
Game Level Generation from Gameplay Videos

Matthew Guzdial, Mark Riedl
Entertainment Intelligence Lab

School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA, USA
mguzdial3@gatech.edu, riedl@cc.gatech.edu

Abstract
We present an unsupervised process to generate full video
game levels from a model trained on gameplay video. The
model represents probabilistic relationships between shapes
properties, and relates the relationships to stylistic variance
within a domain. We utilize the classic platformer game Super
Mario Bros. to evaluate this process due to its highly-regarded
level design. We evaluate the output in comparison to other
data-driven level generation techniques via a user study and
demonstrate its ability to produce novel output more stylisti-
cally similar to exemplar input.

Introduction
Procedural level generation is the problem of generating
high-quality game levels automatically. Existing level gen-
eration systems typically employ rule-based methods or for-
mulate optimization problems, where an expert designer en-
codes domain-specific knowledge as a set of rules, con-
straints, and/or objective functions. The process of encod-
ing this knowledge is time-consuming and, by its nature,
includes the biases of the encoder. This is desirable when
the encoder is the game designer, but this is not always the
case. As an alternative, data-driven approaches learn a rule
set or optimization function from exemplars. However, when
it comes to game levels, static exemplars like level maps are
insufficient as they lack a record of how the level is played.

We propose an alternative to these approaches by learn-
ing a generative model from representations of player expe-
rience: gameplay videos. Given a representation of player
experience, a system can learn a generative model of an in-
teractive scene without any additional authored knowledge,
as the representation includes how a player interacts with the
scene. Building a level design model from gameplay videos
allows a system to generate novel levels more in the style
of the original levels as the model does not include encoder
biases. The system encodes “bias”, to an extent, but it is the
original expert designer’s biases or design style that is en-
coded rather than those of the algorithm’s authors. We there-
fore advocate for this approach in empowering novice game
designers to make game levels for use in education, training,
and entertainment, as expert design knowledge is required to
either guide novices or fully automate design.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we present a system that learns a generative,
probabilistic model from gameplay video exemplars in an
unsupervised fashion. At a high level the system parses raw
gameplay video as input, categorizes level sections based on
their contents and the player’s behavior, and learns a prob-
abilistic graphical model of spatial relationships of content.
This model captures the probabilistic structure of level com-
ponents, which can then be used in the generation of novel
content that stylistically matches the original exemplars.

Our contributions include: (1) a method to automatically
categorize level data; (2) and a probabilistic model for full
level generation. We evaluate our approach by comparing
generated levels to those of two other data-driven Super
Mario Bros. level generators.

Related Work
Procedural content generation is the umbrella term for sys-
tems that take in some design knowledge and output new as-
sets from this knowledge. Approaches include evolutionary
search, rule-based systems and instantiating content from
probability tables (Hendrikx et al. 2013; Togelius et al.
2011). The often cited goal of these systems is to reduce the
authorial burden on designers. However, these systems tend
to only transfer the burden from creating content to supply-
ing the design knowledge needed to create that content.

Automatic design knowledge acquisition is the problem
of automatically deriving design knowledge from previously
extant, high quality exemplars, rather than requiring a direct
human author. Dahlskog and Togelius (2014) extracted ver-
tical slices of levels from Super Mario Bros. levels to inform
a heuristic function in an evolutionary process. Snodgrass
and Ontañón (2014) trained a hierarchical Markov chain on
Super Mario Bros. levels, on both tile-by-tile and abstract
tile transitions. Hoover et al. (2015) made use of neuroevo-
lution to generate additions to pre-constructed levels. Sum-
merville and Mateas (2016) generated levels using a recur-
rent neural net trained on tile-to-tile transitions. These ap-
proaches require substantial human authoring, such as au-
thored patterns of level content or categorization of stylis-
tically similar level elements (e.g. many different enemies
abstracted as “enemy”). In addition, to read in these levels
one must either transcribe each level in the game by hand or
write code to “strip” the level information from the game.

The problem of generating game levels from gameplay

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

44



video is related to object modeling from exemplars, in which
a set of exemplar objects are used to train a generative model
(Kalogerakis et al. 2014; Fish et al. 2014; Emilien et al.
2015). Our approach builds off these techniques, which also
use probabilistic graphical models. However, a majority of
object modeling approaches require human-tagging of indi-
vidual atoms and how they fit together. Our model does not
require any human tagging, instead relying on machine vi-
sion and probability to smooth any incorrect tags.

Machine vision is not often applied to computer games.
However, approaches exist to train agents to play Atari
games from pixel input (Mnih et al. 2015; Bellemare et al.
2012). While these approaches and our own use machine vi-
sion to process pixels over time, our system focuses on ex-
tracting design principles instead of learning to play games.

System Overview
Our system can be understood as containing three parts, op-
erating sequentially. First our system automatically derives
sections of level from video and categorizes these sections.
Second, the system derives probabilistic graphical models
from each category in a process inspired by Kalogerakis et.
al (2014). Finally, the system generates novel level sections
and combines them based on learned transitions.

We chose to use the classic platformer Super Mario
Bros. because of its highly regarded level design and its
popularity among the procedural level design community
(Shaker et al. 2011; Smith, Whitehead, and Mateas 2010;
Sorenson and Pasquier 2010). We begin by supplying our
system with two things: a set of videos and a sprite palette.
This input is simple to produce with the advent of “Let’s
Plays” and “Long Plays”. By sprite palette we indicate the
set of “sprites” or individual images used to build up the lev-
els of a 2D game. For this paper we utilized nine gameplay
videos and a fan-authored spritesheet.

Model Learning
Our system learns a generative, probabilistic model of
shape-to-shape relationships from gameplay videos. These
kinds of models, common in the object modeling field, re-
quire a set of similar objects as input. Given that the input
to our system is gameplay video, we must determine (1)
what input our probabilistic model should learn from and
(2) how to categorize this input in an unsupervised fashion
to ensure the required similarity. We chose to make use of
level chunks, sections of level composed of geometric sprite
data and learned tags of player information, as the basis of
the model. We categorize these level chunks with K-means
clustering, and each learned category is then used as input to
learn a generative, probabilistic model.

Defining and Categorizing Level Chunks
OpenCV (Pulli et al. 2012), an open machine vision library,
allows us to parse our input set of gameplay videos frame-
by-frame with the associated spritesheet. The output of this
parse is a list of each individual sprite and their positions per
frame. From this list, individual frames join together into
level chunks when adjacent and if they share 90% of the

same content. If a frame differs entirely from the next, its
level chunk is marked as the end of a level. Along with a
list of sprites and their positions each level chunk stores an
interaction time value equivalent to the number of frames
that combined to form the level chunk. This allows our sys-
tem to capture how long a player stayed in each level chunk.
Interaction time allows our system to do without manually
encoded design knowledge representing difficulties or re-
wards. Instead the interplay between the sprites and inter-
action time in a chunk allows our system to automatically
separate these experiential elements. For example, a level
chunk with a large amount of coins and a high interaction
time is likely rewarding. With our input of nine gameplay
videos this process found 13,492 level chunks.

Our system utilizes K-means clustering to categorize the
learned level chunks, with K estimated via the distortion ra-
tio (Pham, Dimov, and Nguyen 2005). We utilize a two-tier
clustering approach. For the first round, each level chunk is
represented as an n-dimension vector of counts per sprite
type (e.g. ground, block, coin) and normalized interaction
time. We normalize interaction times for each gameplay
video in order to minimize the impact of player skill dif-
ferences. For the K-means distance metric we utilized Eu-
clidean distance and found twenty-three initial categories.

The first round of clustering allows our system to derive
a measure of sprite relevance in the second round of cluster-
ing. This makes up for the fact that we do not have design
knowledge to determine noteworthy sprites, such as power-
up blocks or unusual enemies. We base this measure on a
variation of term frequency-inverse document frequency or
TF-IDF. TF-IDF is typically utilized in natural language pro-
cessing and search engines to to determine the relevance of
a term in a document. Formally:

relevance(t, d,D) = ft,d ∗ log(N/nt) (1)

Where t represents a particular sprite type, d represents a
particular level chunk, D represents an entire category of
level chunks, N represents the number of level chunks in
the category and nt represents the number of level chunks
where the sprite type t appears. ft,d represents the raw num-
ber of times a sprite of type t occurs in level chunk d. In this
way a notion of relevance can be determined per sprite type
per category, which would not be as useful for our system
if we used this metric prior to having initial clusters. Along
with these relevance scores each level chunk is represented
according to its normalized interaction time and a value rep-
resenting the normalized position of each level chunk in a
level. Using the Euclidean distance metric once more for this
n-dimensional vector we reclustered each of the categories,
finding sixty-nine final clusters, with each first round cluster
splitting into an average of three clusters each.

Probabilistic Model
The system builds a probabilistic graphical model from each
of the level chunk categories, that represents styles of rel-
ative sprite placements. The intuition for this per-category
learning is that different types of level chunks will have dif-
ferent relationships, and that therefore different models must

45



Figure 1: A visualization of the basic probabilistic model.

Figure 2: Example of a D Node, the set of relationships.

be learned on an individual category basis. The model ex-
tracts values for latent variables to represent probabilistic
design rules. Figure 1 shows the probabilistic model using
the standard “plate” visualization.. White nodes represent
hidden variables, with the blue nodes values learned from
the level chunks in a category.

The three observable nodes are the G node, D node,
and N node. The G node in the graphical model represents
the sprite “geometry”, an individual shape of sprite type t.
Shapes are built by connecting all adjacent sprites of the
same type (e.g. ground, block, coin). Therefore for some
types, many of the G nodes are identical, while for others
the shapes represent large, irregular patterns of sprites. The
D node represents the set of all relative differences between
a given G node and all other G nodes in its level chunk. You
can see a visual example of this in Figure 2. The D node
in this case is the set of vectors capturing relative orien-
tation and direction between the question block shape and
all other G nodes in the chunk (two “block” shapes, one
“goomba” shape, and one “ground” shape). The N node rep-
resents the number of individual atomic sprite values in a
particular level chunk. In the case of Figure 2 there are two
goombas, seventeen ground sprites, etc.

The first latent variable is the S node, it represents “styles”
of sprite shapes. These styles can vary either in geometry or
in relative positions. The value and number of S nodes are
learned by clustering G and D node pairs with K-means with
k estimated according to the distortion ratio. Each pair is a
G node, with the corresponding D node representing all con-
nections from that G node to all others in its level chunk. The

Figure 3: Visualization of a final L Node.

distance function required by K-means clustering weights
the G and D parts evenly with G nodes represented as binary
matrices undergoing matrix subtraction and D nodes sub-
tracted using Hellman’s metric. Clustering with K estima-
tion means the number of S nodes is learned automatically,
to best explain the variance in shapes. With a learned S node
we can determine the probability of another S node shape at
a given relative distance. More formally: P (gs1 , rd|gs2) or
the probability of a G node from within a particular S node,
given a relative distance to a second G node. For example,
goomba shapes have a high probability of co-occurring with
ground shapes at the same relative position as in Figure 2.

The L Node represents a specific style of level chunk,
the intuition behind it is that it is constituted by the differ-
ent styles of sprite shapes (S) and the different level chunks
that can be built with those shapes (N). The system repre-
sents this as a clustering problem, this time of S nodes. Each
S node tracks the N node values that arose from the same
chunk as its G and D nodes. Essentially, each S node knows
the level chunks from the original Mario that represent its
“style” of shape. The distance metric between two S nodes
is made of two parts. The first part is a normalized value
representing the relative size of disjoint set of sprites that
co-occur with the S node’s style of shape. The second part
is a normalized value representing the size of the disjoint set
between the N nodes that each S node tracks. This process
typically leads to multiple L nodes for a single category of
level chunk, in particular it does an excellent job of segregat-
ing noisy level chunks that arise from using computer vision
techniques.

Figure 3 represents a final learned L Node and all of its
children. Notice the multiple S nodes of the “block” type,
with one “ground” S node. To create a new level chunk in
the “style” of this L node its simply a matter of choosing an
N node value and the set of S nodes to constitute it, placing
individual shapes in order to maximize their pairwise prob-
abilities. We’ll go into this in more detail in the next section.

Generation
Our system generates novel levels in the style of Super
Mario Bros. by first instantiating a level “plan” based on
learned transitions of level chunk categories, and then by
instantiating novel level chunks to fill in that plan. This pro-
cess is analogous to Joris Dormans’ theory of “mission” and
“space” generation (Dormans 2010). The level chunk cate-
gory transitions are derived from the actual gameplay video
levels, using the “vocabulary” of learned level chunk cate-
gories. These transitions are then used to construct a space
of possible level designs where nodes are level chunk cat-

46



Figure 4: Visualization of a level graph of only overworld
levels.

egories and arcs represent the probability of transitioning
from one level chunk category to another. A probabilistic
walk of the graph can then create a level plan, a sequence of
level chunk categories. Level chunks can then be generated
from the probabilistic model of shape distributions learned
for that category. The final level can be imported into a game
engine, such as the Infinite Mario engine and played (To-
gelius, Karakovskiy, and Shaker 2012).

Generating Level Plans
To build up a space of allowed levels our system utilizes the
learned level chunk categories to represent the levels from
the input videos. During the process of defining level chunks
the system automatically discovers the end points of levels,
thereby allowing the system to represent levels as sequences
of level chunks. From these sequences our system learns a
model of transitions between level chunk categories.

Our system uses the fuzzy merge algorithm (Foley 1999)
to combine individual sequences of level chunks into a prob-
abilistic, directed graph of level chunk category transitions.
This final representation bares a string resemblance to plot
graphs (Weyhrauch 1997), which have been shown to be a
powerful representation for encoding long sequences of in-
formation where absolute ordering is important.

To create the final level graph, each sequence of level
chunks is transformed into a linear, directed graph with each
level chunk becoming a node. Each node holds its origina-
tor’s level chunk category, a normalized value representing
its position in the level, and its normalized interaction time.
Each node is considered in sequence, searching the entirety
of the level graph for the best merge point according to a
fuzzy definition of equivalence. In this case two nodes are
considered equivalent if they have the same category, and
their normalized position and interaction time values differ
by less than 0.05. When a node is merged, it retains all out-
ward edges, and the weight on each edge is incremented if
it matches one of the outward edges in the matched node. If
no merge can be found, a node is simply added to the model
with the single edge to its prior node in the sequence. This
final level graph can be used to generate each of the origi-
nal levels and novel levels based on taking alternate routes.

Figure 5: Visualization of a level chunk generation process.

Figure 4 visualizes sections of the level graph learned for
“overworld” levels, with each node represented by the me-
dian level chunk in that node. Note that the fuzzy merge al-
gorithm correctly learns that these levels almost always start
with a big or small castle.

With the level graph, our system is able to construct a
“level plan” via a probabilistic walk until it hits a node with
no further edges. The chunks of the level plan are then in-
stantiated by generating new level chunks of the types spec-
ified by the plan.

Generating Level Chunks

The generation of level chunks takes place for each L node
individually. The process is a simple greedy search algo-
rithm, maximizing the following scoring function:

1/N ∗
N∑
i=1

N∑
j=1

p(gi|gj , gi − gj) (2)

Where N is equal to the current number of shapes in a level
chunk, gi is the shape at the ith index, gj is the shape at the
jth index, and gi − gj is the relative position of gi from gj .
This is equivalent to the average of the probabilities of each
shape in terms of its relative position to every other shape.

The generation process begins with two things: a single
shape chosen randomly from the space of possible shapes
in an L node, and a random N node value to serve as an
end condition. The N nodes hold count data of sprites from
the original level chunks in a category. The N node value
serves as an end condition by specifying how many of each
sprite type a generated chunk needs to be complete. In every
step of the generation process, the system creates a list of
possible next shapes, and tests each, choosing the one that
maximizes its scoring function. These possible next shapes
are chosen according to two metrics: (1) shapes that are still
needed to reach the N node value-defined end state and (2)
shapes that are required given a shape already in the level
chunk. The system defines a shape to require another shape
if p(s1|s2) > 0.95, in other words if the shape styles co-
occur more than 95% of the time. We visualize this pro-
cess in Figure 5, starting with a G node “ground” shape and
an N node value set (ground=15, pipeBody=2, pipeTop=1,
cloud=2, fence=3, block=10, smallSnowTree=1, and tall-
SnowTree=1). The shapes not included in the starting N-
node come about due to being “required” for some added
shape (such as the “lakitu” floating enemy). For more de-
tail on level chunk generation please see (Guzdial and Riedl
2016).

47



Evaluation
We evaluated our approach with an online user study. The
goal of the study was to determine if the our model rep-
resented the level design “style” of Super Mario Bros.. We
hypothesized that our system would out-perform data-driven
level generators on both quantitative and qualitative metrics
of style due to the style-encoding probabilistic model.

Experimental Setup
We chose to compare our generator against two other recent
data-driven approaches: the Snodgrass and Ontañón, and the
Dahlskog and Togelius generators (Dahlskog and Togelius
2014; Snodgrass and Ontañón 2014). We did not include
the Summerville and Mateas generator as it was incomplete
prior to the human subjects study (Summerville, Philip, and
Mateas 2015; Summerville and Mateas 2016).

For each generator we procured five levels to use in our
user study, to ensure each level would experience sufficient
coverage. We transcribed five randomly selected levels from
the nine levels published in (Dahlskog and Togelius 2014).
We generated one-hundred random levels from the best-
performing version of the Snodgrass generator, and took the
first five playable ones. The Snodgrass, and Dahlskog gener-
ators were both trained on only the “overworld” levels, and
so we modified our generator to only produce “overworld”
levels via constraining which level chunk categories it could
learn from (Note: our generator is capable or producing
other level types, such as “Castle” levels). To deal with the
fact that each L node can generate a a varied number of novel
level chunks (from 900 to over 400,000), we restricted each
L node to only generate one-hundred level chunks. Both
other generators required a specified level length, while our
system creates levels of arbitrary length. We therefore gener-
ated one-hundred levels and selected the five playable levels
closest to the specified length. Playability was determined
by a greedy-path planning agent. For the study we made
use of the Infinite Mario engine (Togelius, Karakovskiy, and
Shaker 2012) as the Snodgrass levels were made for this en-
gine. We then translated both the Dahslkog levels and our
own automatically after hand-authoring the sprite mappings
between Super Mario Bros. and the study engine.

Methodology
Participants played through three levels and answered ten
questions: six questions involved ranking the levels they
played and four collected demographic information. The
first level they played was Super Mario Bros. Level 1-1,
translated into the study engine, in order to establish a famil-
iarity with typical Mario levels. Participants were informed
that this was an original Mario level. After this point each
participant played two levels, one level selected randomly
from our generated levels and one level selected randomly
from one of the two other generators. Our study therefore
had four categories to which participants were randomly as-
signed, based on which generators’ levels they played, and
in what order.

The six ranking questions started with asking the partic-
ipant to rank the two AI levels according to which was the

Table 1: The results of our system compared to Snodgrass.
Mario Ours Snodgrass p-value

Mario-like N/A 1 2 0.0174
Fun 1 2 3 3.02e-5
Frustration 3 2 1.5 1.06e-11
Challenge 3 2 2 0.6976
Design 1 2 3 2.31e-7
Deaths 0 2 3 2.25e-9

“most like a level from a Mario game”. The other five ques-
tions asked participants to rank all three played levels ac-
cording to the following: Fun, Frustration, Challenge, De-
sign, and Creativity. These types of question appear com-
monly in game surveys (Pedersen, Togelius, and Yannakakis
2009; Drachen et al. 2010). Each question was on its own
screen of the study, with the top section showing the very
beginning and end of each level the participant played. We
chose not to include the entirety of the level as we wanted
the participant to make their ranking based on their experi-
ence, not on an image representation. After the ranking ques-
tions, the participant was asked four demographic questions,
which were all Likert-scale style questions. The first three
questions were to determine how long ago the participant
had played three categories of games: Super Mario Bros.,
any platformer Mario game, and any platformer game. The
last asked how frequently the participants played games in
general. We included these questions as we hypothesized
that experience with related games may impact a subject’s
expectations with the generated levels.

Study Results and Discussion
We recruited seventy-three participants over social media to
take part in the study. Participants had to download an ap-
plication to run the study and e-mail back a zip containing
their answers and log files of their playthrough of each level.
Due to random assignment we had sixteen individuals in one
of our four categories, we therefore made use of sixty-four
randomly selected participants’ results for statistical tests.

For the first question on how “Mario-like” levels were,
we ran the paired Mann-Whitney U test between the two ar-
tificial levels. For all other questions we ran Friedman’s test
between all three level ranking distributions as ranking val-
ues are by their nature paired and interrelated. When nec-
essary we made use of the paired Mann-Whitney U tests
to ensure individual pairs of generator’s rank distributions
differed significantly. We split the results according to the
“Snodgrass” (Table 1) and “Dahlskog” categories (Table 2).
Table 1 and 2 summarize the results. We include the me-
dian rank for each generator on each question with 1 as the
best and 3 as the worst, and the p-value between the genera-
tors’ rank distributions. We leave out Creativity, as the distri-
butions were uniform. We also include the median number
deaths per level for each generator, and the p-value from run-
ning the one way repeated measures ANOVA on each gen-
erator’s death distributions, recall that there was a maximum
of three deaths to each level.

We found in all of the questions that the distributions of

48



Table 2: The results of our system compared to Dahlskog.
Mario Ours Dahlskog p-value

Mario-like N/A 1 2 0.0383
Fun 1 2 2 0.3147
Frustration 3 2 1 3.58e-7
Challenge 3 2 1 2.31e-4
Design 1 2 3 2.21e-5
Deaths 0 2 3 2.42e-5

Figure 6: The beginnings of three representative levels from
each generator. Top: Our System, Middle: Snodgrass, and
Bottom: Dahlskog.

rankings differed significantly, except in the case of Chal-
lenge, and Fun, and Creativity. For Creativity all the distri-
butions were uniform, likely due to the lack of a wide-spread
definition of level design creativity. These results reflect fa-
vorably on our hypothesis that our approach better encapsu-
lated the “style” of Super Mario Bros. levels, in particular
that our generator was ranked more highly than both other
generators on Mario-likeness and that its Design was ranked
second to Level 1-1.

We found no correlation between any of the rankings and
the order in which they were presented. We did find a num-
ber of correlations between the demographic information
and the rankings using Spearman’s Rank-Order Correlation.
For participants who played Dahlskog levels, we found a
strong positive correlation between the time since the par-
ticipant last played a Mario platformer and how highly they
ranked the Dahlskog generator on “Fun” (rs = 0.54, p =
0.00147). This suggests a reason why the Dahlskog genera-
tor and our own did not receive significantly different “Fun”
rankings, given that individuals who played Mario platform-
ers less frequently ranked the Dahlskog levels more highly.
We conclude that Dahlskog levels were “fun” in a different
way to typical Mario platformers, due likely to the hand-
annotated level design knowledge encoded by the system’s
authors. This matches our own intuition. As seen in Fig-
ure 6, Dahlskog levels contained more enemies and requires
more precision jumps than typical Mario levels. In addition
we found moderate correlations between how long since the
participant had played any platformer and the number of
times they died, and the former and the challenge ranking.

Figure 7: Each generator’s boxplot for the model evaluation

Model Evaluation

To confirm that our model actually encodes “style” knowl-
edge correctly we analyzed each set of levels according to
the scoring metric presented in Formula 2. This metric cap-
tures how likely our model finds a distribution of level el-
ements. Given that the metric is meant for level chunks we
“chunked” each level based on screen distance, and matched
each chunk to the closest original level chunk to determine
what L node to use. We present the results in Figure 7. Our
model recognizes the distribution of elements in our gener-
ated levels as being more likely than those of the other two
generators. We found significant difference between each
distribution using the Mann-Whitney U test (p < 0.05), and
that the median values matched the rankings from the hu-
man evaluation. This indicates that our model captures level
design style.

Conclusions
We present a probabilistic model of component-based video
game level structure that can be use to generate novel video
game levels. Our model requires no manual annotation and
can extract all knowledge in an unsupervised fashion from
gameplay video. Through a user study, we find strong evi-
dence that our model captures style and underlying design
of an exemplar set better than the current state of the art.

In the future we hope to utilize this approach on other
games and to extract more information from gameplay
video. In particular, we believe automatic game mechanic—
the rules for how the player and environment can interact—
learning from video can provide a better understanding of
the semantic meaning of level components. This work com-
prises a first step toward generalized design knowledge ac-
quisition that can learn from many different games and com-
pose novel game mechanics and level designs.

Acknowledgements
We gratefully thank Sam Snodgrass and Santiago Ontañón
for providing source code for their system. This material is
based upon work supported by the National Science Founda-
tion under Grant No. 1002748. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

49



References
Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
2012. The Arcade Learning Environment: An Evaluation
Platform for General Agents. CoRR abs/1207.4708.
Dahlskog, S., and Togelius, J. 2014. A Multi-level Level
Generator. In Computational Intelligence and Games (CIG),
2014 IEEE Conference on, 1–8. IEEE.
Dormans, J. 2010. Adventures in Level Design: Generat-
ing Missions and Spaces for Action Adventure Games. In
Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, 1. ACM.
Drachen, A., Nacke, L. E., Yannakakis, G., and Pedersen,
A. L. 2010. Correlation Between Heart Rate, Electroder-
mal Activity and Player Experience in First-person Shooter
Games. In Proceedings of the Fifth ACM SIGGRAPH Sym-
posium on Video Games, 49–54. ACM.
Emilien, A., Vimont, U., Cani, M.-P., Poulin, P., and Benes,
B. 2015. WorldBrush: Interactive Example-based Synthesis
of Procedural Virtual Worlds. ACM Transactions on Graph-
ics 34(4):106:1–106:11.
Fish, N., Averkiou, M., van Kaick, O., Sorkine-Hornung,
O., Cohen-Or, D., and Mitra, N. J. 2014. Meta-
representation of Shape Families. ACM Transactions on
Graphics 33(4):34:1–34:11.
Foley, M. J. 1999. Fuzzy merges: Examples and Tech-
niques. In Proceedings of the Twenty-Fourth Annual SAS
Users Group.
Guzdial, M., and Riedl, M. 2016. Learning to Blend Com-
puter Game Levels. In Proceedings of the Seventh Inter-
national Conference on Computational Creativity (ICCC
2016).
Hendrikx, M., Meijer, S., Velden, J. V. D., and Iosup, A.
2013. Procedural Content Generation for Games: A Survey.
ACM Trans. Graph. 9(1):1:1–1:22.
Hoover, A. K., Togelius, J., and Yannakis, G. N. 2015. Com-
posing Video Game Levels with Music Metaphors through
Functional Scaffolding. In First Computational Creativity
and Games Workshop. ACC.
Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V.
2014. A Probabilistic Model for Component-Based Shape
Synthesis. ACM Transactions on Graphics 31(4):55:1–
55:11.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Pedersen, C., Togelius, J., and Yannakakis, G. N. 2009.
Modeling Player Experience in Super Mario Bros. In Com-
putational Intelligence and Games, 2009. CIG 2009. IEEE
Symposium on, 132–139. IEEE.
Pham, D. T., Dimov, S. S., and Nguyen, C. D. 2005. Selec-
tion of K in K-means clustering. Proceedings of the Institu-
tion of Mechanical Engineers, Part C: Journal of Mechani-
cal Engineering Science 219(1):103–119.

Pulli, K., Baksheev, A., Kornyakov, K., and Eruhimov, V.
2012. Real-Time Computer Vision with OpenCV. Commun.
ACM 55(6):61–69.
Shaker, N., Togelius, J., Yannakakis, G., Weber, B., Shimizu,
T., Hashiyama, T., Sorenson, N., Pasquier, P., Mawhorter,
P., Takahashi, G., Smith, G., and Baumgarten, R. 2011.
The 2010 Mario AI Championship: Level Generation Track.
Computational Intelligence and AI in Games, IEEE Trans-
actions on 3(4):332–347.
Smith, G., Whitehead, J., and Mateas, M. 2010. Tanagra: A
Mixed-Initiative Level Design Tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, FDG ’10, 209–216. New York, NY, USA: ACM.
Snodgrass, S., and Ontañón, S. 2014. Experiments in Map
Generation using Markov Chains. Proceedings of the 9th
International Conference on Foundations of Digital Games
14.
Sorenson, N., and Pasquier, P. 2010. Towards a Generic
Framework for Automated Video Game Level Creation. In
Proceedings of the 2010 International Conference on Ap-
plications of Evolutionary Computation - Volume Part I,
EvoApplicatons’10, 131–140. Berlin, Heidelberg: Springer-
Verlag.
Summerville, A., and Mateas, M. 2016. Super Mario as a
String: Platformer Level Generation via LSTMs. In Pro-
ceedings of the First International Conference of DiGRA
and FDG.
Summerville, A. J., Philip, S., and Mateas, M. 2015. MCM-
CTS PCG 4 SMB: Monte Carlo Tree Searcg to Guide Plat-
former Level Generation. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference. AIIDE.
Togelius, J., Yannakakis, G., Stanley, K., and Browne, C.
2011. Search-Based Procedural Content Generation: A Tax-
onomy and Survey. Computational Intelligence and AI in
Games, IEEE Transactions on 3(3):172–186.
Togelius, J., Karakovskiy, S., and Shaker, N. 2012. 2012
Mario AI Championship. http://www.marioai.org/.
Weyhrauch, P. 1997. Guiding Interactive Fiction. Ph.D.
Dissertation, Ph. D. Dissertation, Carnegie Mellon Univer-
sity.

50




