). This

62



Size Num. Computation
Score (Empty Tiles) Boxes Time (s)

0.4 10.8 2.0 0.01
0.8 16.8 4.2 0.54
1.2 21.1 6.0 39.7
1.4 27.3 7.0 120

Table 2: Puzzle Scaling. Average computation time to find
puzzles of various scores and size. While smaller puzzles
with few boxes can be found in a under a second, scaling to
larger sizes and box counts requires several minutes of com-
putation. Results are averaged over 5 runs with with different
random seeds.

Figure 5: The evaluation score of the puzzles in the gener-
ated level set were well correlated with perceived difficulty
(r2 = .91).

user study included 6 participants who provided 210 level
comparisons. The perceived difficulty scores were then com-
pared to the scores assigned by our evaluation function. The
results can be seen in Figure 5. We observe a very high
correlation (r2 = 0.91, p < 0.001) between the perceived
difficulty of a level and the score assigned by MCTS. This
confirms that MCTS will produce levels of increasing diffi-
culty by optimizing this function.

Our method is capable of producing a wide variety of lev-
els. Because MCTS is a stochastic algorithm, each run natu-
rally generates different levels from previous runs, and even
within a single run (see Figure 4). Additional variation can
be achieved by changing the maximum size of the board,
randomizing the start position of the agent, or limiting the
number of boxes in a level (see Figure 6). Figures 1, 2, 3,
and 6 showcase the variety in the puzzles that are generated.

Limitations Generation of large puzzles remains a bottle-
neck as the time grows exponentially as the explored space
and number of boxes grow linearly (see Table 2). This is due
to a quickly growing branching factor in the puzzle initial-
ization phase; every Delete obstacle action that is taken adds
up to three more available Delete obstacle actions. Addition-
ally, there are some generated puzzles that were perceived to
be more difficult than those with a higher score (Figure 5);

Figure 6: Procedurally generated puzzles of varying sizes

this suggests there are some aspects of difficulty our score
does not capture well.

Conclusions
In this work we have proposed and implemented a method
for Sokoban puzzle generation. We formulated the problem
as MCTS optimization, generating puzzles through simu-
lated gameplay to ensure solvability. We developed an eval-
uation function with a data-driven approach, utilizing a user
study to find puzzle features well correlated with perceived
difficulty. Our method is efficient, producing a variety of
puzzles with monotonically increasing scores within min-
utes. We validated our evaluation function through an addi-
tional user study and show that it correlates very well with
perceived difficulty.

Going forward, we plan to investigate ways of efficiently
creating larger puzzles of increasing difficulty. Some ways to
overcome the current challenges in scaling up puzzles may
include composing larger puzzles from smaller puzzle ele-
ments, reducing the size of the search space via data-driven
heuristics, and exploring if some properties of optimal so-
lutions may be computed quickly. Additionally, we plan to
perform a user study focused on larger levels and those of
very high difficulty. We also plan to parallelize MCTS to in-
crease computation performance. There are also other exten-
sions of our method for future research. We intend to explore
the abstraction of our method and its application to other
puzzle games and game genres. Additionally, we will study
the extent to which the difficulty and fun aspects of puzzles
differ. Lastly, we plan to study human designed levels and
better incorporate these into our data driven approach.

References
Ahmed, U. Z.; Chatterjee, K.; and Gulwani, S. 2015. Auto-
matic generation of alternative starting positions for simple
traditional board games. In Twenty-Ninth AAAI Conf. on Ar-
tificial Intelligence.
Ashlock, D., and Schonfeld, J. 2010. Evolution for au-

63



tomatic assessment of the difficulty of sokoban boards. In
Evolutionary Computation, 1–8.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.
Baghdadi, W.; Eddin, F. S.; Al-Omari, R.; Alhalawani, Z.;
Shaker, M.; and Shaker, N. 2015. A procedural method for
automatic generation of spelunky levels. In Applications of
Evolutionary Computation. 305–317.
Browne, C. B.; Powley, E.; Whitehouse, D.; et al. 2012. A
survey of Monte Carlo Tree Search methods. IEEE Trans.
on Computational Intelligence and AI in Games 4(1):1–43.
Culberson, J. 1999. Sokoban is PSPACE-complete. In Pro-
ceedings in Informatics, volume 4, 65–76.
Frydenberg, F.; Andersen, K. R.; Risi, S.; and Togelius, J.
2015. Investigating MCTS modifications in general video
game playing. In IEEE Computational Intelligence and
Games, 107–113.
Guzdial, M., and Riedl, M. O. 2015. Toward game level gen-
eration from gameplay videos. In Proceedings of the FDG
workshop on Procedural Content Generation in Games.
Herbrich, R.; Minka, T.; and Graepel, T. 2006. Trueskill: A
bayesian skill rating system. In Advances in Neural Infor-
mation Processing Systems, 569–576.
Holmgård, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2015. Monte-carlo tree search for persona based
player modeling. In Eleventh Artificial Intelligence and In-
teractive Digital Entertainment Conference.
Jarušek, P., and Pelánek, R. 2010. Difficulty rating of
sokoban puzzle. In Stairs, volume 222, 140.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhancing
general single-agent search methods using domain knowl-
edge. Artificial Intelligence 129(1):219–251.
Kartal, B.; Koenig, J.; and Guy, S. J. 2014. User-driven
narrative variation in large story domains using monte carlo
tree search. In Int’l Conf. on Autonomous Agents and Multi-
Agent Systems, 69–76.
Kartal, B.; Sohre, N.; and Guy, S. 2016. Generating sokoban
puzzle game levels with monte carlo tree search. In The
IJCAI-16 Workshop on General Game Playing.
Maung, D., and Crawfis, R. 2015. Applying formal pic-
ture languages to procedural content generation. In Com-
puter Games: AI, Animation, Mobile, Multimedia, Educa-
tional and Serious Games (CGAMES), 2015, 58–64.
Murase, Y.; Matsubara, H.; and Hiraga, Y. 1996. Automatic
making of sokoban problems. In PRICAI’96. 592–600.
Pereira, A. G.; Ritt, M.; and Buriol, L. S. 2015. Optimal
sokoban solving using pattern databases with specific do-
main knowledge. Artificial Intelligence 227:52–70.
Perez, D.; Samothrakis, S.; and Lucas, S. 2014. Knowledge-
based fast evolutionary mcts for general video game playing.
In IEEE Computational Intelligence and Games, 1–8.
Shaker, M.; Shaker, N.; Togelius, J.; and Abou-Zleikha, M.
2015. A progressive approach to content generation. In Ap-
plications of Evolutionary Computation. Springer. 381–393.

Silver, D.; Huang, A.; Maddison, C. J.; et al. 2016. Mas-
tering the game of go with deep neural networks and tree
search. Nature 529(7587):484–489.
Skinner, D. W. 2000. Sokoban puzzle dataset microban.
http://www.abelmartin.com/rj/sokobanJS/Skinner/David W.
Skinner - Sokoban.htm.
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. Computational Intelligence and AI in Games, IEEE
Transactions on 3(3):187–200.
Snodgrass, S., and Ontanon, S. 2015. A hierarchical mdmc
approach to 2d video game map generation. In Eleventh
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Stammer, D.; Gunther, T.; and Preuss, M. 2015. Player-
adaptive spelunky level generation. In Computational Intel-
ligence and Games, 2015 IEEE Conference on, 130–137.
Steinmetz, E., and Gini, M. 2015. Mining expert play to
guide monte carlo search in the opening moves of go. In
Int’l Joint Conf. on Artificial intelligence, 801–807.
Sturtevant, N. 2013. An argument for large-scale breadth-
first search for game design and content generation via a
case study of fling. In AI in the Game Design Process.
Sturtevant, N. R. 2015. Monte carlo tree search and related
algorithms for games. Game AI Pro 2: Collected Wisdom of
Game AI Professionals 265.
Summerville, A. J.; Behrooz, M.; Mateas, M.; and Jhala, A.
2015. The learning of zelda: Data-driven learning of level
topology. In Proceedings of the FDG workshop on Proce-
dural Content Generation in Games.
Taylor, J., and Parberry, I. 2011. Procedural generation
of sokoban levels. In North American Conf. on Intelligent
Games and Simulation, 5–12.
Taylor, J.; Parsons, T. D.; and Parberry, I. 2015. Comparing
player attention on procedurally generated vs. hand crafted
sokoban levels with an auditory stroop test. In Conf. on the
Foundations of Digital Games.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. Computational Intelligence and AI in
Games, IEEE Transactions on 3(3):172–186.
Van Kreveld, M.; Loffler, M.; and Mutser, P. 2015. Auto-
mated puzzle difficulty estimation. In IEEE Computational
Intelligence and Games, 415–422.
Zook, A.; Harrison, B.; and Riedl, M. O. 2015. Monte-
carlo tree search for simulation-based strategy analysis. In
the 10th Conf. on the Foundations of Digital Games.

64




