
Portfolio Online Evolution in StarCraft

Che Wang, Pan Chen, Yuanda Li, Christoffer Holmgård, Julian Togelius
New York University
Brooklyn, NY 11201

{cw1681, pchen, yuanda.li, holmgard}@nyu.edu, julian@togelius.com

Abstract

Portfolio Online Evolution is a novel method for
playing real-time strategy games through evolutionary
search in the space of assignments of scripts to individ-
ual game units. This method builds on and recombines
two recently devised methods for playing multi-action
games: (1) Portfolio Greedy Search, which searches in
the space of heuristics assigned to units rather than in
the space of actions, and (2) Online Evolution, which
uses evolution rather than tree search to effectively play
games where multiple actions per turn lead to enormous
branching factors. The combination of both ideas lead
to the use of evolution to search the space of which
script/heuristic is assigned to which unit. In this paper,
we introduce the ideas of Portfolio Online Evolution
and apply it to StarCraft micro, or individual battles. It
is shown to outperform all other tested methods in bat-
tles of moderate to large size.

Introduction
Real-time strategy games often involve AI problems with
huge branching factors. For instance, StarCraft (Blizzard
Entertainment 1998) is a popular RTS game by Blizzard
Entertainment where multiple players battle together, col-
lect resources, build their economies, establish bases, train
armies, and try to eliminate the opposing player(s) with a
variety of strategies. Among these aspects of the game, com-
bat is a challenging one. In an encounter between two armies
of each 12 units (24 total), assuming each unit can attack a
opponent unit or move in 4 directions, the branching factor
for each move can be as high as 1612. And such a move has
to be decided within 40 ms in order to ensure a 24 frames
per second game speed. If multiple AI players are present
in a game or the graphics get more demanding, this time
constraint may be even harsher. It’s very challenging for a
traditional search algorithm to tackle this problem.

In commercial RTS games, AI players are mostly imple-
mented by scripts. A script is a fixed policy that tells units
what to do under certain conditions. A very simple script
used in the StarCraft AI competition (Churchill and Buro
2016; Ontanón et al. 2013; Churchill et al. 2016) is Attack-
Closest. The AttackClosest script simply instructs a unit to

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

attack the enemy unit that is closest to it, or if no enemy
units are in range, move towards the closest enemy unit.
More complicated scripts are designed in RTS games like
StarCraft to provide interesting AI opponents for human
players. These scripts do not give very strong AI players,
but they are very efficient and can be used without slowing
down the game. Although scripted AI players still dominate
commercial RTS games, research has been done to develop
better methods. The current best published algorithms for
StarCraft micro are Portfolio Greedy Search (Churchill and
Buro 2013) and Script- and Cluster-based UCT (Justesen et
al. 2014). Both of these approaches are built on the idea of
selecting not which action to take for each unit, but which
script to use to select an action for each unit. This signifi-
cantly decreases the search space (if there are fewer scripts
than action) to the cost of requiring some domain knowl-
edge (in find good scripts to select among). The Script-
and Cluster-based UCT is also built on the very popular
Monte Carlo Tree Search algorithm (Kocsis and Szepesvári
2006; Coulom 2006; Browne et al. 2012). These algorithms
outperform purely scripted players significantly and have
shown promising efficiency in medium to large scale unit
battles compared to other search algorithms. (However, it
should be noted that for the complete StarCraft AI chal-
lenge, which includes several layers of strategy, the best-
performing bots include significant amounts of hand-coding
with simulation-based planning usually relegated to a pe-
ripheral role. (Churchill and Buro 2016; Ontanón et al. 2013;
Churchill et al. 2016))

Recently, another method called Online Evolution (Juste-
sen, Mahlmann, and Togelius 2016) was proposed as a
fundamentally different way of dealing with game-playing
problems with very large branching factor. The Online Evo-
lution algorithm was implemented for the turn-based multi-
action game Hero Academy (Robot Entertainment 2012),
where a player can control multiple units and can do multi-
ple moves each turn. Thus, this game also has a huge branch-
ing factor and cannot be tackled by traditional search meth-
ods. Online Evolution takes an evolutionary approach: In-
stead of searching through all possible moves, it evolves
a sequence of unit moves. Essentially, the action selection
problem is seen as an optimization problem rather than a
planning problem. This outperforms all other algorithms im-
plemented for the game. Online Evolution is inspired by

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

114



Rolling Horizon Evolution (Perez et al. 2013), where evo-
lution is used in real-time to search for sequences of actions
for a single agent. This approach has been shown to work
well for the Physical Traveling Salesman Problem, which is
a blend of a TSP with a racing game (Perez, Rohlfshagen,
and Lucas 2012). However, evolution has not been used for
action selection in a multi-agent, real-time adversarial sce-
nario such as an RTS game before.

In this paper we combine the ideas of Portfolio Greedy
Search and Online Evolution to build a new algorithm for
RTS games: Portfolio Online Evolution (POE). POE keeps
a collection of scripts, called a portfolio, and keeps mu-
tating and selecting in a population where each individual
is defined as a sequence of scripts that are used to gener-
ate moves for corresponding units. This paper will focus on
the implementation, performance and efficiency analysis of
this new algorithm. Performances of different algorithms are
compared in a StarCraft combat simulator JarCraft (Tillman
2014) under different army size settings and a harsh time
limit.

Related Work
In this section, we briefly review the StarCraft Combat Sim-
ulator used for the experiments, JarCraft, scripts used in
StarCraft AI competitions, as well as the other search al-
gorithms that are compared to Online Evolution.

JarCraft
JarCraft is an open-source combat simulator, implemented
in Java, for StarCraft (Tillman 2014). It is a translation of
another StarCraft combat simulator, SparCraft, which is im-
plemented in C++ (Churchill 2013). In JarCraft we can effi-
ciently simulate unit combat with different army sizes, while
other parts of the StarCraft game, such as economy and
construction, are not considered. In JarCraft, a few game
elements are simplified to ensure experimental efficiency
e.g. there is no collision among units. A more detailed ex-
planation on the features of the simulator can be found at
(Churchill, Saffidine, and Buro 2012) and (Churchill 2013).

Scripts
In previous research and StarCraft AI competitions, vari-
ous scripts have been designed as AI controllers for com-
bat units. Among them the two most popular ones are
No-OverKill-Attack-Value script (NOK-AV) and the Kiter
script. NOK-AV instructs a unit u to target the enemy in
range with highest dpf(u)

hp(u) value, where dpf(u) represents
the damage the enemy unit can inflict per game frame and
hp(u) the health point of the enemy. If no enemy is in
range, the unit will move towards the closest enemy. NOK-
AV avoids overkill and lets friendly units cooperate to inflict
the highest total damage to the enemy. The Kiter script is
unique in that it instructs a unit that is in attack range but
currently cannot attack to move away from the enemy and
then move forward again to attack. This feature allows units
to constantly move back in order to evade enemy melee units
or force the enemy to change their focus of fire. The Kiter

script used in our experiments also targets the enemy unit
with the highest dpf(u)

hp(u) value.

State Evaluation
A state evaluation method called LTD2 is used in JarCraft
to decide the quality of a certain state. LTD2 computes the
value of a state s using unit sets U1 and U2 that are controlled
by Player 1 and Player 2 respectively, as well as health points
hp(u) and damage capability dpf(u) of each unit u. The
score of current game state for Player 1 is calculated as:

LTD2(s) =
∑

u∈U1

√
hp(u) ·dpf(u)−

∑
u∈U2

√
hp(u) ·dpf(u)

Note that the LTD2 score can be used to evaluate terminal
states, where all units of one player are eliminated as well as
non-terminal states. It can be used alone or combined with
a playout. In a playout the state is forwarded under a certain
policy. Churchill et al. found that among all scripts NOK-
AV has the best performance for playouts. Such a playout
will generate moves for both players using NOK-AV for all
units until a terminal state or until a round limit is reached.
The final state is then evaluated using LTD2. This is the
method used by UCT related algorithms. Portfolio Greedy
Search and Portfolio Online Evolution utilize more compli-
cated playout policies that we will elaborate in later sections.

Portfolio Greedy Search
Portfolio Greedy Search (PGS) is a novel hill climb-
ing greedy search algorithm proposed by Churchil and
Buro (Churchill and Buro 2013). PGS uses a set of scripts
P which is called the Portfolio to generate moves for units.
There are 3 major procedures:

GetSeedPlayer at the beginning, a set of scripts, all set to
a default script which is NOK-AV in (Churchill and Buro
2013), is returned to the player. So with a seed set of scripts
all units of this player are assigned NOK-AV script. Both
the player’s scripts and a set of enemy scripts are initialized
using GetSeedPlayer.

Improve PGS iterates through all units that the player con-
trols, and for a unit u assign each script in the portfolio to
it and do a playout. For the duration of this playout all the
player’s units will follow their currently assigned scripts and
the enemy’s units follow the enemy’s current scripts. The re-
sulting state will be evaluated and a script with the highest
value will be assigned to unit u. The algorithm then goes
to the next unit. PGS finds a better set of scripts with this
hill-climbing method.

Response after the player’s choice of scripts are improved,
the enemy’s scripts then get improved, using the player’s
scripts as its enemy. The idea is to let the player and the en-
emy scripts get improved in turn multiple times before giv-
ing the final scripts to use. By using a greedy hill-climbing
method, PGS has a reduced search space and has shown bet-
ter performance than best algorithms before it, such as the
UCTCD.

115



Script- and Cluster-based UCT
Upper Confidence Bound (UCT) is a very popular mem-
ber of the Monte Carlo Tree Search (MCTS) family (Kocsis
and Szepesvári 2006; Coulom 2006; Browne et al. 2012).
UCT Considering Durations (UCTCD) is an extension of
UCT, designed specifically for a RTS scenario where units
move simultaneously instead of in turns (Churchill and Buro
2013). For a StarCraft scenario, when unit moves are gen-
erated using UCTCD, it constructs a tree from the current
state, reducing its search complexity by using methods such
as random sampling and giving priority to search on more
promising child nodes. At leaf nodes a playout is run and
the final state is evaluated to get a score value and then
back-propagates this to the root. The algorithm ends by giv-
ing the best unit moves it can find. Such a search algorithm
does not search through the complete search space but has
shown good performance in StarCraft combat simulations.
Script- and Cluster-based UCT (Justesen et al. 2014) are two
newer algorithms that can be seen as enhanced versions of
UCTCD. Script-based UCT is different from UCTCD in that
UCTCD searches for a vector of particular moves for units
while Script-based UCT searches for a vector of scripts. This
approach reduces the branching factor considerably when
only a small amount of scripts are used, that is, the num-
ber of scripts used are lower than the number of particular
moves a unit can take. Cluster-based UCT also uses a script-
based approach so it also searches for a vector of scripts. In
addition to that, it also groups units that are at similar posi-
tions into clusters. Then all the units in a cluster will use the
same script to move.

Online Evolution
Evolutionary algorithms have been used widely for evolving
AI controllers (Lucas and Kendall 2006; Miikkulainen et al.
2006; Risi and Togelius 2014). In most cases parameters of
a controller are evolved over a number of generations, where
the fitness function is defined by the controller’s success in
playing a game. This is known as an offline evolutionary
approach because the controller first goes through evolution
and then is used for the actual task. Online Evolution is novel
in the sense that it does not evolve a controller, but evolves a
sequence of actions for units to use for each turn in the actual
game. In the implementation of Online Evolution for Hero
Academy, at each turn, an initial population is created by re-
peatedly selecting a random action. The population has size
100, in each generation the individuals in the population are
evaluated with a heuristic, then the best 50% individuals are
selected. The selected ones go through a uniform crossover
each with another random best individual and produce a new
individual. When applying the idea of Online Evolution to
StarCraft combat simulations, these parameters are changed
in order to fit the new context.

Method
In (Justesen, Mahlmann, and Togelius 2016), the Online
Evolution algorithm implemented for the turn-based multi-
action game Hero Academy (Robot Entertainment 2012) is
designed to evolve a sequence of particular unit moves and

tries to find the best sequence of moves for a turn. One of the
problems in this implementation is the existence of illegal
moves. In Hero Academy a player can issue 5 commands
each turn and these commands can be issued to the same
unit or to multiple units. So for instance, it can happen that
the evolutionary algorithm evolves to a move that instructs a
unit to move backwards, then instructs the unit to attack an
enemy that the unit used to be able to attack but cannot after
it moved. Such problems can be tackled in Hero Academy
specifically by disallowing the selection of illegal movement
from a parent action. However, during our implementation,
we found that in an RTS game such as StarCraft, too many
illegal moves can be included, making it hard to fix the se-
quence, reducing the direct applicability of online evolution.
The solution is to use a script-based method. That is where
Portfolio Greedy Search comes in.

Combining the advantages of Online Evolution and Port-
folio Greedy Search, we arrive at Portfolio Online Evolu-
tion, which is essentially an evolutionary algorithm that tries
to evolve an as good set/sequence of scripts as possible to
use for units in several future steps from the current game
state. We use the word “genome” to denote such a sequence
of scripts. Similar to Portfolio Greedy Search, Portfolio On-
line Evolution first initializes all scripts to be used to NOK-
AV. Afterwards the mutation and selection process on the
population is similar to that in Online Evolution.

There are several key differences between Portfolio
Greedy Search (PGS) and Portfolio Online Evolution
(POE): 1. Where PGS uses hill-climbing, POE uses evolu-
tion; 2. PGS’s evaluation method is to do a playout from the
root node and during the playout each unit will always use
the script it is assigned to. POE’s genome has the scripts
for all units for several upcoming steps, see Figure 1; 3.
PGS’s playout will try to play until the end of game. But
POE will only do a shallow playout. POE’s playout often
will not reach the end of game and is controlled by a param-
eter.

Move/Unit 1 2 3 4
1 NOKAV Kiter NOKAV Kiter
2 Kiter NOKAV NOKAV Kiter
3 Kiter NOKAV Kiter Kiter

Table 1: An m×n matrix is used to represent an individual,
or genome in portfolio online evolution. n is the number of
units for a player and m is a constant set to be the future steps
that the evolution is going to explore. This graph shows an
indiviual when n = 4 and m = 3. During evaluation, the
”Kiter” at row 3, column 1 means from the current state on,
unit 1 will be using Kiter script for its 3rd move.

Algorithm Structure
A simplified description of POE is given below: A POE
player has a portfolio, which can contain any number of
scripts used for evolving. When the evolution time limit is
reached, the scripts in the current best genome in the popu-
lation are used to generate unit moves. To be consistent with

116



previous research, the NOK-AV and Kiter scripts that we
mentioned in the related work section are used for all script-
based algorithms in our main experiments. But to showcase
how POE scales with more scripts, we also compare the
performance of POE with 2 scripts (POE-2) and POE with
6 scripts (POE-6). POE-2 uses NOK-AV and Kiter, while
POE-6 uses NOK-AV and the following 5 scripts: Back,
which lets a unit move back from the closest enemy when
reloading; BackFar, which lets a unit move towards the far-
thest ally unit when reloading; BackClose, which lets a unit
move towards the closest ally unit when reloading; Forward,
which lets a unit move to closest enemy when reloading;
ForwardFar, which lets a unit move to the farthest enemy
when reloading. All of these scripts command a unit to move
towards enemy when they are not in attack range and at-
tack whenever they can. All their attacks have the feature
of NOK-AV, so they will choose the enemy with the high-
est dpf/hp value to attack and will not overkill. These scripts
essentially enables a unit to move in one of 5 directions or
stand still during battle, but these scripts are also quite sim-
ple and have no fancy tactics. Note that the scripts used in
POE-6 forbids a unit to move back before it engages an en-
emy, making unit behavior more stable. Init function will
initialize all the genomes in the population with all NOK-AV
scripts. This is to ensure that all NOK-AV, which is a base-
line strategy is always available for POE. populationSize
is a parameter that decides the number of genomes in a pop-
ulation. These genomes are evaluated with a playout, the re-
sulting value is stored with the genome. Mutate function
will add mutation into the population. For each gene in each
genome, a mutationrate is set to indicate how likely a gene
will mutate into another gene. Crossover is not implemented
for POE-2 because the scripts are first initialized to be all
NOK-AV and for the first few generations, crossover does
not make much sense for several all NOK-AV genomes and
experiment results confirmed our assumption. But for POE-
6, we found that implementing crossover can increase the
performance of POE. So there is a group of experiments
dedicated to show how crossover can change performance
of POE when using more scripts. Select function basically
sorts the genomes in the population according to their eval-
uation value then select the best ones. A parameter b is set
to decide how many best genomes are selected. Eval func-
tion takes in a State s, a Genome g, creates a copy of State
s and does a playout from this state using the scripts in g.
After the playout, the final state is evaluated using the LTD2
method. Playout function takes in a State s, a Genome g,
and a playoutLimit to evaluate a state using playout. As-
sume we have 4 units and a genome that is the same as in
Table 1. During a playout the enemy will all use NOK-AV
script for all times, and ally units will first follow the script
in the genome. So the 4 units will use NOK-AV, Kiter, NOK-
AV, Kiter respectively for their 1st next move; Kiter, NOK-
AV, NOK-AV, Kiter for their 2nd move, and so on, until all
the scripts in the genome are used, which in this case is after
the 3rd move. Assume the playout limit is 25, then for the
next 25-3 = 22 moves, all ally units will use NOK-AV. After
25 moves, the final state is returned for evaluation. Interested
readers should consult (Churchill 2013) and (Churchill and

Buro 2013) when implementing this in the SparCraft or Jar-
Craft simulator since they simulate real-time play with an
asynchronous unit action model which can be a little tricky.

1: function PORTFOLIOONLINEEVOLUTION(State s)
2: Genome[] pop
3: Init(pop, s)
4: while currentT imeUsed < timeLimit do
5: mutate(pop)
6: select(pop)
7: return best genome in pop

8:
9: function INIT(Genome[] pop, State s)

10: for x = 1 to populationSize do
11: N ← number of units
12: M ← number of future steps
13: Genome g← new Genome(N, M)
14: pop.add(g)
15: fill(g, NOKAV)
16:
17: function MUTATE(Genome[] pop)
18: for Genome g in pop do
19: for i in M do
20: for j in N do
21: if random(0, 1) < mutateRate then
22: g[M ][N ] ← ran-

dom(portfolio.size())
23:
24: function SELECT(Genome[] pop, State s)
25: for Genome g in pop do
26: Eval(g, s)
27: pop.sort()
28: pop← Best b ones in pop, b is a constant
29:
30: function EVAL(Genome g, State s)
31: State snew ← s
32: snew ← Playout(snew, g, playoutLimit)
33: return snew.LTD2()
34:
35: function PLAYOUT(Genome g, State s, Playout Limit

limit)
36: for timestep=1 to limit do
37: if more scripts available in g then
38: use scripts in g for ally units, use NOK-AV

for all enemy units, forward s
39: else
40: use NOK-AV for all units, forward s
41: return s

Results
All the experiments in this paper are 2-player battles con-
ducted in JarCraft, with a map size 25*20 tiles and a tile size
of 32 pixels. A unit can move on any tile of this map. Each
player in a battle can control a total of n units, half of them
are Dragoons (ranged unit), the other half are Zealots (melee
unit). The units’ original positions are generated on vertical
lines, with 16 units on a line, symmetrically. In between the
two player’s units, a distance of 225 pixels is set to create

117



a realistic battle where units can change formations before
engaging with the other side. After that, a random shuffling
process give a slight random change (0 to 20 pixel) to the x
and y position of each unit. We set this random change to a
small value to make experiment results more stable. Algo-
rithms are tested with army size n = 4, 8, 16, 32, 64, 96.

All experiments are performed on an Intel(R) Core(TM)
i7-5500U CPU @ 2.40GHz running Windows 10 with 12
GB of DDR3 1600MHz RAM. All algorithms are imple-
mented to run in a single thread. We use a harsh time limit
of 20 ms as it better reflects the computation environment
in an actual RTS game, where multiple AI players might
be run on a single machine and graphics takes considerate
computation power. In earlier tests we also tested on a
40 ms time limit and results are similar. Except for the
time limit, the configurations for the script- and cluster-
based UCTCD are the same as in (Justesen et al. 2014).
The configuration for portfolio greedy search looks very
basic but it is the same as in (Churchill and Buro 2013),
Churchill explains that higher settings do not yet run within
the time limit. We only used the cluster-based UCTCD that
cluster all units since (Justesen et al. 2014) found that this
generally yielded better performance. The configurations
are shown in Table 2 and the win rates are shown in Figure 1.

Configuration for all algorithms:
- Time limit: 20ms
- Scripts used: NOK-AV, Kiter
Configuration for all UCT algorithms:
- Max. children: 20
- Evaluation: NOK-AV vs. NOK-AV playout
- Final move selection: Most valuable
- Exploration constant: 1.6
Script-based UCTCD:
- Child generation: One-at-leaf
Cluster-based UCTCD:
- Child generation: One-at-leaf
- Cluster max-distance-to-mean: 30 pixels
- Opponent clustering: No
- Units to cluster: All
Portfolio Greedy Search:
- Improvement iterations: 1
- Response iterations: 0
- Initial enemy script: NOK-AV
- Evaluation: NOK-AV Playout
Portfolio Online Evolution:
- Evaluation: NOK-AV Playout
- Future steps: 3
- Mutation rate: 0.2
- Number of genomes selected in each mutation: 4
- Offspring of each selected superior member: 3
- Playout round limit: 25

Table 2: An overview of the algorithm configurations.

POE compared with NOK-AV The Portfolio Online
Evolution player is able to win against NOKAV with a 1.0
rate in all battles with army size >= 8, and loses only a very
small fraction with army size of 4.

POE compared with PGS Portfolio online evolution is
able to win over portfolio greedy search with all army sizes.
The win rate for POE is slightly higher with 16 units or
fewer. Average win rate is around 75%.

POE compared with Script- and Cluster-based UCT
Portfolio Online Evolution is able to outperform both Script-
based UCT and Cluster-based UCT significantly in large-
scale combats where there are more than 32 units. In fact,
POE gets a higher win rate when more units are in the bat-
tle. When it comes to fewer units, POE still wins but with
a lower win rate. But when controlling very few units, POE
cannot outperform script-based UCT. However, win rate is
very near 0.5 which means their performance are very simi-
lar at a very small-scale battle. The non-deterministic nature
of POE decides that it sometimes will give a sub-optimal
move, and that might be the main reason why it cannot win
over Script-based UCT in a very small sized battle.

PGS compared with Script- and Cluster-based UCT
Since in (Justesen et al. 2014), no comparison was done on
the performance between PGS and Script- and Cluster-based
UCT, we implemented PGS according to the specifications
of Churchill in (Churchill and Buro 2013) and did this com-
parison. The results show that both UCT-based methods out-
perform Portfolio Greedy Search in all combat sizes. It’s in-
teresting to see that PGS seems to perform best against the
two UCT methods at an army size of 16 units for each player.

POE with 6 scripts compared with POE with 2 scripts
Experiment results show that when POE uses more scripts,
its performance in RTS battle can be not just maintained,
but even further improved. Here we compared the perfor-
mance of POE with 6 different scripts against POE with only
2 scripts. Results show that POE-6 outperforms POE-2 in all
combat configurations.

POE with crossover implemented vs POE with uniform
mutation only Experiments show that when POE has only
2 scripts, the performance of POE-2 with crossover imple-
mented is about the same as POE-2 using only uniform mu-
tation, no significant improvement is observed. However,
when POE has 6 scripts, a considerable higher performance
is observed for combats where army size is 16 or higher.
This might indicate that crossover can make better use of
the diversity of scripts in the portfolio.

Running time test on POE Experiments results show that
the average time needed for POE is about proportional to
the number of units on the battlefield, as shown in figure 2.
This is mainly due to the fact that the scripts in the portfolio
iterate through all enemy units to find the nearest enemy or
apply the no-overkill policy. For scripts that do not iterate
through units, then the running time for a generation will
not change significantly as the number of units changes.

118



Figure 1: Win rate of the different Portfolio Online Evolution variations against other types of controllers. X-axes show the
number of units on each side. 100 games were played for each army size. Error bars show 95% confidence intervals.

Figure 2: Average time for evolving one generation using
POE with respect to army size

Discussion
Although Portfolio Online Evolution has shown good per-
formance against other algorithms, it currently has some
limitations. Due to its randomized nature, some of the moves
output by POE does not make great sense. This is especially
obvious when using scripts of high freedom with a large
army size. From time to time, some units will showcase a
random-looking behavior that is far from optimal. In some
tests where a large army size is selected and POE player is
given 6 scripts that allow all directions of unit moves at all
times, its performance can be reduced greatly. The two pop-
ular scripts NOKAV and Kiter do not allow units to move
back before they are very close to the enemy thus avoid most
of this problem. But optimization is clearly required if we
want to use more diverse and unpredictable strategies with
POE. More scripts should be developed, possibly the scripts
themselves could be evolved.
The parameters currently used for POE are arbitrarily cho-

sen and can be optimized, possible via off-line evolution.
Other enhancements such as clustering can also be applied
to POE. Although it might not reduce the running time of
POE since its complexity does not depend on the number of
units, it can reduce the number of random moves and thus
increase its stability. Parallelism is another simple optimiza-
tion with potential for large speedups.Since our experiments
were conducted in a combat simulator where unit collision
is not modeled, it would also be of great value to see how
POE works in actual StarCraft games.

Conclusions
In this paper we presented a new algorithm called Portfo-
lio Online Evolution, which combines the ideas of Portfolio
Greedy Search and Online Evolution. We tested it against
3 state-of-the-art algorithms for playing different StarCraft
micro scenarios. We found that Portfolio Online Evolution
outperforms all three of them in combat experiments carried
out within the JarCraft simulator. The results further indicate
that Portfolio Online Evolution performs relatively better the
more units are involved in the battle. This suggests that this
approach should scale very well to more complex scenarios.

References
Blizzard Entertainment. 1998. StarCraft. Blizzard Enter-
tainment.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.

119



Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in starcraft. In Com-
putational Intelligence in Games (CIG), 2013 IEEE Confer-
ence on, 1–8. IEEE.
Churchill, D., and Buro, M. 2016. AIIDE Starcraft AI Com-
petition.
Churchill, D.; Preuss, M.; Richoux, F.; Synnaeve, G.; Uri-
arte, A.; Ontanón, S.; and Certickỳ, M. 2016. Starcraft bots
and competitions.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for rts game combat scenarios. In AIIDE.
Churchill, D. 2013. Sparcraft: open source starcraft combat
simulation.
Coulom, R. 2006. Efficient selectivity and backup operators
in monte-carlo tree search. In International Conference on
Computers and Games, 72–83. Springer.
Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script-and cluster-based uct for starcraft. In Computational
Intelligence and Games (CIG), 2014 IEEE Conference on,
1–8. IEEE.
Justesen, N.; Mahlmann, T.; and Togelius, J. 2016. Online
evolution for multi-action adversarial games. In Applica-
tions of Evolutionary Computation. Springer. 590–603.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Lucas, S. M., and Kendall, G. 2006. Evolutionary computa-
tion and games. IEEE Computational Intelligence Magazine
1(1):10–18.
Miikkulainen, R.; Bryant, B. D.; Cornelius, R.; Karpov, I. V.;
Stanley, K. O.; and Yong, C. H. 2006. Computational intelli-
gence in games. Computational Intelligence: Principles and
Practice 155–191.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-time
strategy game ai research and competition in starcraft. Com-
putational Intelligence and AI in Games, IEEE Transactions
on 5(4):293–311.
Perez, D.; Samothrakis, S.; Lucas, S.; and Rohlfshagen, P.
2013. Rolling horizon evolution versus tree search for nav-
igation in single-player real-time games. In Proceedings
of the 15th annual conference on Genetic and evolutionary
computation, 351–358. ACM.
Perez, D.; Rohlfshagen, P.; and Lucas, S. M. 2012. The
physical travelling salesman problem: Wcci 2012 compe-
tition. In Evolutionary Computation (CEC), 2012 IEEE
Congress on, 1–8. IEEE.
Risi, S., and Togelius, J. 2014. Neuroevolution in games:
State of the art and open challenges.
Robot Entertainment. 2012. Hero Academy. Robot Enter-
tainment.
Tillman, B. 2014. Jarcraft.

120




